Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade

Tamanho: px
Começar a partir da página:

Download "Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade"

Transcrição

1 Cpítulo IV Funções Contínus 4 Noção de Continuidde Um idei muito básic de função contínu é de que o seu gráfico pode ser trçdo sem levntr o lápis do ppel; se houver necessidde de interromper o trço do gráfico pr o continur noutro locl então é porque ocorre um descontinuidde De cordo com est idei observndo s figurs seguintes vemos que f e g são contínus enqunto que s funções h j e k são descontínus respectivmente em ; e Z \ {} 89

2 Cpítulo IV: Funções Contínus 9 E qunto às funções m n e l? O que contece nests três funções é que s possíveis descontinuiddes encontrm-se nos etremos dos respectivos domínios Pergunt: Serão ests três funções descontínus? Respost: Não Como temos fldo o conceito de continuidde num ponto está relciondo com o comportmento d função num vizinhnç de f e em f Isto record-nos o conceito de ite ssim: Definição: Se D f e f está definid num vizinhnç de qundo e só qundo eiste f e f f diz-se que f é contínu em Se D f e f não está definid num vizinhnç de isto é é um ponto isoldo então f é contínu em Se D f e f está definid num vizinhnç de em se diz-se que f é descontínu

3 Cpítulo IV: Funções Contínus 9 não eiste f isto é os ites lteris são diferentes ou são infinitos ou simplesmente não eistem ou f f 4 Diz-se que f é um função contínu se é contínu pr todo ponto D f A definição forml de continuidde é seguinte: Sej f : D f IR IR e D f Diz-se que f é um função contínu no ponto se f ε ε > δ > : < δ f < Isto quer dizer que: f é um função contínu no ponto se pr qulquer intervlo centrdo em ordends f do tipo ] ε f ε[ eiste pelo menos um intervlo d form ] δ δ [ ponto pertence o intervlo ] ε f ε[ f f reltivmente às onde imgem de qulquer Compre est definição com de ite Ests definições são precids o que lter é que em vez de L temos f e em vez de ] δ δ [ \ { } temos ] δ δ [ Definição: Se Se D f f diz-se contínu à direit de D f f diz-se contínu à esquerd de se f f se f f

4 Cpítulo IV: Funções Contínus 9 Eemplos: < h h não é contínu em porque h h Pode dizer-se que é contínu à direit em > < 6 j j não é contínu em pois j j 4 j não é continu à esquerd nem à direit de i não é contínu em pois 5 i i A função Sinl definid por < > Sng não é um função contínu em pois Sng Sng A função Heviside definid por < H não é um função contínu em pois H H no entnto é continu à direit de i

5 Cpítulo IV: Funções Contínus 9 m m é contínu em e m pois m m e m m m m é contínu em pois é um ponto isoldo n é contínu pois todos os pontos 4 do seu domínio D {4 } são pontos isoldos l < n não tem sentido nlisr continuidde de l em pois Dl l é contínu em l pois l l ; y 5 A função f é contínu em todo o seu 5 domínio O ponto onde poderi surgir dúvid er ms -5 D f -5 A função < f é contínu em > todo o seu domínio Onde poderi hver dúvids er em ms D f

6 Cpítulo IV: Funções Contínus 94 < A função f não é contínu em porque D f e f Not: Ao contrário d definição de ite só tem sentido flr em continuidde de um função f em se D f e interess o que se pss num n vizinhnç do ponto incluindo e tmbém imgem do ponto 4 Proprieddes ds funções contínus Teorem: Sejm f e g dus funções contínus em Então s funções f ± g ; cf c IR ; fg ; g f g tmbém são funções contínus em Se g é continu em e f é contínu em g então f g é contínu em Se g b e se f é contínu em b então Eemplos: f f e e f g f g f g e sen f sen f Proposição: As funções polinomiis rcionis eponenciis logrítmics trigonométrics directs e trigonométrics inverss são funções contínus

7 Cpítulo IV: Funções Contínus 95 Eercício: Mostre que função f definid por rcsen se f é contínu se > ln Resolução: O domínio de f é [ [ \ { } Se [ [ verifique! função é definid por rcsen est é um função contínu pois é compost d função invers trigonométric rcsen com função polinomil mbs funções contínus Se ] [ \ { } função é definid por est é um função contínu pois é ln quociente d função polinomil com função logritmo ln que pel proposição nterior sbemos trtr-se de funções contínus Flt nlisr continuidde em : f rcsen o eiste f ; f ln o f rcsen Logo f é contínu em pois verific-se f f

8 Cpítulo IV: Funções Contínus 96 4 Teorems fundmentis sobre continuidde Teorem dos vlores intermédios ou de Bolzno: Sej f um função contínu no intervlo fechdo [ b] Se d está entre f e f b então eiste c [ b] tl que c d f Note que condição de continuidde é fulcrl neste resultdo pois cso não se verifique conclusão do teorem pode não ser válid Eemplo: Sej f definid no intervlo fechdo [ ] tl que f se se se < < Não eiste nenhum elemento c [ ] tl que c f O intervlo onde est função está definid é fechdo ms função não é contínu no ponto Este teorem tem prticulr interesse n obtenção de zeros rízes de funções reis Corolário: Sej f um função contínu no intervlo fechdo [ b] Se f f b < então eiste pelo menos um zero no intervlo [ b] c [ b] : f c isto é

9 Cpítulo IV: Funções Contínus 97 Eercício : Mostre que função f 4 5 tem pelo menos um zero intervlo ] [ Resolução: Como f é um função polinomil é contínu em IR e em prticulr é contínu no intervlo fechdo [ ] Além disso f 9 e Como f f < [ ] Como f e f no intervlo berto ] [ f o corolário firm que eiste pelo menos um zero no intervlo podemos grntir eistênci de um zero d função f Eercício : Mostre utilizndo o teorem de Bolzno ou o seu corolário que equção tem pelo menos um riz rel Resolução: Defin-se f no intervlo fechdo [ ] f é um função polinomil logo é contínu em IR e em prticulr no subconjunto [ ] Como f 5 < f o corolário nterior firm que eiste pelo menos um [ ]: f c c ou sej equção tem pelo menos solução um riz rel no intervlo [ ] c ficndo desde já provd eistênci de pelo menos Como foi definido trás sej f : D IR e c diz-se que c f D f f é um máimo de f se f c D e diz-se que c mínimo de f se f c f D f é um

10 Cpítulo IV: Funções Contínus 98 Teorem de Weierstrss: Se f é um função contínu no intervlo fechdo [ b] então f tinge o vlor máimo e o vlor mínimo É clro que se f é um função constnte f c definid no intervlo [ b] que constnte c é o vlor máimo e mínimo de f então é óbvio Observção: Se lgum ds condições do teorem flhr conclusão do teorem poderá não se verificr Eemplos: Sej f definid no intervlo berto ] [ Est função não tem máimo nem mínimo Repre que não se pode plicr o teorem de Weierstrss porque o intervlo onde est função está definid não é fechdo embor f sej contínu pois é quociente de funções polinomiis Sej gor f definid no intervlo fechdo [ ] tl que se f se < < se A função f não é contínu nos pontos e e portnto não se pode plicr o teorem de Weierstrss relembrr que nos pontos etremos do domínio só continuidde lterl deve ser verificd É fácil ver que est função tmbém não tem máimo nem mínimo

Seja f : D R uma função, a R um ponto de acumulação D ) diz-se que f(x) tende para b quando x tende para a ou { }

Seja f : D R uma função, a R um ponto de acumulação D ) diz-se que f(x) tende para b quando x tende para a ou { } .4- Limites e continuidde de unções. De. Deinição de Limite Sej : D R um unção, R um ponto de cumulção D diz-se que tende pr b qundo tende pr ou b se : { } > ε > V ε D \ V b b b b ε ε De.. Dd um unção

Leia mais

Noção intuitiva de limite

Noção intuitiva de limite Noção intuitiv de ite Qundo se proim de 1, y se proim de 3, isto é: 3 y + 1 1,5 4 1,3 3,6 1,1 3, 1,05 3,1 1,0 3,04 1,01 3,0 De um modo gerl: Eemplo de um ite básico Qundo tende um vlor determindo, o ite

Leia mais

+ + = + lim. x 1. 1 x. , x 0 tem descontinuidade infinita no ponto x = 0 pois. =, x 0 tem descontinuidade de salto no ponto x = 0 pois

+ + = + lim. x 1. 1 x. , x 0 tem descontinuidade infinita no ponto x = 0 pois. =, x 0 tem descontinuidade de salto no ponto x = 0 pois Mtemátic II 9. Prof.: Luiz Gonzg Dmsceno E-mils: dmsceno4@yhoo.com.br dmsceno@uol.com.br dmsceno@hotmil.com http://www.dmsceno.info www.dmsceno.info dmsceno.info. Descontinuiddes Descontinuidde Infinit

Leia mais

Profª Cristiane Guedes LIMITE DE UMA FUNÇÃO. Cristianeguedes.pro.br/cefet

Profª Cristiane Guedes LIMITE DE UMA FUNÇÃO. Cristianeguedes.pro.br/cefet LIMITE DE UMA FUNÇÃO Cristineguedes.pro.br/ceet Vizinhnç de um ponto Pr um vlor rbitrrimente pequeno >, vizinhnç de é o conjunto dos vlores de pertencentes o intervlo: - + OBS: d AB = I A B I Limite de

Leia mais

< 9 0 < f(2) 1 < 18 1 < f(2) < 19

< 9 0 < f(2) 1 < 18 1 < f(2) < 19 Resolução do Eme Mtemátic A código 6 ª fse 08.. (B) 0 P = C 6 ( )6 ( ).. (B) Como f é contínu em [0; ] e diferenciável em ]0; [, pelo teorem de Lgrnge, eiste c ]0; [tl que f() f(0) = f (c). 0 Como 0

Leia mais

CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES

CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES 5.- Teorems Fundmentis do Cálculo Diferencil Os teorems de Rolle, de Lgrnge, de Cuch e regr de L Hospitl são os qutro teorems fundmentis do cálculo diferencil

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I Frequência

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I Frequência Instituto Politécnico de Brgnç Escol Superior de Tecnologi e Gestão Análise Mtemátic I Frequênci Durção d prov: h min Dt: // Tolerânci: 5 min Cursos: EQ, IG, GEI Resolução Grupo I g π. ) Considere função

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

e como . 2 contradomínio e como contradomínio [ 0,π ]. Y = arcsen(x) 1 x Y = arccos(x) -1 1 x A função arccos(x) tem como domínio [ 1,1 ] e como

e como . 2 contradomínio e como contradomínio [ 0,π ]. Y = arcsen(x) 1 x Y = arccos(x) -1 1 x A função arccos(x) tem como domínio [ 1,1 ] e como Análise Mtemátic I - 6/7 Y rcsen y - A unção rcos tem como domínio [, ] e como A unção rcsen tem como domínio [, ] contrdomínio,. e como Y rccos y - A unção rccos tem como domínio [, ] contrdomínio [,

Leia mais

Teorema Fundamental do Cálculo - Parte 2

Teorema Fundamental do Cálculo - Parte 2 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver

Leia mais

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente.

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. .5.- Derivd d função compost, derivd d função invers, derivd d função implícit e derivd de funções definids prmetricmente. Teorem.3 Derivd d Função Compost Suponh-se que g: A R é diferenciável no ponto

Leia mais

3.18 EXERCÍCIOS pg. 112

3.18 EXERCÍCIOS pg. 112 89 8 EXERCÍCIOS pg Investigue continuidde nos pontos indicdos sen, 0 em 0 0, 0 sen 0 0 0 Portnto não é contínu em 0 b em 0 0 0 0 0 0 0 0 0 0 0 0 0 Portnto é contínu em 0 8, em, c 8 Portnto, unção é contínu

Leia mais

1 Funções reais de variável real: generalidades e exemplos. 2 Funções reais de variável real: limites e continuidade. 3 Cálculo diferencial em R

1 Funções reais de variável real: generalidades e exemplos. 2 Funções reais de variável real: limites e continuidade. 3 Cálculo diferencial em R Índice Cálculo I Engenhri Electromecânic Funções reis de vriável rel: generliddes e eemplos Funções reis de vriável rel: ites e continuidde 3 Cálculo diferencil em R António Bento Deprtmento de Mtemátic

Leia mais

TEORIA DOS LIMITES LIMITES. Professor: Alexandre 2. DEFINIÇÃO DE LIMITE

TEORIA DOS LIMITES LIMITES. Professor: Alexandre 2. DEFINIÇÃO DE LIMITE TEORIA DOS LIMITES Professor: Alendre LIMITES. NOÇÃO INTUITIVA DE LIMITE Vmos nlisr o comportmento gráfico d função f ( ) qundo tende pr. ) Primeirmente vmos tender vriável por vlores inferiores, ou sej,

Leia mais

Do programa... 2 Descobre o teu livro... 4

Do programa... 2 Descobre o teu livro... 4 Índice Do progrm........................................... Descobre o teu livro....................................... 4 Atividde zero: Record.................................. 6 1. T de vrição e otimizção...........................

Leia mais

6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2]

6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2] 6 Cálculo Integrl. (Eercício VI. de []) Considere função f definid no intervlo [, ] por se [, [ f () = se = 3 se ], ] () Mostre que pr tod decomposição do intervlo [, ], s soms superior S d ( f ) e inferior

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 0 - Fse Propost de resolução GRUPO I. Como comissão deve ter etmente mulheres, num totl de pessos, será constituíd por um único homem. Logo, como eistem 6 homens no

Leia mais

Cálculo de Limites. Sumário

Cálculo de Limites. Sumário 6 Cálculo de Limites Sumário 6. Limites de Sequêncis................. 3 6.2 Exercícios Recomenddos............... 5 6.3 Limites de Funções.................. 7 6.4 Exercícios Recomenddos...............

Leia mais

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões Prov 1 Soluções MA-602 Análise II 27/4/2009 Escolh 5 questões 1. Sej f : [, b] R um função limitd. Mostre que f é integrável se, e só se, existe um sequênci de prtições P n P [,b] do intervlo [, b] tl

Leia mais

Dessa forma o eixo ox é uma assíntota da função exponencial e assim valores de y < 0 não se relacionam com nenhum x do domínio, portanto Im = R +.

Dessa forma o eixo ox é uma assíntota da função exponencial e assim valores de y < 0 não se relacionam com nenhum x do domínio, portanto Im = R +. 6 4. Função Eponencil É todo função que pode ser escrit n form: f: R R + = Em que é um número rel tl que 0

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

Cálculo Infinitesimal. Gabriela Chaves

Cálculo Infinitesimal. Gabriela Chaves Cálculo Infinitesiml Gbriel Chves versão de Agosto de ii Índice Índice iii Proprieddes básics dos números. Operções de dição e multiplicção...................................... Relção de ordem.................................................

Leia mais

Profª Cristiane Guedes DERIVADA. Cristianeguedes.pro.br/cefet

Profª Cristiane Guedes DERIVADA. Cristianeguedes.pro.br/cefet Proª Cristine Guedes 1 DERIVADA Cristineguedes.pro.br/ceet Ret Tngente Como determinr inclinção d ret tngente curv y no ponto P,? 0 0 Proª Cristine Guedes Pr responder ess pergunt considermos um ponto

Leia mais

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 )

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 ) Universidde Federl de Viços Deprtmento de Mtemátic MAT 40 Cálculo I - 207/II Eercícios Resolvidos e Comentdos Prte 2 Limites: Clcule os seguintes ites io se eistirem. Cso contrário, justique não eistênci.

Leia mais

CÁLCULO A UMA VARIÁVEL

CÁLCULO A UMA VARIÁVEL Profª Cristine Guedes 1 CÁLCULO A UMA VARIÁVEL cristineguedes.pro.r/cefet Ement do Curso 2 Funções Reis Limites Continuidde Derivd Ts Relcionds - Funções Crescentes e Decrescentes Máimos e Mínimos Construção

Leia mais

Usando qualquer um dos métodos de primitivação indicados anteriormente, determine uma primitiva de cada uma das seguintes funções. e x e 2x + 2e x + 1

Usando qualquer um dos métodos de primitivação indicados anteriormente, determine uma primitiva de cada uma das seguintes funções. e x e 2x + 2e x + 1 Instituto Superior Técnico Deprtmento de Mtemátic Secção de Álgebr e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEIC-ALAMEDA o SEM. 7/8 6 FICHA DE EXERCÍCIOS I. Treino Complementr de Primitivs. CÁLCULO INTEGRAL

Leia mais

x x x 1,8 2,5 2,5 1,89 2,1 1,89 1,956 2,04 2,04 1,9934 2,015 1,956 1,9995 2,007 2,007 1, ,0003 1,9995

x x x 1,8 2,5 2,5 1,89 2,1 1,89 1,956 2,04 2,04 1,9934 2,015 1,956 1,9995 2,007 2,007 1, ,0003 1,9995 Mtemátic II Prof: Luiz Gonzg Dmsceno E-mils: dmsceno@yhoocombr dmsceno@uolcombr dmsceno@hotmilcom Site: http://wwwdmscenoinfo wwwdmscenoinfo dmscenoinfo Limites Considere função y f ) f ) é definid no

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 08 - Fse Propost de resolução Cderno... Como eperiênci se repete váris vezes, de form independente, distribuição de probbiliddes segue o modelo binomil P X k n C k p

Leia mais

FUNÇÕES EM IR n. . O conjunto D é o domínio de f. O contradomínio de f consiste em todos os números. a função de domínio D dada por:

FUNÇÕES EM IR n. . O conjunto D é o domínio de f. O contradomínio de f consiste em todos os números. a função de domínio D dada por: FUNÇÕES EM IR n Deinição: Sej D um conjunto de pres ordendos de números reis Um unção de dus vriáveis é um correspondênci que ssoci cd pr em D ectmente um número rel denotdo por O conjunto D é o domínio

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

Professor Mauricio Lutz LIMITES DE FUNÇÕES

Professor Mauricio Lutz LIMITES DE FUNÇÕES Professor Muricio Lutz LIMITES DE FUNÇÕES ) Introdução O conceito de ite é fundmentl no cálculo diferencil, um cmpo d Mtemátic que teve início no século XVII e é bstnte fértil em resultdos e plicções em

Leia mais

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 1 o SEMESTRE 2017/18 MEAER

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 1 o SEMESTRE 2017/18 MEAER AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I o SEMESTRE 07/8 MEAER. Aul Apresentção. José Mtis (responsável) Págin d cdeir: https://fenix.tecnico.ulisbo.pt/disciplins/cdi7/07-08/-semestre

Leia mais

1 Conjuntos Finitos e Infinitos

1 Conjuntos Finitos e Infinitos Conjuntos Finitos e Infinitos. Números Nturis Definição O conjunto N dos nturis é tl que Existe s : N N injetiv tl que Im (s) = N {}; } X N X = N s (X) X Teorem 2 (Princípio d Bo Ordenção) } A N A possui

Leia mais

f(x) dx for um número real. (1) x = x 0 Figura A

f(x) dx for um número real. (1) x = x 0 Figura A FFCLRP-USP Integris Imprópris - CÁLCULO DIFERENCIAL E INTEGRAL I Professor Dr Jir Silvério dos Sntos Integris Imprópris Definição Sej f : ; x ) R um função Suponh ret x = x é um Assíntot Verticl o gráfico

Leia mais

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 1 o SEMESTRE 2011/12 LMAC, MEFT, MEBIOM

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 1 o SEMESTRE 2011/12 LMAC, MEFT, MEBIOM AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I o SEMESTRE 0/ LMAC, MEFT, MEBIOM. Aul 6 de Setembro de 0 Apresentção. José Mtis (responsável) Págin d cdeir: https://fenix.ist.utl.pt/disciplins/cdi6/0-0/-semestre

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral.

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Auls n o 8: Técnics de Integrção I - Método d Substituição Objetivos d Aul Apresentr técnic de integrção por substituição; Utilizr técnics presentds

Leia mais

Analise Matemática I. Aula 10 Limite de Funções. Exercícios

Analise Matemática I. Aula 10 Limite de Funções. Exercícios Anlise Mtemátic I Aul Limite de Funções. Eercícios Ano cdémico 7 Tem. Cálculo Diferencil Limites infinitos e ites no infinito. Indeterminções. Limite Trigonométrico Fundmentl. Limite Eponencil Fundmentl.

Leia mais

1 Limite - Revisão. 1.1 Continuidade

1 Limite - Revisão. 1.1 Continuidade 1 Limite - Revisão O conceito de limite de um função contribui pr nálise do comportmento d função n vizinhnç de um determindo ponto. Intuitivmente, dd um função f(x) e um ponto b que pertence o domínio

Leia mais

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 1 o SEMESTRE 2007/08 LCEIC-TAGUS, LCERCI, LCEGI E LCEE

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 1 o SEMESTRE 2007/08 LCEIC-TAGUS, LCERCI, LCEGI E LCEE AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I o SEMESTRE 007/08 LCEIC-TAGUS, LCERCI, LCEGI E LCEE MIGUEL ABREU. Aul 6 de Setembro de 007 Apresentção. Miguel Abreu (responsável)

Leia mais

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte III

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte III Cálculo Diferencil e Integrl II Págin Universidde de Mogi ds Cruzes UMC Cmpos Vill Lobos Cálculo Diferencil e Integrl II Prte III Engenhri Civil Engenhri Mecânic mrili@umc.br º semestre de 05 Cálculo Diferencil

Leia mais

Funções e Limites. Informática

Funções e Limites. Informática CURSO DE: SEGUNDA LICENCIATURA EM INFORMÁTICA DISCIPLINA: CÁLCULO I Funções e Limites Informátic Prof: Mrcio Demetrius Mrtinez Nov Andrdin 00 O CONCEITO DE UMA FUNÇÃO - FUNÇÃO. O que é um função Um função

Leia mais

TEORIA E EXERCÍCIOS ANA SÁ BENTO LOURO

TEORIA E EXERCÍCIOS ANA SÁ BENTO LOURO ANÁLISE MATEMÁTICA I TEORIA E EXERCÍCIOS ANA SÁ BENTO LOURO 3 Índice Noções Topológics, Indução Mtemátic e Sucessões. Noções topológics em R............................. Indução mtemátic..............................

Leia mais

A integral definida. f (x)dx P(x) P(b) P(a)

A integral definida. f (x)dx P(x) P(b) P(a) A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo

Leia mais

NOTA DE AULA. Tópicos em Matemática

NOTA DE AULA. Tópicos em Matemática Universidde Tecnológic Federl do Prná Cmpus Curitib Prof. Lucine Deprtmento Acdêmico de Mtemátic NOTA DE AULA Tópicos em Mtemátic Fonte: http://eclculo.if.usp.br/ 1. CONJUNTOS NUMÉRICOS: 1.1 Números Nturis

Leia mais

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec Cálculo Diferencil e Integrl I o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec de Junho de, h Durção: hm Apresente todos os cálculos e justificções relevntes..5 vl.) Clcule, se eistirem em R, os limites i)

Leia mais

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 1 o SEMESTRE 2014/15 LMAC, MEBIOM, MEFT MIGUEL ABREU E RUI LOJA FERNANDES

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 1 o SEMESTRE 2014/15 LMAC, MEBIOM, MEFT MIGUEL ABREU E RUI LOJA FERNANDES AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I o SEMESTRE 04/5 LMAC, MEBIOM, MEFT MIGUEL ABREU E RUI LOJA FERNANDES. Aul 5 de Setembro de 04 Apresentção. Miguel Abreu (responsável)

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

Matemática /09 - Integral de nido 68. Integral de nido

Matemática /09 - Integral de nido 68. Integral de nido Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

Fundamentos de Matemática I EFETUANDO INTEGRAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I EFETUANDO INTEGRAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques EFETUANDO INTEGRAIS 7 Gil d Cost Mrques Fundmentos de Mtemátic I 7. Introdução 7. Algums Proprieddes d Integrl Definid Propriedde Propriedde Propriedde Propriedde 4 7. Um primeir técnic de Integrção 7..

Leia mais

MAT Complementos de Matemática para Contabilidade - FEAUSP 1 o semestre de 2011 Professor Oswaldo Rio Branco de Oliveira INTEGRAL

MAT Complementos de Matemática para Contabilidade - FEAUSP 1 o semestre de 2011 Professor Oswaldo Rio Branco de Oliveira INTEGRAL MAT 103 - Complementos de Mtemátic pr Contbilidde - FEAUSP 1 o semestre de 011 Professor Oswldo Rio Brnco de Oliveir INTEGRAL Suponhmos um torneir bert em um recipiente e com velocidde de escomento d águ

Leia mais

1 O Conjunto dos Números Reais

1 O Conjunto dos Números Reais O Conjunto dos Números Reis O primeiro conjunto numérico que considermos é o Conjunto dos Números Nturis. Este conjunto está relciondo com operção de contgem: N = {0,,, 3,...}. Admitiremos conhecids s

Leia mais

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 1 o SEMESTRE 2009/10 MEC & LEGM

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 1 o SEMESTRE 2009/10 MEC & LEGM AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I o SEMESTRE 009/0 MEC & LEGM MIGUEL ABREU E RUI LOJA FERNANDES. Aul de Setembro de 009 Apresentção. Rui Loj Fernndes (responsável)

Leia mais

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B.

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B. Mtemátic A Etensivo V. Eercícios 0) B 0) B f() = I. = y = 6 6 = ftorndo 6 = = II. = y = 6 = 6 = pel propriedde N = N = De (I) e (II) podemos firmr que =, então: ) 6 = = 6 ftorndo 6 = = pel propriedde N

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

Teoria VII - Tópicos de Informática

Teoria VII - Tópicos de Informática INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA ICET Cmpins Limeir Jundií Teori VII - Tópicos de Informátic 1 Fórmuls Especiis no Excel 2 Função Exponencil 3 Função Logrítmic Unip 2006 - Teori VII 1 1- FÓRMULAS

Leia mais

COLÉGIO SANTO IVO Educação Infantil - Ensino Fundamental - Ensino Médio

COLÉGIO SANTO IVO Educação Infantil - Ensino Fundamental - Ensino Médio COLÉGIO SANTO IO Educção Infntil - Ensino Fundmentl - Ensino Médio Roteiro de Estudo pr Avlição do 3ºTrimestre - 016 Disciplin: Mtemátic e Geometri Série: 1ª Série EM Profª Cristin Nvl Orientção de Estudo:

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

CAPITULO VII CÁLCULO DIFERENCIAL EM R

CAPITULO VII CÁLCULO DIFERENCIAL EM R CAPITULO VII CÁLCULO DIFERENCIAL EM R. Definição de derivd de um função num ponto Considere-se um função f () com domínio A sej um ponto interior do domínio ou sej um ponto pr o qul eist um vizinnç V ε

Leia mais

CAPÍTULO 1 - CONJUNTOS NUMÉRICOS

CAPÍTULO 1 - CONJUNTOS NUMÉRICOS CAPÍTULO - CONJUNTOS NUMÉRICOS.- Considerções Geris Sobre os Conjuntos Numéricos. Ao inicir o estudo de qulquer tipo de mtemátic não podemos provr tudo. Cd vez que introduzimos um novo conceito precismos

Leia mais

ESTUDO SOBRE A INTEGRAL DE DARBOUX. Introdução. Partição de um Intervalo. Alana Cavalcante Felippe 1, Júlio César do Espírito Santo 1.

ESTUDO SOBRE A INTEGRAL DE DARBOUX. Introdução. Partição de um Intervalo. Alana Cavalcante Felippe 1, Júlio César do Espírito Santo 1. Revist d Mtemátic UFOP, Vol I, 2011 - X Semn d Mtemátic e II Semn d Esttístic, 2010 ISSN 2237-8103 ESTUDO SOBRE A INTEGRAL DE DARBOUX Aln Cvlcnte Felippe 1, Júlio Césr do Espírito Snto 1 Resumo: Este trblho

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 CPES FUNÇÕES Prte B Prof. ntônio Murício Medeiros lves Profª Denise Mri Vrell Mrtinez UNIDDE FUNÇÕES PRTE B. FUNÇÂO

Leia mais

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo Mtemátic pr Economi Les 0 Auls 8_9 Integris Luiz Fernndo Stolo Integris As operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição A operção invers d diferencição é integrção

Leia mais

Notas de Apoio. Biomatemática. Licenciatura em Farmácia Biomédica

Notas de Apoio. Biomatemática. Licenciatura em Farmácia Biomédica Nots de Apoio Biomtemátic Licencitur em Frmáci Biomédic Ricrdo Mmede Deprtmento de Mtemátic, Fculdde de Ciêncis e Tecnologi Universidde de Coimbr 04 Índice Cálculo Diferencil. Generliddes sobre funções

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1 Cpítulo 1 Funções Vetoriis Neste cpítulo estudremos s funções f : R R n, funções que descrevem curvs ou movimentos de objetos no espço. 1.1 Definições e proprieddes Definição 1.1.1 Um função vetoril, é

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

CÁLCULO INTEGRAL. e escreve-se

CÁLCULO INTEGRAL. e escreve-se Primitivs CÁLCULO INTEGRAL Prolem: Dd derivd de um função descorir função inicil. Definição: Chm-se primitiv de um função f, definid num intervlo ] [ à função F tl que F = f e escreve-se,, F = P f ou F

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

(Nova) Matemática, Licenciatura / Engenharia de Produção

(Nova) Matemática, Licenciatura / Engenharia de Produção Recredencimento Portri EC 7, de 5.. - D.O.U.... (ov) temátic, Licencitur / Engenhri de Produção ódulo de Pesquis: Prátics de ensino em mtemátic, contetos e metodois Disciplin: Fundmentos de temátic II

Leia mais

Pontos onde f (x) = 0 e a < x < b. Suponha que f (x 0 ) existe para a < x 0 < b. Se x 0 é um ponto extremo então f (x 0 ) = 0.

Pontos onde f (x) = 0 e a < x < b. Suponha que f (x 0 ) existe para a < x 0 < b. Se x 0 é um ponto extremo então f (x 0 ) = 0. Resolver o seguinte PPNL M (min) f() s. [, ] Pr chr solução ótim deve-se chr todos os máimos (mínimos) locis, isto é, os etremos locis. A solução ótim será o etremo locl com mior (menor) vlor de f(). É

Leia mais

Lista 9 de Análise Funcional - Doutorado 2018

Lista 9 de Análise Funcional - Doutorado 2018 List 9 de Análise Funcionl - Doutordo 2018 Professor Mrcos Lendro 2 de Julho de 2018 1. Prove que o operdor T : l p l p, 1 p

Leia mais

Capítulo 8. Continuidade. 8.1 Discussão informal e intuitiva sobre continuidade. 8.2 Definição de continuidade. Considere os seguintes exemplos:

Capítulo 8. Continuidade. 8.1 Discussão informal e intuitiva sobre continuidade. 8.2 Definição de continuidade. Considere os seguintes exemplos: Cpítulo 8 Continuidde 8. Discussão informl e intuitiv sobre continuidde Considere os seguintes eemplos: f() = 3 + + 5 g() = {, pr +, pr > 0 8 6 0 8 6 0 3 6 5 y3 0 3 A principl crcterístic geométric que

Leia mais

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x.

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x. 6. Primitivs cd. 6. Em cd cso determine primitiv F (x) d função f (x), stisfzendo condição especi- () f (x) = 4p x; F () = f (x) = x + =x ; F () = (c) f (x) = (x + ) ; F () = 6. Determine função f que

Leia mais

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I FUNÇÕES DATA //9 //9 4//9 5//9 6//9 9//9 //9 //9 //9 //9 6//9 7//9 8//9 9//9 //9 5//9 6//9 7//9 IBOVESPA (fechmento) 8666 9746 49 48 4755 4 47 4845 45 467 484 9846 9674 97 874 8 88 88 DEFINIÇÃO Um grndez

Leia mais

Cálculo integral. 4.1 Preliminares

Cálculo integral. 4.1 Preliminares Cpítulo 4 Cálculo integrl 4. Preinres Considere um decomposição do intervlo [, ] R em su-intervlos d orm [x, x ], [x, x ],..., [x n, x n ], onde = x < x < < x n < x n = e n N. Por um questão de simplicidde,

Leia mais

COLÉGIO SANTO IVO Educação Infantil - Ensino Fundamental - Ensino Médio

COLÉGIO SANTO IVO Educação Infantil - Ensino Fundamental - Ensino Médio COLÉGIO SANTO IO Educção Infntil - Ensino Fundmentl - Ensino Médio Roteiro de Estudo pr Avlição do 3ºTrimestre - 015 Disciplin: Mtemátic e Geometri Série: 1ª Série EM Profª Cristin Nvl Orientção de Estudo:

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos

Leia mais

Integral imprópria em R n (n = 1, 2, 3)

Integral imprópria em R n (n = 1, 2, 3) Universidde Federl do Rio de Jneiro Instituto de Mtemátic Deprtmento de Métodos Mtemáticos Integrl Imprópri Integrl imprópri em R n (n =,, 3) Autores: Angel Cássi Bizutti e Ivo Fernndez Lopez Introdução

Leia mais

Nota de aula_2 2- FUNÇÃO POLINOMIAL

Nota de aula_2 2- FUNÇÃO POLINOMIAL Universidde Tecnológic Federl do Prná Cmpus Curiti Prof. Lucine Deprtmento Acdêmico de Mtemátic Not de ul_ - FUNÇÃO POLINOMIAL Definição 8: Função polinomil com um vriável ou simplesmente função polinomil

Leia mais

CÁLCULO I. 1 Funções denidas por uma integral

CÁLCULO I. 1 Funções denidas por uma integral CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por

Leia mais

Matemática B Superintensivo

Matemática B Superintensivo GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen

Leia mais

Os números racionais. Capítulo 3

Os números racionais. Capítulo 3 Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que 2 List de exercícios de Álgebr 1. Sejm R e S dus relções entre os conjuntos não vzios E e F. Então mostre que ) R 1 S 1 = (R S) 1, b) R 1 S 1 = (R S) 1. Solução: Pr primeir iguldde, temos que (, b) R 1

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais