MÉTODOS PARA OTIMIZAÇÃO NÃO-LINEAR IRRESTRITA

Tamanho: px
Começar a partir da página:

Download "MÉTODOS PARA OTIMIZAÇÃO NÃO-LINEAR IRRESTRITA"

Transcrição

1 Universidade Estadual de Campinas FACULDADE DE ENGENHARIA ELÉTRICA E COMPUTAÇÃO Otimização Não-Linear MÉTODOS PARA OTIMIZAÇÃO NÃO-LINEAR IRRESTRITA Autor: Tiao Aostinho de Almeida

2 INTRODUÇÃO Considere o seuinte problema irrestrito: minimizar ƒ(), Є R n Muitos aloritmos de otimização irrestrita assumem a seuinte estrutura eral: Escolha ε > 0, o e faça = 0 while f ( ) ε : Encontre d Є R n T tal que f ( ) d < 0 : Determine α ar minα f ( + αd ) : = > 0 3: Faça + := + α d e := + end * = Notas T. No passo determina-se uma direção de descida. A condição f ( ) d < 0 arante que f decresce na direção d a partir de para α > 0. No passo é realizada um busca linear para encontrar o tamanho do passo α que minimiza na direção d a partir de f 3. No passo 3 um novo ponto é calculado. O critério de parada é (idealmente, f ( ) = 0 ) f ( ) < ε Eemplo No método do radiente, se f ( ) ε, então d : = f ( ) é tal que ( T f ) d < 0 e a busca linear assume a forma α : α 0 = ar min > f ( α f ( )) Eistem vários métodos para encontrar o valor de α = ar min > f ( α f ( )), no entanto, neste trabalho utilizamos apenas o Método : α 0 da Falsa Posição devido a sua simplicidade e eficiência.

3 MÉTODO DO GRADIENTE O Aloritmo do Gradiente Ótimo pode ser resumido no seuinte procedimento: 0 Escolha ε > 0 e. Calcule 0 = f ( 0 ) e faça = 0 while end * = ε α = ar min f ( + = α = f ( : = ) α ) - A cada iteração minimiza-se f ao lono da direção de maior descida, f ; - O aloritmo é lobalmente converente, ou seja, convere para um mínimo 0 local de f a partir de qualquer ponto inicial ; MÉTODO DE NEWTON O Aloritmo de Newton pode ser resumido no seuinte procedimento: 0 Escolha ε > 0 e. Calcule 0 = f ( 0 ) e faça = 0 while end * = ε α = ar min f ( α + = α [ F( ) ] = f ( : = ) ) - O Método de Newton apresenta converência quadrática próima do mínimo local;

4 MÉTODO DE FLETCHER-REEVES (DIREÇÕES CONJUGADAS) O Aloritmo de Fletcher-Reeves pode ser resumido no seuinte procedimento: 0 Escolha ε > 0 e. Calcule 0 = f ( 0 ) while end * = 0 0 ε 0 0 d = for = 0 : n α = ar min f ( if + end end 0 n = 0 = f ( 0 ) = + α d + + = f ( ) < n then ( ) β = ( ) d = α T T + ) + β d - A cada n passos, uma iteração de radiente é eecutada. Passos intermediários não aumentam o valor de f ; - A converência se dá em n-passos quadrática, pois cada n passos em torno de * equivalem a uma iteração de Newton; - Este método substitui cálculos de Hessianas por buscas unidimensionais;

5 FUNÇÕES: Nesta seção, analisamos duas funções e obtemos vários resultados interessantes. Para a implementação dos aloritmos, bem como para a interpretação ráfica foi utilizada a ferramenta MatLab 6.0, em um PC com processador Atlon.0Ghz e 56Mb de memória RAM. Função :, ) f ( = + O ráfico formado pela função no intervalo [-,] é: Como vemos, a função é quadrática e convea e portanto, independente do ponto 0 que partirmos em qualquer um dos três métodos a converência será atinida em duas únicas iterações. 0 Calculando os pontos estacionários, onde: f ( *) = 0, obtemos que * = e por 0 0 meio da análise da Hessiana cheamos na conclusão de que * = é o mínimo lobal da 0 função. Isso pode ser comprovado analisando o ráfico, pois o ponto (0,0) é eatamente o

6 que resulta no menor valor da função f (, ) = + variarmos, a função sempre aumentará. = 0, e para qualquer direção d que Função :, ) = 00( ) + ( ) f ( {Função de Rosenbroc) A Função apresenta uma compleidade bem maior que a função pois deia de ser quadrática e isso faz com que a previsibilidade sobre ela seja menor. O ráfico formado pela função no intervalo [- ] é: Como vemos, a função não é quadrática e, portanto, não podemos prever a quantidade de iterações bem como o valor de α ar minα f ( + αd ), no entanto, : = > 0 analisando o ráfico, percebemos que no ponto = o valor da função é iual a zero. Fica claro, calculando os pontos estacionários onde f ( *) = 0 e analisando os determinantes parciais da Hessiana que o ponto * = é mínimo local da função, pois se caminharmos para qualquer direção d em torno de * o valor da função aumentará.

7 RESULTADOS Método do Gradiente: Função :, ) f ( = + Teste 0 ε n n f ( ) Iterações Tempo (ms) [ ] 0e- [ ] [ ] 0e-3 [ ] [ ] 0e-6 [ ] [ ] 0e-6 [ ] [ ] 0e-6 [ ] Como podemos ver nos testes, e 3, quando partimos de um ponto bem próimo do ponto ótimo o método tem uma converência lenta principalmente se o critério de converência adotado for pequeno. No entanto, para pontos inteiros como nos teste 4 e 5, o método apresentou uma boa performance. Também é válido ressaltar que mesmo em testes com muitas iterações como no número 3 o aloritmo mostrou-se bastante barato em tempo de processamento. O ráfico abaio demonstra a converência do método para o teste 3:

8 Função :, ) = 00( ) + ( ) f ( Teste 0 ε n n f ( ) Iterações Tempo (ms) [ ] 0e- [ ] [ ] 0e-3 [ ] [ ] 0e-6 [ ] [ ] 0e-6 [ ] [ ] 0e-6 [ ] Quando partimos de um ponto muito próimo do ponto ótimo o comportamento do método é semelhante ao obtido na função, a converência é lenta e dependendo do critério de converência adotado o método pode realizar muitas iterações, porém como já era esperado o custo computacional dessas iterações são muito baratas. Quando utilizamos pontos mais distantes como nos testes 4 e 5, os resultados mostraram-se satisfatórios, pois a solução obtida foi a esperada e o ponto ótimo atinido. O ráfico abaio demonstra a converência do método para o teste 4:

9 Método de Newton:: Função :, ) f ( = + Teste 0 ε n n f ( ) Iterações Tempo (ms) [ ] 0e- [ ] [ ] 0e-3 [ ] [ ] 0e-6 [ ] [ ] 0e-6 [ ] [ ] 0e-6 [ ] Nos testes, e 3 o método de Newton obteve desempenho parecido com o obtido pelo método do Gradiente somente com uma leve queda de desempenho quando o critério de converência foi reduzido. Para os testes 4 e 5 o método foi tão eficiente quanto ao do Gradiente. Podemos concluir que para funções quadráticas todos os Métodos apresentam desempenho parecido. O ráfico abaio demonstra a converência do método para o teste 3:

10 Função :, ) = 00( ) + ( ) f ( Teste 0 ε n n f ( ) Iterações Tempo (ms) [ ] 0e- [ ] [ ] 0e-3 [ ] [ ] 0e-6 [ ] [ ] 0e-6 [ ] [ ] 0e-6 [ ] É evidente que para a função o Método de Newton se mostrou mais eficiente do que o Método do Gradiente, isso se deve ao fato de que em Newton a converência é quadrática próimo do ponto ótimo. Como vemos, para pontos distantes como nos teste 4 e 5 o número de iterações foi menor que para o Método do Gradiente, bem como o tempo consumido por ele. O ráfico abaio demonstra a converência do método para o teste 4:

11 Método das Direções Conjuadas de Fletcher-Reeves:: Função :, ) f ( = + Teste 0 ε n n f ( ) Iterações Tempo (ms) [ ] 0e- [ ] [ ] 0e-3 [ ] [ ] 0e-6 [ ] [ ] 0e-6 [ ] [ ] 0e-6 [ ] Nos testes, e 3 o método de Fletcher-Reeves obteve desempenho notadamente superior aos resultados obtidos pelos outros dois métodos mesmo se o critério de converência for reduzido. Partindo de pontos distantes como nos teste 4 e 5 o número de iterações e o tempo consumido foi menor que os outros dois métodos. Fica claro que para a função o Método das Direções Conjuadas de Fletcher- Reeves possui mais eficiência que os outros Método aplicados até este ponto.

12 Função :, ) = 00( ) + ( ) f ( Teste 0 ε n n f ( ) Iterações Tempo (ms) [ ] 0e- [ ] [ ] 0e-3 [ ] [ ] 0e-6 [ ] [ ] 0e-6 [ ] [ ] 0e-6 [ ] O Método de Fletcher-Reeves também mostrou bastante competência para resolver a função de Rosenbroc, pois conseuiu resultados satisfatórios utilizando menos iterações e tempo de processamento que os outros dois métodos. O ajuste B na direção d foi bastante sinificativo, ficando claro no ráfico abaio. O ráfico demonstra a converência do método para o teste 4:

BUSCA LINEAR: MÉTODOS PARA BUSCA UNIDIMENSIONAL

BUSCA LINEAR: MÉTODOS PARA BUSCA UNIDIMENSIONAL Universidade Estadual de Campinas FACULDADE DE ENGENHARIA ELÉTRICA E COMPUTAÇÃO Otimização Não-Linear BUSCA LINEAR: MÉTODOS PARA BUSCA UNIDIMENSIONAL Autor: Tiago Agostinho de Almeida INTRODUÇÃO Considere

Leia mais

MÉTODOS DE OTIMIZAÇÃO ENE081

MÉTODOS DE OTIMIZAÇÃO ENE081 UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenharia Elétrica MÉTODOS DE OTIMIZAÇÃO ENE8 PROF. IVO CHAVES DA SILVA JUNIOR E-mail: ivo.junior@uj.edu.br Aula Número: 9 Disciplina Métodos de Otimização

Leia mais

MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA

MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA Marlon Luiz Dal Pasquale Junior, UNESPAR/FECILCAM, jr.marlon@hotmail.com Solange Regina dos Santos (OR), UNESPAR/FECILCAM, solaregina@fecilcam.br

Leia mais

Optimização. Carlos Balsa. Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança

Optimização. Carlos Balsa. Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Optimização Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados Eng. Química e Industrial Carlos Balsa Matemática Aplicada

Leia mais

Capítulo 5 - Optimização Não-Linear

Capítulo 5 - Optimização Não-Linear Capítulo 5 - Optimização Não-Linear balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Mestrados em Engenharia da Construção Métodos de Aproximação em Engenharia

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu Programação Não Linear Aula 7: Programação Não-Linear - Funções de Várias variáveis Vector Gradiente; Matriz Hessiana; Conveidade de Funções e de Conjuntos; Condições óptimas de funções irrestritas; Método

Leia mais

Resolução de sistemas de equações lineares: Método do Gradiente

Resolução de sistemas de equações lineares: Método do Gradiente Resolução de sistemas de equações lineares: Método do Gradiente Marina Andretta ICMC-USP 24 de março de 2015 Marina Andretta (ICMC-USP) sme0301 - Métodos Numéricos para Engenharia I 24 de março de 2015

Leia mais

Marina Andretta. 17 de setembro de Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright.

Marina Andretta. 17 de setembro de Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Métodos de regiões de confiança Marina Andretta ICMC-USP 17 de setembro de 2014 Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear

Leia mais

Limite e continuidade

Limite e continuidade Limite e continuidade Noção intuitiva de ite Considere a função f qualquer que seja o número real o Eemplo Se f ( ) Esta função está definida para todo R, isto é, f está bem definido, o valor ( ) o então

Leia mais

Otimização de Processos Capítulo 4: Otimização Unidimensional Sem Restrições (OUSR)

Otimização de Processos Capítulo 4: Otimização Unidimensional Sem Restrições (OUSR) Otimização de Processos Capítulo 4: Otimização Unidimensional Sem Restrições (OUSR). Algoritmos de Otimização P. Estabeleça o intervalo de busca ou estimativa inicial que contenha o ponto de mínimo da

Leia mais

Método de Newton truncado

Método de Newton truncado Método de Newton truncado Marina Andretta ICMC-USP 8 de outubro de 2018 Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Marina Andretta (ICMC-USP) sme5720 - Otimização não-linear

Leia mais

Resolução de problemas com apenas restrições lineares de igualdade

Resolução de problemas com apenas restrições lineares de igualdade Resolução de problemas com apenas restrições lineares de igualdade Marina Andretta ICMC-USP 14 de outubro de 2014 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 14 de outubro de 2014 1 / 22

Leia mais

AULA 16 Esboço de curvas (gráfico da função

AULA 16 Esboço de curvas (gráfico da função Belém, 1º de junho de 015 Caro aluno, Seguindo os passos dados você ará o esboço detalhado do gráico de uma unção. Para achar o zero da unção, precisamos de teorias que você estudará na disciplina Cálculo

Leia mais

CCI-22 CCI-22. 4) Equações e Sistemas Não Lineares. Matemática Computacional. Bissecção, Posição Falsa, Ponto Fixo, Newton-Raphson, Secante

CCI-22 CCI-22. 4) Equações e Sistemas Não Lineares. Matemática Computacional. Bissecção, Posição Falsa, Ponto Fixo, Newton-Raphson, Secante Matemática Computacional 4) Equações e Sistemas Não Lineares Carlos Alberto Alonso Sanches Bissecção, Posição Falsa, Ponto Fio, Newton-Raphson, Secante Introdução Ponto Fio Introdução Ponto Fio Raízes

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

II. Funções de uma única variável

II. Funções de uma única variável II. Funções de uma única variável 1 II.1. Conceitos básicos A otimização de de funções de de uma única variável consiste no no tipo mais elementar de de otimização. Importância: Tipo de problema encontrado

Leia mais

Algoritmos para resolução de problemas de minimização irrestrita

Algoritmos para resolução de problemas de minimização irrestrita Algoritmos para resolução de problemas de minimização irrestrita Marina Andretta ICMC-USP 10 de agosto de 2010 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 10 de agosto de 2010 1 / 16 Algoritmos

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 8 04/2014 Zeros reais de funções Parte 2 Voltando ao exemplo da aula anterior, vemos que o ponto médio da primeira iteração

Leia mais

OPTIMIZAÇÃO DE ESTRUTURAS

OPTIMIZAÇÃO DE ESTRUTURAS OPTIMIZAÇÃO DE ESTRUTURAS Alvaro F. M. Azevedo Email: alvaro@fe.up.pt Faculdade de Engenharia da Universidade do Porto 1 OBJECTIVO Minimizar o custo de uma solução estrutural As restrições são os requisitos

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística. Curso: Engenharia de Produção

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística. Curso: Engenharia de Produção Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que se queira resolver o seguinte PPNL: Max f(x) s. a a x b Pode ser que f (x) não exista ou que seja difícil resolver a equação

Leia mais

Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que. Max f(x) s. a a x b

Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que. Max f(x) s. a a x b Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que se queira resolver o seguinte PPNL: Max f(x) s. a a x b Pode ser que f (x) não exista ou que seja difícil resolver a equação

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 5 Zeros reais de funções Parte 2 Voltando ao eemplo da aula anterior, vemos que o ponto médio da primeira iteração 1 = 2,5

Leia mais

pontos: f(1)=2, f(2)=3, f(3)=5, f(5)=10 e f(6)=30.

pontos: f(1)=2, f(2)=3, f(3)=5, f(5)=10 e f(6)=30. EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: SEGUNDO BIMESTRE: EDGARD JAMHOUR Eemplo A: Interpolação polinomial Funções de interpolação: fa() = 2 - /2 + 2 /2 fb() = 5/2-17/12 + 2-3 /12 fc() = 23/2-1183/60 +133

Leia mais

Capítulo 06. Raízes: Métodos Abertos

Capítulo 06. Raízes: Métodos Abertos Capítulo 06 Raízes: Métodos Abertos Objetivos do capítulo Reconhecer a diferença entre os métodos intervalares e os métodos abertos para localização de raízes. Compreender o método de iteração de ponto

Leia mais

5 VNS com Filtro e Reconexão por Caminhos

5 VNS com Filtro e Reconexão por Caminhos 5 VNS com Filtro e Reconexão por Caminhos A metaheurística VNS (Variable Neighborhood Search) foi proposta por Mladenović e Hansen [40] e possui como idéia básica a mudança de vizinhanças realizada da

Leia mais

SME Gustavo C. Buscaglia / Roberto F. Ausas

SME Gustavo C. Buscaglia / Roberto F. Ausas SME0305-2016 Gustavo C. Buscaglia / Roberto F. Ausas ICMC - Ramal 738176, gustavo.buscaglia@gmail.com ICMC - Ramal 736628, rfausas@gmail.com Relaxações e gradientes Nas aulas passadas vimos que: As matrizes

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 5 Zeros reais de funções Parte 2 EXEMPLO 6 Aula anterior Aplicação do método da bissecção para: f ( ) = log 1, em[ 2,3] com

Leia mais

Zero de Funções ou Raízes de Equações

Zero de Funções ou Raízes de Equações Zero de Funções ou Raízes de Equações Um número ξ é um zero de uma função f() ou raiz da equação se f(ξ). Graficamente os zeros pertencentes ao conjunto dos reais, IR, são representados pelas abscissas

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

Otimização Numérica (Método do Gradiente) de Transformadores através do Modelo de Impedância combinado com o Modelo de Reatância Concentrada

Otimização Numérica (Método do Gradiente) de Transformadores através do Modelo de Impedância combinado com o Modelo de Reatância Concentrada 8. Otimização Numérica (Método do Gradiente) de Transformadores através do Modelo de Impedância combinado com o Modelo de Reatância Concentrada 8.1 Introdução Nos Capítulos 6 e 7 introduzimos o modelo

Leia mais

Aula 6. Zeros reais de funções Parte 3

Aula 6. Zeros reais de funções Parte 3 CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/47 CONSIDERAÇÕES INICIAIS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo

Leia mais

Optimização e Algoritmos (2004/2005)

Optimização e Algoritmos (2004/2005) Optimização e Algoritmos 2004/2005) Instituto Superior Técnico Engenharia Electrotécnica e de Computadores Série de Problemas 4 Minimização sem restrições algoritmos gradiente, Newton, quasi-newton BFGS)

Leia mais

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS 5 CAP. ZEROS REAIS DE FUNÇÕES REAIS OBJETIVO: Estudo de métodos iterativos para resolução de equações não lineares. DEFINIÇÃO : Um nº real é um zero da função f() ou raiz da equação f() = 0 se f( )=0.

Leia mais

Método dos gradientes (ou método de máxima descida)

Método dos gradientes (ou método de máxima descida) Método dos gradientes (ou método de máxima descida) Marina Andretta ICMC-USP 14 de setembro de 2010 Marina Andretta (ICMC-USP) sme5720 - Otimização não-linear 14 de setembro de 2010 1 / 16 Método dos gradientes

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 09/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma:

Leia mais

)XQGDPHQWRVGHSURJUDPDomRPDWHPiWLFD

)XQGDPHQWRVGHSURJUDPDomRPDWHPiWLFD )XQGDPHQWRVGHSURJUDPDomRPDWHPiWLFD,QWURGXomR A grande maioria dos problemas de engenharia pode ser solucionado de diferentes formas, uma vez que um número muito grande de soluções atende aos critérios

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

Aula 4. Zeros reais de funções Parte 1

Aula 4. Zeros reais de funções Parte 1 CÁLCULO NUMÉRICO Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f 0 sendo f uma função real dada. Cálculo Numérico 3/60 APLICAÇÃO

Leia mais

2 Processo de Agrupamentos

2 Processo de Agrupamentos 20 2 Processo de Agrupamentos A análise de agrupamentos pode ser definida como o processo de determinação de k grupos em um conjunto de dados. Para entender o que isso significa, observe-se a Figura. Y

Leia mais

Planejamento da Operação de Sistemas Hidrotérmicos. Parte III

Planejamento da Operação de Sistemas Hidrotérmicos. Parte III Universidade Federal de Paraná Setor de Tecnologia Departamento de Engenharia Elétrica Planejamento da Operação de Sistemas Hidrotérmicos Parte III Prof. Dr. Clodomiro Unsihua-Vila SISTEMA TERMELÉTRICO

Leia mais

Capítulo 05. Raízes: étodos Intervalares

Capítulo 05. Raízes: étodos Intervalares Capítulo 05 Raízes: étodos Intervalares Objetivos do capítulo Entender o que são problemas de raízes e onde eles ocorrem m engenharia. Aprender como determinar uma raiz graficamente. Entender o método

Leia mais

Controle Ótimo - Aula 2 (Exemplos 2, 3 e 4)

Controle Ótimo - Aula 2 (Exemplos 2, 3 e 4) Controle Ótimo - Aula 2 (Exemplos 2, 3 e 4) Adriano A. G. Siqueira e Marco H. Terra Departamento de Engenharia Elétrica Universidade de São Paulo - São Carlos Sistemas dinâmicos discretos no tempo O Problema

Leia mais

1-Introdução ao Cálculo Numérico

1-Introdução ao Cálculo Numérico 1-Introdução ao Cálculo Numérico Laura Goulart UESB 14 de Novembro de 2018 Laura Goulart (UESB) 1-Introdução ao Cálculo Numérico 14 de Novembro de 2018 1 / 9 1.1-Fases na resolução de um problema 1 Denição

Leia mais

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira 22 de novembro de 2017

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira   22 de novembro de 2017 BCC465 - TÉCNICAS DE OTIMIZAÇÃO MULTI-OBJETIVO Aula 04 - Otimização Não-linear Gladston Juliano Prates Moreira email: gladston@iceb.ufop.br CSILab, Departamento de Computação Universidade Federal de Ouro

Leia mais

. Os menores -2,0-1,5-1,0-0,5-5 0,0 0,5 1,0 1,5 2, = x 2y.. Os menores

. Os menores -2,0-1,5-1,0-0,5-5 0,0 0,5 1,0 1,5 2, = x 2y.. Os menores 1. Para cada uma das seguintes funções, verifique se ele é côncava, convexa ou nenhuma das duas, justificando em cada caso. (a) f(x, ) = 1x + (b) f(x) = 1x x (c) f(x, ) = x x 1 (a) = 1 = x = e = = = 1

Leia mais

Introdução. São duas técnicas estreitamente relacionadas, que visa estimar uma relação que possa existir entre duas variáveis na população.

Introdução. São duas técnicas estreitamente relacionadas, que visa estimar uma relação que possa existir entre duas variáveis na população. UNIVERSIDADE FEDERAL DA PARAÍBA Correlação e Regressão Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução São duas técnicas estreitamente relacionadas, que visa estimar uma relação

Leia mais

Parte 1: Exercícios Teóricos

Parte 1: Exercícios Teóricos Cálculo Numérico SME0104 ICMC-USP Lista 5: Zero de Funções Lembrete (informação que vai estar disponível na prova) Método de Newton Método da Secante x k+1 = x k f(x k) f (x k ), x k+1 = x k J 1 F (x k

Leia mais

Otimização de grande porte

Otimização de grande porte Otimização de grande porte Silvana Bocanegra Ciclo de Seminários BSI 204.2 Esboço Otimização: definição, aplicações e motivação; Classe de problemas de otimização e métodos de solução; Principais métodos

Leia mais

Aula 6. Zeros reais de funções Parte 3

Aula 6. Zeros reais de funções Parte 3 CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/48 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo

Leia mais

CCI-22. Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra

CCI-22. Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI-22 Matemática Computacional Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI-22 4) Equações e Sistemas Não Lineares Biss ã P si ã F ls P nt Fi Bissecção, Posição Falsa, Ponto Fio, Newton-Raphson,

Leia mais

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner Cálculo Numérico / Métodos Numéricos Solução de equações polinomiais Briot-Ruffini-Horner Equações Polinomiais p = x + + a ( x) ao + a1 n x n Com a i R, i = 0,1,, n e a n 0 para garantir que o polinômio

Leia mais

Problema de designação

Problema de designação Departamento de Engenharia de Produção UFPR 48 Problema de designação Imagine, que em uma gráfica eiste uma única máquina e um único operador apto a operá-la. Como você empregaria o trabalhador? Sua resposta

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 13 04/2014 Sistemas de Equações Lineares Parte 3 MÉTODOS ITERATIVOS Cálculo Numérico 3/44 MOTIVAÇÃO Os métodos iterativos

Leia mais

Fluxo de carga não linear: algoritmos básicos. Formulação do problema básico. Equações básicas (para (1) 2 NB equações

Fluxo de carga não linear: algoritmos básicos. Formulação do problema básico. Equações básicas (para (1) 2 NB equações Fluo de cara não linear: aloritmos básicos Formulação do roblema básico Euações básicas (ara,, L, NB m K m K m m ( G cos B sen m m m m ( G sen B cos m m m m ( ( NB euações 4 NB variáveis NB euações tio

Leia mais

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição UNIVERSIDADE FEDERAL DO ABC BC1419 Cálculo Numérico - LISTA 1 - Zeros de Funções (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda) 1 Existência e unicidade de zeros; Métodos

Leia mais

Algoritmos de Caminho Mínimo Parte 1

Algoritmos de Caminho Mínimo Parte 1 Algoritmos de Caminho Mínimo Parte 1 A journey of a thousand miles starts with a single step and if that step is the right step, it becomes the last step. Index 1. Introduction 2. Applications 3. Tree

Leia mais

Método da Secante Para Resolução de equações do tipo f(x)=0

Método da Secante Para Resolução de equações do tipo f(x)=0 Método da Secante Para Resolução de equações do tipo 0 Narã Vieira Vetter Guilherme Paiva Silva Santos Raael Pereira Marques naranvetter@walla.com guilherme.pss@terra.com.br rp_marques5@yahoo.com.br Associação

Leia mais

Redes Neurais MLP: Exemplos e Características

Redes Neurais MLP: Exemplos e Características Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Redes Neurais MLP: Exemplos e Características DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1

Leia mais

Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) REVISÃO DA 1ª PARTE

Leia mais

Ajuste de Curvas. Diogo Pinheiro Fernandes Pedrosa. Universidade Federal do Rio Grande do Norte Centro de Tecnologia.

Ajuste de Curvas. Diogo Pinheiro Fernandes Pedrosa. Universidade Federal do Rio Grande do Norte Centro de Tecnologia. Ajuste de Curvas Diogo Pinheiro Fernandes Pedrosa Universidade Federal do Rio Grande do Norte Centro de Tecnologia Departamento de Engenharia de Computação e Automação http://wwwdcaufrnbr/ 1 Introdução

Leia mais

Algoritmo Simplex para Programação Linear I

Algoritmo Simplex para Programação Linear I EA Planejamento e Análise de Sistemas de Produção Algoritmo Simple para Programação Linear I DCA-FEEC-Unicamp Modelo de Programação Linear ma c ( n ) s. a. A b A ( m n) b ( m ) c ( n) P ( R n A b} Poliedro

Leia mais

Resolução de sistemas de equações lineares: Método dos Gradientes Conjugados

Resolução de sistemas de equações lineares: Método dos Gradientes Conjugados Resolução de sistemas de equações lineares: Método dos Gradientes Conjugados Marina Andretta/Franklina Toledo ICMC-USP 24 de março de 2015 Baseado no livro Cálculo Numérico, de Neide B. Franco Marina Andretta/Franklina

Leia mais

Setor de Tecnologia - TC Engenharia Ambiental Prova 1. Matemática Aplicada I

Setor de Tecnologia - TC Engenharia Ambiental Prova 1. Matemática Aplicada I Universidade Federal do Paraná Matemática Aplicada I Setor de Tecnologia - TC Engenharia Ambiental 2014-2 Curitiba, 24.09.2014 Prova 1 Matemática Aplicada I Tobias Bleninger Departamento de Engenharia

Leia mais

Redes Neurais e Sistemas Fuzzy

Redes Neurais e Sistemas Fuzzy Redes Neurais e Sistemas Fuzzy O ADALINE e o algoritmo LMS O ADALINE No contexto de classificação, o ADALINE [B. Widrow 1960] pode ser visto como um perceptron com algoritmo de treinamento baseado em minimização

Leia mais

Ana Paula. October 26, 2016

Ana Paula. October 26, 2016 Raízes de Equações October 26, 2016 Sumário 1 Aula Anterior 2 Método da Secante 3 Convergência 4 Comparação entre os Métodos 5 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Método de

Leia mais

Método do Lagrangiano aumentado

Método do Lagrangiano aumentado Método do Lagrangiano aumentado Marina Andretta ICMC-USP 23 de novembro de 2010 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 23 de novembro de 2010 1 / 17 Problema com restrições gerais Vamos

Leia mais

5 Análise dos Resultados

5 Análise dos Resultados Análise dos Resultados 75 5 Análise dos Resultados Neste capítulo, os resultados obtidos pelos métodos MPS e SPH serão analisados. Num primeiro momento, será realizada uma análise de acurácia entre os

Leia mais

O Algoritmo Talus para Otimização Global

O Algoritmo Talus para Otimização Global O Algoritmo Talus para Otimização Global André Leite Luís Henrique de Santana Programa de Pós-Graduação em Eng. Elétrica Programa de Pós-Graduação em Eng. de Produção leite.andre@gmail.com santanalh@ahoo.com.br

Leia mais

Uma nova taxa de convergência para o Método do Gradiente

Uma nova taxa de convergência para o Método do Gradiente Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 2, N. 1, 2014. Trabalho apresentado no CMAC-Sul, Curitiba-PR, 2014. Uma nova taxa de convergência para o Método

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/47 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO:

Leia mais

Optimização de um Plano de Marketing Directo para o Sector da Banca Daniel Barata

Optimização de um Plano de Marketing Directo para o Sector da Banca Daniel Barata Optimização de um Plano de Marketing Directo para o Sector da Banca Daniel Barata, Fernando Bação, Victor Lobo Agenda Introdução Justificação do Tema Formulação usada Métodos de Resolução Exacto Guloso

Leia mais

Métodos iterativos para sistemas lineares.

Métodos iterativos para sistemas lineares. Métodos iterativos para sistemas lineares. Alan Costa de Souza 7 de Setembro de 2017 Alan Costa de Souza Métodos iterativos para sistemas lineares. 7 de Setembro de 2017 1 / 46 Introdução. A ideia central

Leia mais

PROGRAMAÇÃO DA PRODUÇÃO EM SISTEMAS POR BATELADAS: UM ESTUDO PARA A OTIMIZAÇÃO DO MAKESPAN

PROGRAMAÇÃO DA PRODUÇÃO EM SISTEMAS POR BATELADAS: UM ESTUDO PARA A OTIMIZAÇÃO DO MAKESPAN PROGRAMAÇÃO DA PRODUÇÃO EM SISTEMAS POR BATELADAS: UM ESTUDO PARA A OTIMIZAÇÃO DO MAKESPAN R. P. da ROCHA 1, M. de F. MORAIS 1, M. A. da S. S. RAVAGNANI 2, C. M. G. ANDRADE 2, C. M. P. R. PARAÍSO 2 1 Universidade

Leia mais

Aplicação do Método de Barreira Logarítmica na Resolução de um Problema de Programação Linear.

Aplicação do Método de Barreira Logarítmica na Resolução de um Problema de Programação Linear. Aplicação do Método de Barreira Logarítmica na Resolução de um Problema de Programação Linear. Rodrigo Romais (FCSGN) 1 r.romais@gmail.com Resumo: Métodos numéricos de Ponto Interior são extremamente úteis

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 5 (16/09/15) Zero de funções: Introdução Tipos de métodos Diretos Indiretos ou iterativos Fases de cálculos Isolamento

Leia mais

Trabalho 2 Matemática Numérica II

Trabalho 2 Matemática Numérica II Trabalho 2 Matemática Numérica II Liliana Carolina Vieira Pinho Licenciatura em Matemática Ano Letivo 2012/2013 1.Considere a função Rosenbrock a)mostre que é o único minimizante local de e que é definida

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 9 04/2014 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/42 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO

Leia mais

Equações Não Lineares. 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227

Equações Não Lineares. 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Equações Não Lineares 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Introdução Um tipo de problema bastante comum é o de achar raízes de equações da forma f() = 0, onde f() pode ser um

Leia mais

Métodos Numéricos Zeros Newton-Raphson e Secante. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Zeros Newton-Raphson e Secante. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Zeros Newton-Raphson e Secante Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Método Newton Raphson 2 Método Newton-Raphson Dada uma função f( contínua num intervalo fechado

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 6 - Distribuições Contínuas (Parte 01) Leitura obrigatória: Devore, Capítulo 4 Cap 6-1 Objetivos Nesta aula, vamos aprender: Representações de uma v. a. contínua: função

Leia mais

Programação Hidrotérmica de Curto Prazo

Programação Hidrotérmica de Curto Prazo Programação Hidrotérmica de Curto Prazo Neste caso, capacidade hidráulica < potência da carga térmicas devem operar durante todo o horizonte de tempo; Volume d água disponível para a UHE utilizado para

Leia mais

Tópicos Especiais: Inteligência Artificial REDES NEURAIS

Tópicos Especiais: Inteligência Artificial REDES NEURAIS Tópicos Especiais: Inteligência Artificial REDES NEURAIS Material baseado e adaptado do Cap. 20 do Livro Inteligência Artificial de Russell & Norvig Bibliografia Inteligência Artificial Russell & Norvig

Leia mais

1 Sistemas multidimensionais e Linearização

1 Sistemas multidimensionais e Linearização Teoria de Controle (sinopse) Sistemas multidimensionais e Linearização J. A. M. Felippe de Souza Sistemas multidimensionais Linearização Aideia de sistemas é quase que intuitiva. Eemplos de sistemas físicos

Leia mais

Processamento digital de imagens

Processamento digital de imagens Processamento digital de imagens Agostinho Brito Departamento de Engenharia da Computação e Automação Universidade Federal do Rio Grande do Norte 11 de novembro de 2016 Fluxo óptico Usado para estimar

Leia mais

Método de Newton modificado

Método de Newton modificado Método de Newton modificado Marina Andretta ICMC-USP 14 de setembro de 2010 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 14 de setembro de 2010 1 / 36 Método de Newton Como já vimos, o método

Leia mais

Lorí Viali. Afiliação

Lorí Viali. Afiliação Lorí Viali Licenciatura Plena em Matemática UFRGS Bacharelado em Matemática UFRGS Especialização em Formação de Pesquisadores PUCRS Mestrado em Engenharia de Produção (PO) UFSC Doutorado Sanduíche na USF

Leia mais

Análise Numérica DCC033. Renato Assunção Departamento de Ciência da Computação UFMG

Análise Numérica DCC033. Renato Assunção Departamento de Ciência da Computação UFMG Análise Numérica DCC033 Renato Assunção Departamento de Ciência da Computação UFMG O que é análise numérica? Definição: Estudo de algoritmos ou métodos numéricos para a solução de problemas computacionais

Leia mais

3 Aprendizado por reforço

3 Aprendizado por reforço 3 Aprendizado por reforço Aprendizado por reforço é um ramo estudado em estatística, psicologia, neurociência e ciência da computação. Atraiu o interesse de pesquisadores ligados a aprendizado de máquina

Leia mais

Cálculo 4. Guia de Estudos P2,3+,

Cálculo 4. Guia de Estudos P2,3+, Cálculo 4 Guia de Estudos P2,3+, Resumo da Teoria 1. Revisão Séries de Potências Vimos que séries de potências podem ser escritas na forma c x x %. Toda série de potências é dotada de um intervalo de converência

Leia mais

Raízes de Equações métodos delimitados. qual o problema? equações não lineares/raízes

Raízes de Equações métodos delimitados. qual o problema? equações não lineares/raízes Raízes de Equações métodos delimitados Aula 5 (16/0/07) Métodos Numéricos Aplicados à Engenharia Licenciatura em Engenharia Alimentar Escola Superior Agrária de Coimbra qual o problema? Podemos calcular

Leia mais

Recursividade. Estrutura de Dados. Prof. Kleber Rezende

Recursividade. Estrutura de Dados. Prof. Kleber Rezende Recursividade Estrutura de Dados Prof. Kleber Rezende Considerações Iniciais Em aulas anteriores fizemos uma função que permite calcular o fatorial de um número. Naquela função, a cada nova iteração o

Leia mais

6 Análise de Sensibilidade do Método LSM

6 Análise de Sensibilidade do Método LSM Análise de Sensibilidade do Método LSM 72 6 Análise de Sensibilidade do Método LSM Para fazer uma análise de sensibilidade do método LSM, tomamos como base exemplos de call e put americanas 1. Para os

Leia mais

Prof. MSc. David Roza José 1/37

Prof. MSc. David Roza José 1/37 1/37 Métodos Abertos Objetivos: Reconhecer as diferenças entre os métodos intervalados e abertos para a localização de raízes; Compreender o método da iteração de ponto-fixo e avaliar suas características

Leia mais

Cap. 6 Variáveis aleatórias contínuas

Cap. 6 Variáveis aleatórias contínuas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio

Leia mais

Pretende-se calcular uma aproximação para a menor raiz positiva da equação

Pretende-se calcular uma aproximação para a menor raiz positiva da equação 1 Prete-se calcular uma aproimação para a menor raiz positiva da equação, pelos métodos de Newton-Raphson e ponto fio. a) Localize um intervalo que contenha a menor raiz positiva da equação dada Determinar

Leia mais

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Raízes de Equações Algébricas Achar a raiz de uma unção signiica achar um número tal que 0 Algumas unções podem ter suas

Leia mais

7 Comparação de resultados e validação dos modelos

7 Comparação de resultados e validação dos modelos 7 Comparação de resultados e validação dos modelos Os modelos EMB, TMB e GC foram utilizados para a sintetização de séries temporais de atenuação por chuva para os enlaces terrestres de São Paulo. Foram

Leia mais

Cap. 6 Variáveis aleatórias contínuas

Cap. 6 Variáveis aleatórias contínuas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de

Leia mais