u t = L t N t L t Aplicação dos conceitos: Exemplo: Interpretando Rendimento Per Capita: Y = Pop {z} PIB per capita Y {z} Produtividade Trabalho

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "u t = L t N t L t Aplicação dos conceitos: Exemplo: Interpretando Rendimento Per Capita: Y = Pop {z} PIB per capita Y {z} Produtividade Trabalho"

Transcrição

1 1 Aul 14 Ofrt Agrgd, Inflção Dsmprgo Populção, Tx d Prticipção, Populção Activ ( t ), Tx d Emprgo, Populção Emprgd (N t ), Tx d Dsmprgo (u t ) Populção Dsmprgd ( t N t ). Tx d Dsmprgo (u t ): u t t N t t Aplicção dos concitos: Exmplo: Intrprtndo Rndimnto Pr Cpit: Y Pop PIB pr cpit Y N Produtividd Trblho Mrcdo d Trblho Ofrt Agrgd. N Tx d Emprgo Pop Tx d Prticipção Dtrminção do slário Trblhdors vism obtr um dtrmindo slário rl sprdo s mprss procupm-s com os custos slriis m trmos dos prços dos produtos qu vndm: ω W P ω, slário rl sprdo W, slário nominl contrtdo P,índicdprçossprdo Podr d ngocição dos trblhdors tx d dsmprgo: ω t k εu t (1) Dtrminção do nívl d prços: Y t N t 1 trblhdor Produz unidds do Produto 1 trblhdor Cust W Custo Slril por Unidd W S mrgm z P t () ou prço ou rcit unitári custo unitário (2) 1

2 Tx nturl d dsmprgo (quilíbrio ntr o slário rl dsjdo plos trblhdors o slário rl dsjdo pls mprss): ω t k εu t Equilíbrio u p u t tx d dsmprgo d quilíbrio k εu t (3) Assim, igulndo (2) (3) tmos: k εu t ou, rsolvndo m ordm u t, qu, como quilíbrio u p u p k ε ε(1 + z) (4) Podmos stblcr sguint rlção ntr o slário rl sprdo o slário rl fctivo: u p k ε ε(1 + z) k u p k +εu p εu t u p εu t {z } u p εu t ε(u t u p ) O slário rl fctivo coincidirá com o slário rl sprdo qundo tx d dsmprgo for igul à tx d dsmprgo nturl. 2

3 Ddução d Curv d Ofrt Agrgd (populção constnt: t ) u t N t u p N p u t u p 1 (N t N p ) Y t N t Y p N p Y t N t N t Y t Y p N p N p Y p u t u p 1 ( N t N p ) Y t Yp u t u p 1 (Y t Y p ) ε( u t u p ) {z } 1 (Yt Yp) (Y t Y p ) A curv d ofrt grgd rlcion com Y t, logo qurmos substituir d xprssão cim. Como sbmos pl xprssão d fixção d prços porprtdsmprssqu ou, m trmos d,. (Y t Y p ) (Y t Y p ) 3

4 qu, rsolvndo m ordm fic: (1 + (Y t Y p ) (Y t Y p ) 2 (Y t Y p ) 2 (Y t Y p )) {z } λ (1 + λ(y t Y p )) (5) Y t Y p + 1 λ ( 1) Not-s qu qunto mior λ mior srá o prço prticdo plos produtors pr um ddo nívl d produção: λ 2 λ f( z, ε,,) (+) (+) ( ) ( ) Propridds d curv d ofrt grgd. Dcliv: (1 + λ(y t Y p )) d AS dy t λ Qundo o produto umnt, diminui o dsmprgo. Qundo o dsmprgo diminui, os trblhdors ngocim slários ris sprdos mis lvdos. Dds s xpcttivs pr os prços, isto implic um slário nominl mis lvdo. Como os prços são formdos prtir dos custos slriis, slários nominis mis ltos lvrão prços tmbém mis ltos. A curv d ofrt grgd pss plo ponto (Y p, ). (Not: Dmonstr!). Intuitivmnt, qundo os prços coincidm com s xpcttivs, o produto é o produto nturl (m quilíbrio, s xpcttivs confirmm-s). Qur qur Y p, o vrirm, dslocm curv d ofrt grgd. (Not: D qu modo?) Formulção d xpcttivs. 4

5 Expcttivs dpttivs: (Sntos) são um mcnismo d formção d xpcttivs qu supõ qu s xpcttivs são corrigids, ou dptds, m função do último rro obsrvdo 1 + λ( 1 1 ) {z } rro 0 λ λ( 1 P t 1) 1 2 +λ( 2 2 ) λ 1 + λ(1 λ) 2 +(1 λ) λ[ 1 +(1 λ) 2 +(1 λ) ] ou sj, xpcttiv é formd prtir d um médi gométric com psos dcrscnts o longo do tmpo ds rlizçõs d vriávl sobr qul s formm s xpcttivs. Not: com s xpcttivs dptivs é possívl rrr sistmticmnt: xmplo vriávl crsc um tx constnt por príodo. Cso spcífico d xpcttivs dpttivs: λ (1 + λ(y t Y p )) 1 (1 + λ(y t Y p )) Not qu gor curv d ofrt grgd pssrá plo ponto (Y p, 1 ). Y t > Y p > 1 Y t < Y p < 1 Y t Y p 1 A curv d ofrt grgd é gor dinâmic. Implicçõs pr nális d polític conómic: O cso d um xpnsão montári. Nutrlidd d mod no longo przo. Prturbçãodofrt.(z ); stgflção. 5

6 Hipóts ds xpcttivs rcionis. E t 1 ( )E( I t ) + rro ltório S Y t Y p. A curv d ofrt grgd é (virtulmnt) vrticl pns polítics não ntcipds (qu conduzm rros tmporários n formulção d xpcttivs) trão impcto no produto, s bm qu pns d curto przo, pois mis cdo ou mis trd os gnts formulrão s xpcttivs corrcts trmos quilíbrio d plno mprgo (Y t Y p ). Curv d Phillips: Inflção Dsmprgo. 1 1 ε(u t u p ) ε(u t u p ) ε(u t u p ) 1 (u t u p ) [1 {z } γ [1 γ(u t u p )] Est últim xprssão pod sr proximd por: com π como tx d inflção. (u t u p )] π t π t γ(u t u p ) (6) A xprssão (6) trduz um rlção, d curto przo, ngtiv ntr inflção o dsmprgo, dds s xpcttivs pr inflção. A curv d Phillips (6) é dsnhd no rfrncil (u, π) com dcliv ngtivo π γ, sndo dslocd por π u p pss no ponto (d quilíbrio) (u p,π ). No cso spcífico d xpcttivs dpttivs com λ 1tmos qu 1 ou, m trmos d txs d inflção, π t π t 1. Assim, tmos sguint formulção d curv d Phillips: π t π t 1 γ(u t u p ) (7) 6

7 Est formulção torn mis clro qu: u t > u p π t <π t 1 u t < u p π t >π t 1 u t u p π t π t 1 Assim, comprnd-s porqu u p por vzs é dnomind por NAIRU ou Non Acclrting Infltion Rt of Unmploymnt. EstconcitoéimportntnmdidmqumissãoddivrsosBncos Cntris consist n stbilizção d inflção, plo qu considrm volução d tx d dsmprgo o modo como st s compr com NAIRU pr quiltr d possívis voluçõs n tx d inflção. A xprssão (7) ilustr ind o concito d rácio d scrifício: m qunto tmos qu prmitir d dsvio d tx d dsmprgo m rlção à tx d dsmprgo nturl pr qu inflção dsç um ponto prcntul. Curvs d Phillips d curto przo d longo przo. A curv d Phillips d longo przo é vrticl o nívl d u p. 7

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

A Função Densidade de Probabilidade

A Função Densidade de Probabilidade Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj X um vriávl ltóri com conjunto d vlors X(S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. A Função Dnsidd

Leia mais

Inclui bibliografia. CDD-330

Inclui bibliografia. CDD-330 Ensios Econômicos Escol d Pós-Grdução m Economi d Fundção Gtulio Vrgs N 58 ISSN 004-890 Polític Montári Ótim no Combt à In- ção Frnndo d Holnd Brbos Jniro d 990 URL: http://hdl.hndl.nt/0438/46 Os rtigos

Leia mais

Taxas de Câmbio. A condição de paridade não coberta da taxa de juro. O fenómeno do sobreajustamento da taxa de câmbio.

Taxas de Câmbio. A condição de paridade não coberta da taxa de juro. O fenómeno do sobreajustamento da taxa de câmbio. II A condição d pridd não cobrt d tx d juro Introdução Prtndu-s chmr tnção do studnt d Polític conómic pr concitos lmntrs, indispnsávis pr comprnsão d dtrminção do quilíbrio no mrcdo cmbil qu srão utilizdos

Leia mais

Expressão Semi-Empírica da Energia de Ligação

Expressão Semi-Empírica da Energia de Ligação Exprssão Smi-Empíric d Enrgi d Ligção om o pssr do tmpo n usênci d um tori dtlhd pr dscrvr strutur nuclr, vários modlos form dsnvolvidos, cd qul corrlcionndo os ddos xprimntis d um conjunto mis ou mnos

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

Noção intuitiva de limite

Noção intuitiva de limite Noção intuitiv de ite Qundo se proim de 1, y se proim de 3, isto é: 3 y + 1 1,5 4 1,3 3,6 1,1 3, 1,05 3,1 1,0 3,04 1,01 3,0 De um modo gerl: Eemplo de um ite básico Qundo tende um vlor determindo, o ite

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Cludi gin Cmpos d Crvlho Módulo sistors Circuitos sistênci Elétric () sistors: sistor é o condutor qu trnsform nrgi létric m clor. Como o rsistor é um condutor d létrons, xistm quls qu fcilitm ou

Leia mais

TABELA V-A. 0,10=< (r) 0,15=< (r) (r) < 0,20. Até 120.000,00 17,50% 15,70% 13,70% 11,82% 10,47% 9,97% 8,80% 8,00%

TABELA V-A. 0,10=< (r) 0,15=< (r) (r) < 0,20. Até 120.000,00 17,50% 15,70% 13,70% 11,82% 10,47% 9,97% 8,80% 8,00% Anxo V 1) Srá purd rlção conform bixo: = Folh d Slários incluídos ncrgos (m 12 mss) Rcit Brut (m 12 mss) 2) Ns hipótss m qu corrspond os intrvlos cntsimis d Tbl V-A, ond < signific mnor qu, > signific

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

1 a Prova de F-128 Turmas do Diurno Segundo semestre de /10/2004

1 a Prova de F-128 Turmas do Diurno Segundo semestre de /10/2004 Prov de F-8 urms do Diurno Segundo semestre de 004 8/0/004 ) No instnte em que luz de um semáforo fic verde, um utomóvel si do repouso com celerção constnte. Neste mesmo instnte ele é ultrpssdo por um

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 0 Fs Prof. Mri Antôni Gouvi. CONHECIMENTOS GERAIS QUESTÃO 0 ) Quntos são os númros intiros positivos d qutro grismos, scohidos sm rptição, ntr,, 5, 6, 8, 9? b)

Leia mais

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor)

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor) Prof. Lorí Vili, Dr. vili@pucrs.br vili@m.ufrgs.br hp://www.pucrs.br/fm/vili/ hp://www.m.ufrgs.br/~vili/ Uniform Exponncil Norml Gm Wibull Lognorml (Sudn) χ (Qui-qudrdo) F (Sndkor) Um VAC X é uniform no

Leia mais

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R píulo álculo Ingrl m R píulo - álculo Ingrl SUMÁRIO rimiivs imdis ou qus-imdis rimiivção por prs por subsiuição rimiivção d unçõs rcionis Ingris órmul d Brrow ropridds do ingrl dinido Ingris prméricos

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

Equilíbrio do indivíduo-consumidor-trabalhador e oferta de trabalho

Equilíbrio do indivíduo-consumidor-trabalhador e oferta de trabalho Equilíbrio do indivíduo-consumidor-trblhdor e ofert de trblho 6 1 Exercício de plicção: Equilíbrio de um consumidor-trblhdor e nálise de estátic comprd Exercícios pr prátic do leitor Neste cpítulo, presentmos

Leia mais

Estes resultados podem ser obtidos através da regra da mão direita.

Estes resultados podem ser obtidos através da regra da mão direita. Produto toril ou produto trno Notção: Propridds Intnsidd: Sntido: ntiomuttiidd: Distriutio m rlção à dição: Não é ssoitios pois, m grl, Cso prtiulr: Pr tors dfinidos m oordnds rtsins: Ests rsultdos podm

Leia mais

1. GRANDEZAS FÍSICAS 2. VETORES 3. SOMA DE VETORES Regra do Polígono Grandezas Escalares Grandezas Vetoriais DATA: NOME: TURMA:

1. GRANDEZAS FÍSICAS 2. VETORES 3. SOMA DE VETORES Regra do Polígono Grandezas Escalares Grandezas Vetoriais DATA: NOME: TURMA: NOME: TURMA: DATA: 1. GRANDEZAS FÍSICAS 1.1. Grndzs Esclrs São totlmnt dfinids somnt por um lor numérico ssocido um unidd d mdid. Exmplos: Tmpo mss comprimnto tmprtur nrgi crg létric potncil létrico corrnt

Leia mais

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1 Cpítulo 1 Funções Vetoriis Neste cpítulo estudremos s funções f : R R n, funções que descrevem curvs ou movimentos de objetos no espço. 1.1 Definições e proprieddes Definição 1.1.1 Um função vetoril, é

Leia mais

ANEXO I DA LEI COMPLEMENTAR Nº123, DE 14 DE DEZEMBRO DE 2006 (vigência: 01/01/2012)

ANEXO I DA LEI COMPLEMENTAR Nº123, DE 14 DE DEZEMBRO DE 2006 (vigência: 01/01/2012) ANEO I DA LEI COMPLEMENTAR Nº123, DE 14 DE DEZEMBRO DE 2006 (vigênci: 01/01/2012) (Rdção dd pl Li Complmntr nº 139, d 10 d novmbro d 2011) Alíquots Prtilh do Simpls Ncionl - Comércio Rcit Brut m 12 mss

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

Quantidade de oxigênio no sistema

Quantidade de oxigênio no sistema EEIMVR-UFF Refino dos Aços I 1ª Verificção Junho 29 1. 1 kg de ferro puro são colocdos em um forno, mntido 16 o C. A entrd de oxigênio no sistem é controld e relizd lentmente, de modo ir umentndo pressão

Leia mais

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos.

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos. Not m: litur dsts potmtos ão disps d modo lgum litur tt d iliogrfi pricipl d cdir Chm-s tção pr importâci do trlho pssol rlir plo luo rsolvdo os prolms prstdos iliogrfi, sm cosult prévi ds soluçõs proposts,

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

TERMO ADITIVO A CONVENÇÃO COLETIVA DE TRABALHO 2012/2013

TERMO ADITIVO A CONVENÇÃO COLETIVA DE TRABALHO 2012/2013 TERMO ADITIVO A CONVENÇÃO COLETIVA DE TRABALHO 2012/2013 NÚMERO DE REGISTRO NO MTE: CE000313/2013 DATA DE REGISTRO NO MTE: 07/03/2013 NÚMERO DA SOLICITAÇÃO: MR011016/2013 NÚMERO DO PROCESSO: 46205.003892/2013-28

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

Cap. 19: Linkage Dois pares de genes localizados no mesmo par de cromossomos homólogos

Cap. 19: Linkage Dois pares de genes localizados no mesmo par de cromossomos homólogos Cp. 19: Linkge Dois pres de genes loclizdos no mesmo pr de cromossomos homólogos Equipe de iologi Linkge Genes ligdos: ocorrem qundo dois ou mis genes estão loclizdos no mesmo cromossomo. Esses genes não

Leia mais

MATEMÁTICA 1ª QUESTÃO. x é. O valor do limite. lim x B) 1 E) 1 2ª QUESTÃO. O valor do limite. lim A) 0 B) 1 C) 2 D) 3 E) 4

MATEMÁTICA 1ª QUESTÃO. x é. O valor do limite. lim x B) 1 E) 1 2ª QUESTÃO. O valor do limite. lim A) 0 B) 1 C) 2 D) 3 E) 4 MATEMÁTICA ª QUESTÃO O vlor do limite lim x 0 x x é A) B) C) D) 0 E) ª QUESTÃO O vlor do limite x 4 lim x x x é A) 0 B) C) D) E) 4 ª QUESTÃO Um equção d ret tngente o gráfico d função f ( x) x x no ponto

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

log5 log 5 x log 2x log x 2

log5 log 5 x log 2x log x 2 mta unção rítmic. Indiqu o vlor d:.. 6.. 7 49...5..6. 5 ln.7. 9.4. ln.8..9. 46.. 4 4 6 6 8 8. Dtrmin o vlor d... 4 8.. 8.. 8.4. 5.5..9. 5.6. 9.7.,8.8... 6 5 8 4 5..... Rsolv cd um ds quçõs:.... 5.. ln

Leia mais

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO INTEGRAÇÃO MÉTODO DA UBTITUIÇÃO o MUDANÇA DE VARIAVEL PARA INTEGRAÇÃO Emplos Ercícios MÉTODO DA INTEGRAÇÃO POR PARTE Emplos Ercícios7 INTEGRAL DEFINIDA8 Emplos Ercícios REFERÊNCIA BIBLIOGRÁFICA INTRODUÇÃO:

Leia mais

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS VI - ANÁLISE CUSTO - VOLUME - RESULTADOS 6.1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas

Leia mais

Letra Letra Algarismo Algarismo Algarismo Letra Letra. Possibilidades

Letra Letra Algarismo Algarismo Algarismo Letra Letra. Possibilidades REOLUÇÃO A AVALIAÇÃO UNIDADE III - COLÉGIO ANCHIETA-BA PROFA. MARIA ANTÔNIA C. GOUVEIA ELABORAÇÃO PEQUIA: PROF. ADRIANO CARIBÉ WALTER PORTO. - - UNEP-Adptd) Está prvisto qu, prtir d º d jniro d 7, ntrrá

Leia mais

5 Reticulados e sua relação com a álgebra booleana

5 Reticulados e sua relação com a álgebra booleana Nots d ul d MAC0329 (2004) 30 5 Rticuldos su rlção com álgbr booln 5.1 Conjuntos prcilmnt ordndos Sj A um conjunto não vzio. Um rlção binári R sobr A é um subconjunto d A A, isto é, R A A. S (x, y) R,

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

Teoria VII - Tópicos de Informática

Teoria VII - Tópicos de Informática INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA ICET Cmpins Limeir Jundií Teori VII - Tópicos de Informátic 1 Fórmuls Especiis no Excel 2 Função Exponencil 3 Função Logrítmic Unip 2006 - Teori VII 1 1- FÓRMULAS

Leia mais

Aprender o conceito de vetor e suas propriedades como instrumento apropriado para estudar movimentos não-retilíneos;

Aprender o conceito de vetor e suas propriedades como instrumento apropriado para estudar movimentos não-retilíneos; Aul 5 Objetivos dest Aul Aprender o conceito de vetor e sus proprieddes como instrumento proprido pr estudr movimentos não-retilíneos; Entender operção de dição de vetores e multiplicção de um vetor por

Leia mais

ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO

ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO ERROS ESTACIONÁRIOS Control Mlh Abrt Fhd Constnts d rro Tios d sistms Erros unitários Exmlo Control m mlh brt Ação bási, sm rlimntção A ntrd do ontroldor é um sinl d rrêni A síd do ontroldor é o sinl d

Leia mais

PRODUÇÃO INDUSTRIAL DO AMONÍACO

PRODUÇÃO INDUSTRIAL DO AMONÍACO PRODUÇÃO INDUSTRIAL DO AMONÍACO A ração d sínts do amoníao é uma ração rvrsívl. As quaçõs químias das raçõs das raçõs rvrsívis ontêm duas stas d sntidos opostos a sparar ragnts produtos d ração. Ragnts

Leia mais

CÁLCULO E INSTRUMENTOS FINANCEIROS I (2º ANO)

CÁLCULO E INSTRUMENTOS FINANCEIROS I (2º ANO) GESTÃO DE EMPRESAS CÁLCULO E INSTRUMENTOS FINANCEIROS I (2º ANO) Exercícios Amortizção de Empréstimos EXERCÍCIOS DE APLICAÇÃO Exercício 1 Um empréstimo vi ser reembolsdo trvés de reembolsos nuis, constntes

Leia mais

DIFRAÇÃO. E 2 = Em(r 2 ) cos(k r 2 - ω t) ê 2 (1) : : : : E N = E m (r N ) cos(k r N - ω t) ê N

DIFRAÇÃO. E 2 = Em(r 2 ) cos(k r 2 - ω t) ê 2 (1) : : : : E N = E m (r N ) cos(k r N - ω t) ê N ISTITUTO DE FÍSICA DA UFBA DEPARTAMETO DE FÍSICA DO ESTADO SÓLIDO DISCIPLIA : FÍSICA GERAL E EXPERIMETAL IV-E (FIS 4) DIFRAÇÃO. Difrção d Frunhofr d fnd simpls Suponh um fnd simpls, d lrgur comprimnto

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

CPV 82% de aprovação na ESPM em 2011

CPV 82% de aprovação na ESPM em 2011 CPV 8% de provção n ESPM em 0 Prov Resolvid ESPM Prov E 0/julho/0 MATEMÁTICA. Considerndo-se que x = 97, y = 907 e z =. xy, o vlor d expressão x + y z é: ) 679 b) 58 c) 7 d) 98 e) 77. Se três empds mis

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal EA6 Circuits FEEC UNCAMP Aul 6 Est ul:! Sistms Trifásics quilibrds cm Trnsfrmdr idl Nst ul nlisrms um sistm trifásic quilibrd cm trnsfrmdr Cm sistm é quilibrd, pdms nlisr circuit trifásic trtnd pns d um

Leia mais

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário. Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

Exercícios. setor Aula 25. f(2) = 3. f(3) = 0. f(11) = 12. g(3) = 14. Temos: 2x 1 = 5 x = 3 Logo, f(5) = 3 2 = 9

Exercícios. setor Aula 25. f(2) = 3. f(3) = 0. f(11) = 12. g(3) = 14. Temos: 2x 1 = 5 x = 3 Logo, f(5) = 3 2 = 9 setor 07 070409 070409-SP Aul 5 FUNÇÃO (COMPOSIÇÃO DE FUNÇÕES) FUNÇÃO COMPOSTA Sej f um função de A em B e sej g um função de B em C. Chm-se função compost de g com f função h definid de A em C, tl que

Leia mais

Eletrotécnica TEXTO Nº 7

Eletrotécnica TEXTO Nº 7 Eletrotécnic TEXTO Nº 7 CIRCUITOS TRIFÁSICOS. CIRCUITOS TRIFÁSICOS EQUILIBRADOS E SIMÉTRICOS.. Introdução A quse totlidde d energi elétric no mundo é gerd e trnsmitid por meio de sistems elétricos trifásicos

Leia mais

CPV conquista 70% das vagas do ibmec (junho/2007)

CPV conquista 70% das vagas do ibmec (junho/2007) conquist 70% ds vgs do ibmec (junho/007) IBME 08/Junho /008 NÁLISE QUNTITTIV E LÓGI DISURSIV 0. Num lv-rápido de crros trblhm três funcionários. tbel bio mostr qunto tempo cd um deles lev sozinho pr lvr

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição ESTATÍSTICA APLICADA 1 Introdução à Esttístic 1.1 Definição Esttístic é um áre do conhecimento que trduz ftos prtir de nálise de ddos numéricos. Surgiu d necessidde de mnipulr os ddos coletdos, com o objetivo

Leia mais

Professora: Profª Roberta Nara Sodré de Souza

Professora: Profª Roberta Nara Sodré de Souza MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Professor: Profª Robert Nr Sodré de Souz Função

Leia mais

4.4 - Acelerômetros Combinados. Montagem: x 2. referência. Circuito: - + S v. a 1 = E 1 + E 2. a 2 -E 1 = E 2. Características de Sensores

4.4 - Acelerômetros Combinados. Montagem: x 2. referência. Circuito: - + S v. a 1 = E 1 + E 2. a 2 -E 1 = E 2. Características de Sensores 4.4 - Acelerômetros ombindos Montgem: G θ x x x ircuito: reerênci R R v R R R R R - + 0 + v R - + R 0-7 rcterístics de ensores Deslocmento liner médio: x x + x && x + Deslocmento ngulr médio: θ && θ x

Leia mais

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Volumes de Sólidos

Leia mais

PROPOSTA DE RESOLUÇÃO DA FICHA DE EQUILÍBRIO DE ÁCIDO-BASE - CÁLCULOS DE ph

PROPOSTA DE RESOLUÇÃO DA FICHA DE EQUILÍBRIO DE ÁCIDO-BASE - CÁLCULOS DE ph Rsolução d fich d Trblho Cálculos d ph PROPOSTA DE RESOLUÇÃO DA FICHA DE EQUILÍBRIO DE ÁCIDO-BASE - CÁLCULOS DE ph 1. 1.1. Signific qu ist 97 g d H SO 4 m 0 g d solução. 1.. H O(l)? m m % m Ac sol. 1,84

Leia mais

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DA RETA Auls 01 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário EQUAÇÃO GERAL DA RETA... 2 Csos espeiis... 2 Determinção d equção gerl de um ret prtir de dois de seus pontos...

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura. Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

PREFÁCIO BOM TRABALHO!

PREFÁCIO BOM TRABALHO! PREFÁCIO Est volum corrspond o sgundo livro virtul lnçdo plo Sistm d Ensino Intrtivo SEI. O livro trt d um curso d cálculo voltdo pr os vstibulrs militrs o longo d qutro cpítulos. Cd um dos qutro cpítulos

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006)

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006) 1 Projecções Cotds Luís Miguel Cotrim Mteus, Assistente (2006) 2 Nestes pontmentos não se fz o desenvolvimento exustivo de tods s mtéris, focndo-se pens lguns items. Pelo indicdo, estes pontmentos não

Leia mais

Oitavo Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto. Portal da OBMEP

Oitavo Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto. Portal da OBMEP Mtril Tórico - Módulo Frçõs Algébrics Oprçõs Básics Oitvo Ano Autor: rof. Ulisss Lim rnt Rvisor: rof. Antonio Cminh M. Nto ortl d OBME Simplificção d frçõs lgébrics Um frção lgébric é um xprssão lgébric

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

Instituto Federal Goiano

Instituto Federal Goiano planjamnto Anális d Exprimntos Instituto Fdral Goiano planjamnto Anális d 1 planjamnto 2 Anális d 3 4 5 6 7 Contúdo 8 Parclas subdivididas (split plot) planjamnto Anális d É um dlinamnto xprimntal? Parclas

Leia mais

Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale

Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale Colegio Nvl 005 01) O lgoritmo cim foi utilizdo pr o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vle (A) 400 (B) 300 (C) 00 (D) 180 (E) 160 Resolvendo: Temos que E 40 C E C 40

Leia mais

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Roberta Teixeira)

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Roberta Teixeira) 9 PC Smpio Alex Amrl Rfel Jesus Mt.Semn (Robert Teixeir) Este conteúdo pertence o Descomplic. Está vedd cópi ou reprodução não utorizd previmente e por escrito. Todos os direitos reservdos. CRONOGRAMA

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

MOVIMENTOS SOB A AÇÃO DE UMA FORÇA RESULTANTE DE INTENSIDADE CONSTANTE

MOVIMENTOS SOB A AÇÃO DE UMA FORÇA RESULTANTE DE INTENSIDADE CONSTANTE MOVIMENTOS SOB A AÇÃO DE UMA ORÇA RESULTANTE DE INTENSIDADE CONSTANTE Trjóris Tmos os sguins csos: 1º) S forç rsuln ivr dirção d vlocidd só vrirá o módulo ds rjóri srá rilín. v R Ou R v º) S forç rsuln

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

02 de outubro de 2013

02 de outubro de 2013 Gnralidads planjamnto Exprimntos Univrsidad Fdral do Pampa (Unipampa) 02 d outubro d 2013 Gnralidads planjamnto 1 Gnralidads planjamnto 2 3 4 5 6 Contúdo 7 Parclas subdivididas (split plot) Gnralidads

Leia mais

Solução: log. 04. Se Z C, então z. 3 z. Solução: Se z C, então z 3 z z z z é igual a: Sabemos que: Portanto

Solução: log. 04. Se Z C, então z. 3 z. Solução: Se z C, então z 3 z z z z é igual a: Sabemos que: Portanto Qustõs Objtivs. Ds firmçõs: I., y R \ Q, com y, ntão + y R \ Q; II. Q y R \ Q, ntão y R \ Q; III. jm, b, c R, com < b < c. f: [, c] [, b] é sobrjtor, ntão f não é injtor, é (são) vrddir(s) n log log n

Leia mais

UTL Faculdade de Motricidade Humana. Mestrado em Reabilitação Psicomotora. Estágio CERCI Lisboa

UTL Faculdade de Motricidade Humana. Mestrado em Reabilitação Psicomotora. Estágio CERCI Lisboa UTL Fculd Motricid Humn Mstrdo m Rbilitção Psicomotor Estágio CERCI Lisbo Sssão Activid no Mio Aquático 16/11/2011 Clint: C.M., L.V., A.E., F.C. S.C. domínio Nom Dscrição Obj. Esp. Mtriis Estrtégis Critério

Leia mais

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas;

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas; Funções vetoriis Integris MÓDULO 3 - AULA 35 Aul 35 Funções vetoriis Integris Objetivo Conhecer integrl de funções vetoriis; Aprender clculr comprimentos de curvs prmetrizds; Aprender clculr áres de regiões

Leia mais

D e atribuamos a x o acréscimo x e a y o acréscimo y, tais que o ponto ( x + x,

D e atribuamos a x o acréscimo x e a y o acréscimo y, tais que o ponto ( x + x, DERIVADAS PARCIAIS ACRÉSCIMOS Acréscimo totl Sj unção dinid n rgião D R Tommos o ponto D tribumos o créscimo o créscimo tis qu o ponto D O créscimo d unção qundo pssmos do ponto o ponto é s chm créscimo

Leia mais

Nota de aula_2 2- FUNÇÃO POLINOMIAL

Nota de aula_2 2- FUNÇÃO POLINOMIAL Universidde Tecnológic Federl do Prná Cmpus Curiti Prof. Lucine Deprtmento Acdêmico de Mtemátic Not de ul_ - FUNÇÃO POLINOMIAL Definição 8: Função polinomil com um vriável ou simplesmente função polinomil

Leia mais

ANÁLISE CUSTO - VOLUME - RESULTADOS

ANÁLISE CUSTO - VOLUME - RESULTADOS ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áres Plns Suponh que um cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

A ferramenta de planeamento multi

A ferramenta de planeamento multi A frramnta d planamnto multi mdia PLANVIEW TELEVISÃO Brv Aprsntação Softwar d planamnto qu s basia nas audiências d um príodo passado para prvr asaudiências d um príodo futuro Avrsatilidad afacilidad d

Leia mais

Cartilha Explicativa. Segurança para quem você ama.

Cartilha Explicativa. Segurança para quem você ama. Crtilh Explictiv Segurnç pr quem você m. Bem-vindo, novo prticipnte! É com stisfção que recebemos su desão o Fmíli Previdênci, plno desenhdo pr oferecer um complementção de posentdori num modelo moderno

Leia mais