INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO"

Transcrição

1 Área Cientifica Matemática Curso Engenharia Electrotécnica 1º Semestre º 010/011 Folha Nº8 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas de vendas, A e B, para o mesmo produto. Utilizando a técnica de venda A a quantidade de produto vendido por dia é em média de 816 Kg com um desvio padrão de 45 Kg. Adoptando a nova técnica de vendas B espera-se aumentar a quantidade de vendas diárias. Para testar tal hipótese registou-se a quantidade diária de vendas do produto durante 50 dias, obtendo-se um valor médio de 839 Kg. a) Pode aceitar-se a hipótese ao nível de significância de 0.01? b) Suponha que a média amostral ervada nos 50 dias era de 800 Kg. Para o mesmo nível de significância qual seria agora a decisão a tomar?. Um gestor de um franchising está interessado em alugar uma loja e é informado que a renda média na área é de 150 u.m.. Suponha que, para o tipo de zona em questão, é possível dizer que as rendas desse tipo têm distribuição aproximadamente normal com desvio padrão σ=10 u.m.. Foram registadas as rendas de 15 lojas seleccionadas aleatoriamente. Suponha que para a amostra recolhida a renda média foi de 160 u.m.. O gestor está convencido de que o valor de 150 u.m. para a renda média está desactualizado. Terá o gestor razão? Justifique convenientemente a sua resposta, utilizando o teste adequado, a % de significância. 3. Sabe-se que a cotação de determinada acção no mercado de valores segue uma distribuição normal de média 0.17 u.m.. Com a finalidade de verificar se a acção se encontra "em alta" registou-se a cotação da acção durante 10 dias e obteve-se uma cotação média de u.m. com desvio padrão de u.m.. Teste a hipótese da acção estar "em alta" ao nível de significância de Um agente de compras de um determinado supermercado, testou uma amostra aleatória de 100 latas de conserva na própria fábrica de enlatados. O peso líquido (em decagramas) encontrado em média por lata foi de com s=0.15. O fabricante afirma que o peso líquido médio por lata era de 16. Pode esta afirmação ser rejeitada a um nível de significância de 10%? Página 1 de 10

2 1º Semestre º 010/ Testaram-se dois tipo, A e B, de soluções químicas em relação ao ph (grau de acidez da solução). A análise de 40 amostras da solução A acusou ph médio de 7.5 com desvio padrão de 0.04, enquanto que a análise de 45 amostras da solução B acusou ph médio de 7.49 com desvio padrão de Ao nível de significância de 0.05, teste a hipótese dos dois tipos de solução terem ph diferente. 6. Foi feito um estudo para estimar a diferença entre o tempo médio de exposição à radioactividade, de trabalhadores de uma determinada fábrica, nos anos de 1973 e Considere que os referidos tempos de exposição à radioactividade têm distribuição normal. Os dados baseados em amostras independentes de trabalhadores para os dois anos, foram os seguintes: n 1 =16 n =16 x 1 =0.94 u.t. x =0.6 u.t. s 1 =0.04 s =0.08 a) Teste a igualdade das variâncias ao nível de significância de 0.. b) Supondo que há de facto igualdade de variâncias, teste a igualdade das médias ao nível de significância de c) Há razões para admitir que o tempo médio de exposição à radioactividade em 1973 excede o de 1979 em mais de 0.1 unidades de tempo (u.t.)? (use α=0.01) 7. Uma empresa de consultadoria está a analisar duas cidades, A e B, em alternativa, para a implantação de um Centro Comercial regional. O rendimento familiar nas duas cidades é um elemento importante na tomada de decisão. Assim a empresa pretende testar a hipótese de que não existe diferença entre os respectivos rendimentos médios familiares. Para tal recolheu uma amostra de dimensão 9 para cada uma das cidades e verificou que o rendimento médio amostral da cidade A era de 4 e o da cidade B de 3. Proceda ao ensaio pretendido para um nível de significância de 0.01, sabendo que a variância do rendimento familiar é 4 em ambas as cidades e que o rendimento é uma variável normal. 8. O director de um grupo empresarial pretende comparar as vendas de duas lojas, A e B, do grupo que se dedicam à comercialização do mesmo produto. O director acredita que as vendas da loja A são superiores às da loja B. O quadro abaixo apresenta os resultados semanais, obtidos durante 1 semanas, relativamente ao número de vendas. Teste ao nível de significância de 0.05 se as vendas na loja A são superiores às vendas na loja B. Página de 10

3 1º Semestre º 010/011 Loja A (X) Loja B (Y) Considere que as variáveis aleatórias X e Y têm distribuição normal com variâncias desconhecidas mas iguais. 9. Certo distribuidor ao comercializar um novo aditivo assegura que este faz reduzir substancialmente o consumo de combustível. Uma organização de automobilistas resolveu comprovar tal afirmação, para o que seleccionou 10 carros todos de modelos diferentes, que percorreram determinado troço nas mesmas condições, primeiro sem aditivo e depois com aditivo. Os consumos em litros foram os seguintes: Sem aditivo Com aditivo Que se deve concluir para α=0.01? (Admita que são verificados todos os pressupostos que entenda serem necessários para responder a esta pergunta.) 10. Uma máquina está construída de forma a assegurar que a medida padrão das peças que produz tenha uma média igual a 4. Mas deseja-se também que a variabilidade dessa medida não ultrapasse uma unidade de medida (controle pelo desvio padrão). Sabe-se que a medida de uma peça produzida por aquela máquina segue uma distribuição normal. No último controle de qualidade, as 16 peças analisadas segundo a medida padrão revelaram uma média de 4, mas uma variabilidade de 1.10 unidades de medida. Será a diferença na variabilidade significativa ao nível 0.05? A que nível de significância se pode considerar a diferença na variabilidade significativa? Página 3 de 10

4 1º Semestre º 010/ Duma população normal foi recolhida uma amostra de 30 elementos em que se obteve: 30 x i= 1 i = 3 Ensaie as hipóteses H 0 :σ=0.866 contra H 1 :σ para α= x i i= 1 = Foi feito um estudo para comparar dois tipos de acções, quanto à sua cotação. Considere que a cotação das acções tipo I e tipo II segue uma distribuição normal. Os dados baseados em amostras independentes foram os seguintes: Tipo I Tipo II n 1 =1 n =16 x 1 =380 u.m. x =370 u.m. s 1 =100 s =400 Teste a hipótese H 1 de que a variabilidade da cotação da acção de tipo II é maior que a variabilidade da cotação da acção de tipo I ao nível de significância de O chefe da contabilidade de certa firma está preocupado com a grande quantidade de facturas em que detectou erros. Ele estima que mais de 0% são enviadas com algum tipo de erro. Foram seleccionadas 500 facturas aleatoriamente. Suponha que na amostra de 500 facturas foram encontradas 130 com erros. Para α=0.01 diga se se deve concordar com a suposição feita. 14. Um político afirma que 60% dos eleitores apoiam um projecto de lei que ele pretende apresentar. Para testar a sua afirmação, foram entrevistados 400 eleitores seleccionados aleatoriamente. Sabendo que dos 400 eleitores 08 declararam apoiar o referido projecto, diga se pode concordar com a afirmação feita pelo político? Use α= Numa sondagem, 60 das 00 pessoas inquiridas revelaram-se conhecedoras de determinado produto. Após uma campanha publicitária foi feito novo inquérito a 300 pessoas, das quais 111 se revelaram conhecedoras do produto. Pode considerar-se que, devido à campanha publicitária, o referido produto se tornou mais conhecido? Use α=0.05. Página 4 de 10

5 1º Semestre º 010/ Para se testar se a proporção de fumadores é a mesma em duas cidades universitárias, entrevistaram-se 00 estudantes em cada uma delas 36 dos estudantes da cidade A e 6 da cidade B declararam fumar. Poderse-à concluir que a percentagem de fumadores nas duas cidades é a mesma? (Use α=0.05) 17. Uma determinada máquina produz 0% das peças especiais sendo as restantes normais, mas quando está desafinada começa a produzir 40% peças especiais. Recolheu-se uma amostra aleatória de 15 peças com o intuito de saber se a máquina está desafinada e verificou-se que 4 delas eram especiais e 11 normais. Considere as duas hipóteses seguintes, onde p é a verdadeira proporção de peças especiais que está a ser produzida pela máquina: H 0 : p=0. vs. H 1 :p=0.4 O que pode concluir ao nível de significância de 6.5%? 18 Num estudo comparativo da eficiência de empresas agrícolas, considerou-se uma amostra de 69 explorações que foram classificadas segundo dois atributos: A={explorações de cabeça, explorações intermédias, explorações de cauda} B={explorações vitícolas, explorações frutícolas} Os dados estão apresentados na seguinte tabela: Vitícolas Frutícolas Cabeça 6 8 Intermédia 10 9 Cauda 14 a) Será de admitir que o atributo A está relacionado com o atributo B? (Use α=0.01) b) Use as medidas que conhece para medir a intensidade da associação entre os dois atributos e relacione os valores obtidos com a resposta dada na alínea anterior. 19. O quadro apresenta uma tabela 3 3 construída a partir dos casamentos realizados em 1977 no continente português, considerando a classificação dos cônjuges, de ambos os sexos, segundo o estado civil anterior ao casamento. Homens Mulheres Solteiros Viúvos Divorciados Solteiras Viúvas Divorciadas Página 5 de 10

6 1º Semestre º 010/011 a) Na nível de significância de 0.05 será de admitir que havia naquele período uma intensa associação entre o estado civil dos cônjuges no que se refere aos casamentos realizados no continente português. b) Use os coeficientes de contingência, Tschuprow e Cramér para medir a intensidade de associação entre os dois atributos. 0. Com o objectivo de verificar se o tipo de revestimento florestal tem influência sobre a severidade da erosão em certa região, fizeram-se ervações em 350 pontos, com os resultados que se condensam na tabela seguinte. Revestimento Florestal Erosão Vegetação Vegetação Floresta Herbácea Arbustiva Severa Moderada Fraca Desprezável a) Parece-lhe que os dados obtidos permitem extrair alguma conclusão relativamente ao objectivo acima indicado? (Use α=0.01) b) Use as medidas que conhece para medir a intensidade de associação entre o tipo de erosão e o revestimento florestal. 1. Registam-se os dados do rendimento de 400 famílias do Norte e Sul de um país. Rendimento Região >15 Norte Sul a) Será que o rendimento familiar depende da região do país? (Use α=0.05) b) Use os coeficientes de contingência, Tschuprow e Cramér para medir a intensidade de associação entre rendimento familiar e a região do país. Página 6 de 10

7 1º Semestre º 010/011. A tabela a seguir exibe os resultados obtidos por estudantes de e Cálculo. Cálculo 0 notas<5 5 notas<7 7 notas 10 0 notas< notas< notas a) Teste a hipótese de que os resultados em estatística são independentes dos resultados em cálculo, ao nível de significância de.5%. b) Utilize as medidas que conhece para medir a intensidade de associação entre os dois atributos. 3. A tabela de contigência do quadro seguinte resultou de uma investigação em que se decidiu estudar como 100 peças de cada um dos tipos de material reagiam a um tratamento térmico. Material I Material II Material III Completamente destruídas Pequenos defeitos Resistência perfeita Será de admitir homogeneidade dos 3 materiais? (Use α=0.1) 4. Na tabela a seguir estão indicados os números de estudantes aprovados e reprovados por 3 professores. Testar ao nível de significância de 5% a hipótese de as proporções de estudantes reprovados pelos três professores serem iguais. Professor A Professor B Professor C Aprovados Reprovados Com o objectivo de investigar sobre a educação das pessoas ao nível de Reciclagem, fez-se aleatoriamente um inquérito anónimo em quatro cidades A, B, C e D. O número de pessoas que responderam Sim ou Não à pergunta Separa o Lixo? está indicado na tabela a baixo. Cidade A Cidade B Cidade C Cidade D Sim Não Teste ao nível de significância de 0.01, se os atributos Sim e Não estão homogeneamente distribuídos pelas cidades. Página 7 de 10

8 1º Semestre º 010/ Uma empresa tem dois vendedores e registou, para cada um, o total de visitas a clientes e o número de visitas bem sucedidas. Classificação Vendedor I Vendedor II Totais Visitas bem sucedidas Visitas mal sucedidas Totais Averigúe ao nível de significância de 0.01 se os dois vendedores são igualmente hábeis. 7. Os resultados de vacinação contra a cólera num conjunto de 79 indivíduos escolhidos aleatoriamente entre vacinados, e num conjunto de 539 indivíduos escolhidos aleatoriamente entre os não vacinados: Vacinados Não Vacinados Atacados 3 66 Não Atacados Usando um teste adequado, verifique se a população dos vacinados difere da dos não vacinados no que se refere ao facto de terem ou não sido atacados. Página 8 de 10

9 1º Semestre º 010/011 SOLUÇÕES 1. a) R. C. = [830.8, + [ (usando a estatística X ); valor ervado da estatística de teste: 839; rejeitar a hipótese H 0. b) não rejeitar H 0.. a) R. C. = [155.3, + [ (usando a estatística X ); valor ervado da estatística de teste: 160; rejeitar a hipótese H R. C. = [.6, + [; valor ervado da estatística de teste: 3.16; rejeitar a hipótese H R. C. = ]-, -1.64] [1.64, + [; valor ervado da estatística de teste: -; rejeitar a hipótese H R. C. = ]-, -1.96] [1.96, + [; valor ervado da estatística de teste: 4.9; rejeitar a hipótese H a) R. C. = [0, 0.507] [1.97, + [; valor ervado da estatística de teste: 1.43; não rejeitar a hipótese H 0. b) R. C. = ]-, -.04] [.04, + [; valor ervado da estatística de teste: 4.9; rejeitar a hipótese H 0. c) R. C. = [.457, + [; valor ervado da estatística de teste: 3.37; rejeitar a hipótese H R. C. = ]-, -.43] [.43, + [ (usando a estatística X A X B ); valor ervado da estatística de teste: 1; não rejeitar H 0. R. C. = ]-, -.576] [.576, + [ (usando a estatística Z); valor ervado da estatística de teste: ; não rejeitar H R. C. = [1.717, + [; valor ervado da estatística de teste: 1.63; não rejeitar H (amostras emparelhadas) R. C.=[.81, + [; valor ervado da estatística de teste: 3.44; rejeitar H R. C. = [5, + [; valor ervado da estatística de teste: 18.; não rejeitar H 0. O menor nível de significância que permite considerar a diferença na variabilidade significativa é R. C. = [0, 13.1] [5.3, + [; valor ervado da estatística de teste: ; rejeitar H R. C. = [0, 0.543]; valor ervado da estatística de teste: 0.5; rejeitar H R. C. = [.36, + [; valor ervado da estatística de teste: 3.354; rejeitar H R. C.=]-, -1.96] [1.96, + [; valor ervado da estatística de teste: -3.66; rejeitar H R. C.=]-, ]; valor ervado da estatística de teste: ; não rejeitar H R. C.=]-, -1.96] [1.96, + [; valor ervado da estatística de teste: 1.385; não rejeitar H a) R. C. ={6, 7, 8,..., 15}; valor ervado da estatística de teste: 4; não rejeitar H a) Teste do Qui-quadrado da independência: =0.9585<9.1, logo não se rejeita H 0. b) C=0.117; T=0.099; V= a) Teste do Qui-quadrado da independência: = >9.49, logo rejeita-se H 0. Página 9 de 10

10 1º Semestre º 010/011 b) C=0.4; T=0.309; V= a) Teste do Qui-quadrado da independência: b) C=0.61; T=0.17; V= a) Teste do Qui-quadrado da independência: b) C=0.1197; T=0.09; V=0.11. a) Teste do Qui-quadrado da independência: b) C=0.45; T=0.358; V= Teste do Qui-quadrado de homogeneidade: =5.504>16.8, logo rejeita-se H 0. =5.81<9.35, logo não se rejeita H 0. =111.64>11.1, logo rejeita-se H 0. =18.5>7.78, logo rejeita-se H Teste do Qui-quadrado de homogeneidade: =0.555<5.99, logo não se rejeita H Teste do Qui-quadrado de homogeneidade: =.80>11.3, logo rejeita-se H Teste do Qui-quadrado de homogeneidade: =7.35>6.63, logo rejeita-se H Teste do Qui-quadrado de homogeneidade: =9.8>7.78, logo rejeita-se H 0. Página 10 de 10

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº 5: Testes Paramétricos Probabilidades e Estatística 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas

Leia mais

INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA. Estatística

INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA. Estatística INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Ano Lectivo 2009/2010 Estatística Ficha n.º1 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas de vendas,

Leia mais

Estatística. Será de admitir que os consumidores não manifestam preferência por qualquer uma das cores? (Use α=0.05)

Estatística. Será de admitir que os consumidores não manifestam preferência por qualquer uma das cores? (Use α=0.05) INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Estatística Ano Lectivo 007/008 Ficha n.º4 1. Uma máquina de lavar roupa é vendida em 5 cores: Verde (A 1 ), Castanho (A ), Encarnado

Leia mais

Estatística Aplicada

Estatística Aplicada INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Estatística Aplicada Ano Lectivo 006/007 Ficha n.º4 1. Uma máquina de lavar roupa é vendida em 5 cores: Verde (A 1 ), Castanho (A ),

Leia mais

TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA

TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA Suponha que numa amostra aleatória de tamanho n de uma dada população são observados dois atributos ou características A e B (qualitativas ou quantitativas), uma

Leia mais

Estatística Aplicada

Estatística Aplicada INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Estatística Aplicada Ano Lectivo 2006/2007 Ficha n.º1 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas

Leia mais

Testes de Hipóteses Paramétricos

Testes de Hipóteses Paramétricos Testes de Hipóteses Paramétricos Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução Exemplos Testar se mais de metade da população irá consumir um novo produto

Leia mais

a) Suponha que na amostra de 20 declarações foram encontrados 15 com dados incorrectos. Construa um

a) Suponha que na amostra de 20 declarações foram encontrados 15 com dados incorrectos. Construa um Escola Superior de Tecnologia de Viseu Probabilidades e Estatística 2007/2008 Ficha nº 7 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas de vendas, A e B, para o mesmo produto.

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

Estatística. Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários à aplicação da ANOVA são verificados.

Estatística. Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários à aplicação da ANOVA são verificados. INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Ano Lectivo 007/008 Estatística Ficha n.º Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Cientifica Curso Matemática Engenharia Electotécnica Curricular Folha Nº7. Considere uma fábrica que produz cabos eléctricos cujos diâmetros são normalmente distribuídos com média µ e desvio padrão

Leia mais

Questão 1 Sabe-se que o consumo mensal per capita de um determinado produto tem distribuição normal com desvio padrão σ = 2kg

Questão 1 Sabe-se que o consumo mensal per capita de um determinado produto tem distribuição normal com desvio padrão σ = 2kg Lista suplementar Teste de uma média populacional Questão 1 Sabe-se que o consumo mensal per capita de um determinado produto tem distribuição normal com desvio padrão σ = kg. A diretoria da indústria

Leia mais

Aula 7. Testes de Hipóteses Paramétricos (II)

Aula 7. Testes de Hipóteses Paramétricos (II) Aula 7. Testes de Hipóteses Paramétricos (II) Métodos Estadísticos 008 Universidade de Averio Profª Gladys Castillo Jordán IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais.

Leia mais

Teste de hipóteses. Estatística Aplicada Larson Farber

Teste de hipóteses. Estatística Aplicada Larson Farber 7 Teste de hipóteses Estatística Aplicada Larson Farber Seção 7.1 Introdução ao teste de hipóteses Uma hipótese estatística é uma alegação sobre uma população. A hipótese nula H 0 contém uma alternativa

Leia mais

mat.ufrgs..ufrgs.br br/~viali/ mat.ufrgs..ufrgs.br

mat.ufrgs..ufrgs.br br/~viali/ mat.ufrgs..ufrgs.br Prof. Lorí Viali, Dr. http://www. ://www.mat mat.ufrgs..ufrgs.br br/~viali/ viali@mat mat.ufrgs..ufrgs.br Média Uma amostra Proporção Variância Dependentes Diferença de médias m Duas amostras Independentes

Leia mais

Medidas de Dispersão 1

Medidas de Dispersão 1 Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Dispersão 1 Introdução Uma breve reflexão sobre as medidas de tendência central permite-nos concluir que elas não

Leia mais

UFRGS - Graduação em Estatística Disciplina: Mat2282 Análise Estat. Não Paramétrica Lista de exercícios 02: testes paramétricos de hipóteses

UFRGS - Graduação em Estatística Disciplina: Mat2282 Análise Estat. Não Paramétrica Lista de exercícios 02: testes paramétricos de hipóteses 01. Dados os valores: 4, 6, 3, 6 e 6, de uma amostra aleatória de 5 (cinco) observações de uma variável X, estime a média e a variância de X e admitindo que X tenha uma distribuição normal, teste, a 5%,

Leia mais

7. Testes de Hipóteses

7. Testes de Hipóteses 7. Testes de Hipóteses Suponha que você é o encarregado de regular o engarrafamento automatizado de leite numa determinada agroindústria. Sabe-se que as máquinas foram reguladas para engarrafar em média,

Leia mais

TESTES DE HIPÓTESES. HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não.

TESTES DE HIPÓTESES. HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não. TESTES DE HIPÓTESES HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não. HIPÓTESES ESTATÍSTICA: Hipótese Nula (H 0 ): a ser validada pelo teste.

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV. INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário

Leia mais

2. Suponhamos que foi extraída a seguinte amostra de uma população normal: Determine um intervalo de confiança a 95% para a média.

2. Suponhamos que foi extraída a seguinte amostra de uma população normal: Determine um intervalo de confiança a 95% para a média. Escola Superior de Tecnologia de Viseu Fundamentos de Estatística 007/008 Ficha nº 6 1. a) Determine o intervalo de confiança a 90% para a média de uma população normal de variância igual a 4, com base

Leia mais

Turma: Engenharia Data: 12/06/2012

Turma: Engenharia Data: 12/06/2012 DME-IM-UFRJ - 2ª Prova de Estatística Unificada Turma: Engenharia Data: 12/06/2012 1 - Admita que a distribuição do peso dos usuários de um elevador seja uma Normal com média 75kg e com desvio padrão 15kg.

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE ESTATÍSTICA. Cursos: Licenciatura em Enfermagem

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE ESTATÍSTICA. Cursos: Licenciatura em Enfermagem INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE ESTATÍSTICA Cursos: Licenciatura em Enfermagem Teste Final o Ano/3 o Semestre 007/08 Data: a feira, 9 de Novembro de 007 Duração: 4h às h Instruções:.

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Probabilidades e Estatística Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº2: Distribuição Binomial, Poisson, Normal e Lognormal 1. A probabilidade de encontrar um insecto

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 MÉTODOS QUANTITATIVOS APLICADOS À CONTABILIDADE Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 Fundamentos de Testes

Leia mais

FICHA DE TRABALHO N. O 9

FICHA DE TRABALHO N. O 9 FICHA DE TRABALHO N. O 9 ASSUNTO: Modelos de probabilidade: probabilidade condicional 1. Sejam A e B dois acontecimentos tais que: P (A) = 0,3 e P (B ) = 0,7 Determine P (A B ), sabendo que: 1.1 Os acontecimentos

Leia mais

Estatística e Probabilidade

Estatística e Probabilidade Teste de hipóteses Objetivo: Testar uma alegação sobre um parâmetro: Média, proporção, variação e desvio padrão Exemplos: - Um hospital alega que o tempo de resposta de sua ambulância é inferior a dez

Leia mais

Universidade da Beira Interior Departamento de Matemática

Universidade da Beira Interior Departamento de Matemática Universidade da Beira Interior Departamento de Matemática ESTATÍSTICA Ano lectivo: 2007/2008 Curso: Ciências do Desporto Folha de exercícios nº4: Distribuições de probabilidade. Introdução à Inferência

Leia mais

Lista de exercícios. Teste de uma proporção populacional

Lista de exercícios. Teste de uma proporção populacional Lista de exercícios Questão 1 Sabe-se que, em uma localidade, foram vacinadas 70% das crianças em idade pré-escolar. Se fosse sorteada uma amostra de 10 crianças, ao acaso, qual seria: a) A probabilidade

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) 2a AULA 02/03/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 2a aula (02/03/2015) MAE229 1 / 16

Leia mais

Inferência para várias populações normais análise de variância (ANOVA)

Inferência para várias populações normais análise de variância (ANOVA) Inferência para várias populações normais análise de variância (ANOVA) Capítulo 15, Estatística Básica (Bussab&Morettin, 8a Edição) 9a AULA 11/05/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Cálculo das Probabilidades e Estatística I. Lista de Exercícios Terceira Prova. Parte I: Distribuição Amostral

UNIVERSIDADE FEDERAL DA PARAÍBA. Cálculo das Probabilidades e Estatística I. Lista de Exercícios Terceira Prova. Parte I: Distribuição Amostral UNIVERSIDADE FEDERAL DA PARAÍBA Cálculo das Probabilidades e Estatística I Professora: Juliana Freitas Pires Lista de Exercícios Terceira Prova Parte I: Distribuição Amostral Questão 1. Seja X N(90; 26).

Leia mais

2ª LISTA DE EXERCÍCIOS. 1) Certo posto de bombeiros recebe em média 3 chamadas por dia. Calcular a probabilidade de:

2ª LISTA DE EXERCÍCIOS. 1) Certo posto de bombeiros recebe em média 3 chamadas por dia. Calcular a probabilidade de: DISCIPLINA: ESTATÍSTICA PERÍODO: 2011.2 2ª LISTA DE EXERCÍCIOS 1) Certo posto de bombeiros recebe em média 3 chamadas por dia. Calcular a probabilidade de: a) Receber 4 chamadas num dia. R - 0,1680 b)

Leia mais

Lista Estimação Pontual Estatística Aplicada à Engenharia de Produção Prof. Michel H. Montoril

Lista Estimação Pontual Estatística Aplicada à Engenharia de Produção Prof. Michel H. Montoril Exercício 1. (Kokoska, 2013) Estudos indicam que residências canadenses desperdiçam, aproximadamente, de 389 a 513 quilowatts-hora de eletricidade por ano. Esse desperdício é causado por aparelhos eletrônicos

Leia mais

ANOVA - parte I Conceitos Básicos

ANOVA - parte I Conceitos Básicos ANOVA - parte I Conceitos Básicos Erica Castilho Rodrigues 9 de Agosto de 2011 Referências: Noções de Probabilidade e Estatística - Pedroso e Lima (Capítulo 11). Textos avulsos. Introdução 3 Introdução

Leia mais

Testes de Hipóteses. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM

Testes de Hipóteses. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM Testes de Hipóteses Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM Testes de hipóteses O Teste de Hipótese é uma regra de decisão para aceitar ou rejeitar uma hipótese

Leia mais

HEP-5800 BIOESTATÌSTICA

HEP-5800 BIOESTATÌSTICA HEP-58 BIOESTATÌSTICA UNIDADE IV INFERÊNCIA ESTATÍSTICA: TESTES DE HIPÓTESES Nila Nunes da Silva Regina I. T. Bernal I. QUADRO CONCEITUAL São procedimentos estatísticos que consistem em usar dados de amostras

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA VARIABILIDADE NA MEDIDA DE DADOS CIENTÍFICOS Se numa pesquisa, desenvolvimento de um processo ou produto, o valor

Leia mais

i. f Y (y, θ) = 1/θ... 0 y θ 0... y < 0 ou y > θ Se a amostra selecionada foi ( ), qual será a estimativa para θ?

i. f Y (y, θ) = 1/θ... 0 y θ 0... y < 0 ou y > θ Se a amostra selecionada foi ( ), qual será a estimativa para θ? Fundação Getulio Vargas Curso: Graduação Disciplina: Estatística Professor: Moisés Balassiano Lista de Exercícios Inferência. Seja (Y, Y 2,..., Y n ) uma amostra aleatória iid, de tamanho n, extraída de

Leia mais

Testes de hipóteses com duas amostras CURSO DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA. Módulo: ESTIMATIVA E TESTE DE HIPÓTESE.

Testes de hipóteses com duas amostras CURSO DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA. Módulo: ESTIMATIVA E TESTE DE HIPÓTESE. CURSO DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA Módulo: ESTIMATIVA E TESTE DE HIPÓTESE slide Testes de hipóteses com duas amostras slide Larson/Farber 4th ed Descrição - Testar a diferença entre médias

Leia mais

Inferência Estatística

Inferência Estatística Metodologia de Diagnóstico e Elaboração de Relatório FASHT Inferência Estatística Profa. Cesaltina Pires cpires@uevora.pt Plano da Apresentação Duas distribuições importantes Normal T- Student Estimação

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Capítulo 3 Introdução à Probabilidade e à Inferência Estatística INTERVALOS DE CONFIANÇA: Diferentes pesquisadores, selecionando amostras de uma mesma

Leia mais

X e Y independentes. n + 1 m

X e Y independentes. n + 1 m DEPARTAMENTO DE ESTATÍSTICA / CCEN / UFPA Disciplina: Inferência I Prof: Regina Tavares 5.0. TESTE DE HIPÓTESES PARA DUAS POPULAÇÕES 5.0.. Duas Populações Normais independentes : X, X 2,, X n uma a.a.

Leia mais

VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS

VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO DE ORGANIZAÇÕES PROCESSO SELETIVO DOUTORADO - TURMA 20 VERSÃO

Leia mais

1. Hipótese nula H0 é uma hipótese que contém uma afirmação de igualdade, tal como, = ou.

1. Hipótese nula H0 é uma hipótese que contém uma afirmação de igualdade, tal como, = ou. Aula 8 Testes de hipóteses Introdução Teste de hipótese é um processo que usa estatísticas amostrais para testar a afirmação sobre o valor de um parâmetro populacional. Pesquisas em campos tais como medicina,

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

c) Encontre um intervalo de confiança 95% para a razão das variâncias variâncias das duas amostras podem ser iguais com este grau de confiança?

c) Encontre um intervalo de confiança 95% para a razão das variâncias variâncias das duas amostras podem ser iguais com este grau de confiança? MQI 003 Estatística para Metrologia semestre 008.0 Lista 4 Profa. Mônica Barros PROBLEMA Toma-se duas amostras de engenheiros formados há 5 anos por duas Universidades e faz-se uma pesquisa salarial, cujos

Leia mais

Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME:

Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME: DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME: Observação: A resolução completa das perguntas inclui a justificação

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Curso Engenharia e Gestão Industrial 2º Semestre 1º Folha Nº4 Distribuições discretas 1. De um lote que contém 10 parafusos, dos quais 5 são defeituosos, extraem-se 2 com reposição.

Leia mais

ANOVA FACTORIAL EXEMPLO 1. ANOVA TWO-WAY COM O SPSS. a capacidade de reconhecimento do odor materno

ANOVA FACTORIAL EXEMPLO 1. ANOVA TWO-WAY COM O SPSS. a capacidade de reconhecimento do odor materno ANOVA FACTORIAL Quando a variável dependente é influenciada por mais do que uma variável independente (Factor) estamos interessados em estudar o efeito não só de cada um dos factores mas e também a possível

Leia mais

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses PODER DO TESTE Poder do Teste e Tamanho de Amostra para Testes de Hipóteses 1 Tipos de erro num teste estatístico Realidade (desconhecida) Decisão do teste aceita H rejeita H H verdadeira decisão correta

Leia mais

Testes de Aderência, Homogeneidade e Independência

Testes de Aderência, Homogeneidade e Independência Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa

Leia mais

Estatística para Cursos de Engenharia e Informática

Estatística para Cursos de Engenharia e Informática Estatística para Cursos de Engenharia e Informática BARBETTA, Pedro Alberto REIS, Marcelo Menezes BORNIA, Antonio Cezar MUDANÇAS E CORREÇOES DA ª EDIÇÃO p. 03, após expressão 4.9: P( A B) = P( B A) p.

Leia mais

UNIVERSIDADE DOS AÇORES Cursos Serviço Social e Psicologia Estatatística II /M.I.Q.II 1º Ano 2º Semestre 2005/2006

UNIVERSIDADE DOS AÇORES Cursos Serviço Social e Psicologia Estatatística II /M.I.Q.II 1º Ano 2º Semestre 2005/2006 UNIVERSIDADE DOS AÇORES Cursos Serviço Social e Psicologia Estatatística II /M.I.Q.II 1º Ano 2º Semestre 2005/2006 1ª Frequência 21 de Abril de 2006 Teste A Nota: Apresente todos os cálculos efectuados

Leia mais

Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA Estatística Geral I Prof: Jony Arrais Pinto Junior Lista 08 1. Utilizando os dados da Tabela 01 da Lista

Leia mais

Estatística Descritiva (I)

Estatística Descritiva (I) Estatística Descritiva (I) 1 O que é Estatística Origem relacionada com a coleta e construção de tabelas de dados para o governo. A situação evoluiu: a coleta de dados representa somente um dos aspectos

Leia mais

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média TESTES DE HIPÓTESES Conceitos, Testes de 1 proporção, Testes de 1 média 1 Testes de Hipóteses População Conjectura (hipótese) sobre o comportamento de variáveis Amostra Decisão sobre a admissibilidade

Leia mais

DISTRIBUIÇÃO BINOMIAL

DISTRIBUIÇÃO BINOMIAL Universidade Federal de Viçosa - CCE / DPI Inf 161 - Iniciação à Estatística / INF 16 Estatística I Lista de Exercícios: Cap. 4 - Distribuições de Variáveis Aleatórias DISTRIBUIÇÃO BINOMIAL 1. Determine

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

Nome: N o : Espaço reservado a classificações

Nome: N o : Espaço reservado a classificações ESTATÍSTICA I 2 o Ano/Gestão 1 o Semestre Época Normal Duração: 2 horas 1 a Parte Teórica N o de Exame: abcde 03.Jan.11 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação: 8 valores).

Leia mais

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Erica Castilho Rodrigues 2 de Agosto de 2013 3 Modelos de Poisson podem ser usados para analisar tabelas de contingência.

Leia mais

Universidade Federal do Pará Instituto de Tecnologia. Estatística Aplicada I

Universidade Federal do Pará Instituto de Tecnologia. Estatística Aplicada I 8/8/05 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 8/08/05 06:55 ESTATÍSTICA APLICADA

Leia mais

Estatística Licenciatura MAEG 2008/09. Exercícios

Estatística Licenciatura MAEG 2008/09. Exercícios Estatística Licenciatura MAEG 2008/09. Exercícios 4. Ensaios não paramétricos 1. Com o objectivo de remodelar determinado Centro Comercial, realizou-se uma pesquisa sobre o movimento de entradas e saídas

Leia mais

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016.

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016. de Matemática Financeira e Estatística do ISS Teresina, aplicada em 8/08/016. 11 - (ISS Teresina 016 / FCC) Joana aplicou todo seu capital, durante 6 meses, em bancos ( e Y). No Banco, ela aplicou 37,5%

Leia mais

ESCOLA SECUNDÁRIA JAIME MONIZ

ESCOLA SECUNDÁRIA JAIME MONIZ ESCOLA SECUNDÁRIA JAIME MONIZ Matemática Aplicada às Ciências Sociais 10º ano 2009/2010 Ficha de trabalho 1: Interpretando dados. Noções básicas de Estatística. Sondagens e amostras. Organizando os dados.

Leia mais

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência Introdução 1 Muito frequentemente fazemos perguntas do tipo se alguma coisa tem relação com outra. Estatisticamente

Leia mais

Estatística 1 - Lista de Exercícios 4-21/06/ Professor José Carlos Fogo

Estatística 1 - Lista de Exercícios 4-21/06/ Professor José Carlos Fogo Estatística 1 - Lista de Exercícios 4-21/06/2016 - Professor José Carlos Fogo 1) A tabela abaixo representa um estudo sobre a participação de famílias na coleta seletiva de lixo. Grau de instrução do chefe

Leia mais

Soluções da Colectânea de Exercícios

Soluções da Colectânea de Exercícios Soluções da Colectânea de Exercícios (Edição de Fevereiro de 2003) Capítulo 1 1.1 d) x = 3.167; s = 0.886 (dados não agrupados) e) mediana = x = 3.25; q 1 = 2.4 ; q 3 = 3.9 1.2 a) x = 2.866 ; x = 3; moda

Leia mais

Ministério da Educação. Nome:... Número:

Ministério da Educação. Nome:... Número: Ministério da Educação Nome:...... Número: Unidade Lectiva de: Introdução às Probabilidades e Estatística Ano Lectivo de 2003/2004 Código1334 Teste Formativo Nº 2 1. Considere que na selecção de trabalhadores

Leia mais

EXAME DE ESTATÍSTICA / ESTATÍSTICA I

EXAME DE ESTATÍSTICA / ESTATÍSTICA I INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE EAME DE ESTATÍSTICA / ESTATÍSTICA I Cursos: Licenciatura em Enfermagem e Licenciaturas Bi-etápicas em Fisioterapia e em Terapia da Fala Época de

Leia mais

2)Para o exercício anterior e usando os limites de controle e estimativas revistas para este processo, determine se este está estável. Justifique.

2)Para o exercício anterior e usando os limites de controle e estimativas revistas para este processo, determine se este está estável. Justifique. ª LISTA DE ESTATÍSTICA (apresentar os cálculos com 4 casas decimais) )Em uma fábrica de produtos de higiene foram medidos os pesos de sabonetes em amostras de tamanho cinco. Supõe-se que o peso dos sabonetes

Leia mais

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO Ana Paula Araujo Correa Eder Queiroz Newton Trevisan DEFINIÇÃO É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis

Leia mais

6 Intervalos de Confiança

6 Intervalos de Confiança 6 Intervalos de Confiança Exercício 6.1 Defina estimação pontual e estimação por intervalos de confiança. Diga qual das duas será melhor, justificando. Exercício 6.2 Sendo X uma variável aleatória com

Leia mais

Matemática Aplicada às Ciências Sociais. Prova Global de Avaliação PROVA NÚMERO 1

Matemática Aplicada às Ciências Sociais. Prova Global de Avaliação PROVA NÚMERO 1 Matemática Aplicada às Ciências Sociais Prova Global de Avaliação PROVA NÚMERO 1 Observação: a prova seguinte é da total responsabilidade dos autores do programa e o GAVE não é modo nenhum responsável

Leia mais

Os testes. Objetivos. O teste Q de Cochran; O teste de Friedman (Análise de variância de duplo fator por postos)

Os testes. Objetivos. O teste Q de Cochran; O teste de Friedman (Análise de variância de duplo fator por postos) Prof. Lorí Viali, Dr. http://www.mat.ufrgs.br/viali/ viali@mat.ufrgs.br Os testes O teste Q de Cochran; O teste de Friedman (Análise de variância de duplo fator por postos) William Gemmell Cochran (1909-1980)

Leia mais

Estatística e Probabilidade. Aula 11 Cap 06

Estatística e Probabilidade. Aula 11 Cap 06 Aula 11 Cap 06 Intervalos de confiança para variância e desvio padrão Confiando no erro... Intervalos de Confiança para variância e desvio padrão Na produção industrial, é necessário controlar o tamanho

Leia mais

Teste Anova. Prof. David Prata Novembro de 2016

Teste Anova. Prof. David Prata Novembro de 2016 Teste Anova Prof. David Prata Novembro de 2016 Tipo de Variável Introduzimos o processo geral de teste de hipótese. É hora de aprender a testar a sua própria hipótese. Você sempre terá que interpretar

Leia mais

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa 2011 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL Dr Sivaldo Leite Correia CONCEITOS E DEFINIÇÕES FUNDAMENTAIS Muitos experimentos são realizados visando

Leia mais

Poder do teste e Tamanho de Amostra

Poder do teste e Tamanho de Amostra Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 24 Poder do teste e Tamanho de Amostra APOIO: Fundação de Ciência

Leia mais

Medidas de associação entre duas variáveis qualitativas

Medidas de associação entre duas variáveis qualitativas Medidas de associação entre duas variáveis qualitativas Hoje vamos analisar duas variáveis qualitativas (categóricas) conjuntamente com o objetivo de verificar se existe alguma relação entre elas. Vamos

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Dualidade. Interpretação Económica.

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Dualidade. Interpretação Económica. Ano lectivo: 2008/2009; Universidade da Beira Interior Departamento de Matemática INVESTIGAÇÃO OPERACIONAL Ficha de exercícios nº3: Dualidade. Interpretação Económica. Cursos: Economia 1. Formule o problema

Leia mais

Prof. Luiz Alexandre Peternelli

Prof. Luiz Alexandre Peternelli Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Medidas de Dispersão ou variabilidade

Medidas de Dispersão ou variabilidade Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou

Leia mais

Probabilidade e Estatística, 2010/2

Probabilidade e Estatística, 2010/2 Probabilidade e Estatística, 2010/2 CCT - UDESC Prof. Fernando Deeke Sasse Testes de Hipóteses para médias 1. A temperatura média da água descartada por uma torre de resfriamento não deve ser maior que

Leia mais

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos:

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: ANÁLISE DOS RESÍDUOS Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: seguem uma distribuição normal; têm média zero; têm variância σ 2 constante

Leia mais

Teste de Hipótese e Intervalo de Confiança

Teste de Hipótese e Intervalo de Confiança Teste de Hipótese e Intervalo de Confiança Suponha que estamos interessados em investigar o tamanho da ruptura em um músculo do ombro... para determinar o tamanho exato da ruptura, é necessário um exame

Leia mais

1. Registou-se o número de assoalhadas de 100 apartamentos vendidos num bairro residencial

1. Registou-se o número de assoalhadas de 100 apartamentos vendidos num bairro residencial Escola Superior de Tecnologia de Viseu Fundamentos de Estatística 2006/2007 Ficha nº 1 1. Registou-se o número de assoalhadas de 100 apartamentos vendidos num bairro residencial 0; 0; 0; 1; 2; 0; 0; 1;

Leia mais

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES. INTRODUÇÃO - Conceito de população desconhecida π e proporção da amostra observada P. π P + pequeno erro Perguntas: - Qual é o pequeno erro?

Leia mais

Aula 6. Testes de Hipóteses Paramétricos (I)

Aula 6. Testes de Hipóteses Paramétricos (I) Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste de Hipóteses Procedimento estatístico que averigua se os dados sustentam

Leia mais

- Testes Qui-quadrado - Aderência e Independência

- Testes Qui-quadrado - Aderência e Independência - Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista

Leia mais

16/6/2014. Teste Qui-quadrado de independência

16/6/2014. Teste Qui-quadrado de independência UNIVERSIDADE FEDERAL DA PARAÍBA TESTES NÃO- PARAMÉTRICOS Parte I Prof. Luiz Medeiros Departamento de Estatística Teste Qui-quadrado de independência Um dos principais objetivos de se construir uma tabela

Leia mais

Capítulo 6 Estatística não-paramétrica

Capítulo 6 Estatística não-paramétrica Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Algumas considerações Slide 2 As secções deste capítulo referem-se

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Distribuição Conjunta Suponha que se queira analisar o comportamento conjunto das variáveis X = Grau de Instrução e Y = Região

Leia mais