Capítulo 2 - BALANÇOS DE MASSA SEM REAÇÃO QUÍMICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Capítulo 2 - BALANÇOS DE MASSA SEM REAÇÃO QUÍMICA"

Transcrição

1 Capítulo 2 - BALANÇOS DE MASSA SEM REAÇÃO QUÍMICA 2.1 O Conceito de Balanço de Massa O Balanço de Massa (BM) é uma restrição imposta pela natureza.! A lei da conservação de massa nos diz que a massa não pode nem ser criada, nem destruída. Logo, não havendo acúmulo de massa no interior de um equipamento, tem-se ao longo de um determinado intervalo de tempo que: massa total na entrada = massa total na saída e i s j equipamento Fazendo o intervalo de tempo tender a zero, ao invés de quantidades de massa passamos a falar em termos de vazões: vazão mássica total que entra = vazão mássica total que sai Reescrevendo em linguagem matemática, tem-se: n i= 1 m e i = s j = 1 j onde e i é a vazão mássica da corrente de entrada identificada pelo índice i e n o número total de correntes de entrada, ou seja, para o processo representado na figura n = 2. Por outro lado, 47

2 s j é a vazão mássica da corrente de saída, identificada pelo índice j, e m é o número de correntes de saída (no processo da figura m=3). Observe que na elaboração de um BM deve-se definir um sistema (volume de controle), que pode ser um processo completo, um equipamento ou um conjunto de equipamentos. As corrente envolvidas no BM são então aquelas que atravessam as fronteiras do sistema (superfície de controle). Assim o BM nada mais é do que um inventário de um determinado material em relação à um sistema definido. O balanço de massa é fundamental para a análise do projeto de um novo processo, bem como de um processo já existente. 2.2 Algumas Definições Importantes Um sistema é classificado em função da ocorrência de transferência de massa através de sua fronteira em: Aberto há transferência de material através da fronteira do sistema; Fechado não há transferência de material através das fronteiras do sistema, durante o intervalo de tempo de interesse. Analogamente, a operação de um processo pode ser classificada como: Operação em Batelada massa não cruza as fronteiras do processo durante o tempo da batelada. O sistema é alimentado e os produtos são retirados de uma só vez, no início e ao final do tempo de processo, respectivamente. Assim, o processo ao longo da batelada se comporta como um sistema fechado. Normalmente, esta estratégia de operação é usada para produzir pequenas quantidades de especialidades químicas, produtos sazonais ou feitos por encomenda; Operação Contínua há, continuamente, a passagem de massa através das fronteiras do processo através das correntes de entrada e de saída. Desta forma o processo se comporta como um sistema aberto. Esta operação é característica de grandes volumes de produção, como ocorre, por exemplo, no refino do petróleo e na indústria petroquímica; Operação Semi-batelada ou Semi-contínua qualquer processo que não é operado nem em batelada e nem contínuo. Um exemplo deste tipo de processo é aquele onde uma 48

3 massa de líquido é alimentada em um reator e gás é borbulhado durante um certo tempo através do líquido. Ao final, a passagem de gás é interrompida e o líquido retirado do reator. Um processo que opera desta forma é o de cloração de benzeno. A operação de um processo também pode ser classificada conforme o comportamento das variáveis ao longo do tempo: Operação em Regime Estacionário os valores das variáveis de processo (T, P, vazões, concentrações etc) não variam com o tempo em qualquer posição fixa; Operação em Regime Transiente os valores das variáveis variam com o tempo em alguma posição fixa do processo. O processo em batelada tem uma natureza tipicamente transiente, enquanto os processos contínuos operaram normalmente em regime estacionário. O comportamento típico de uma variável de processo ao longo do tempo, de acordo com o tipo de operação, é apresentado nas Figuras e processo real contínuo partida parada Figura Comportamento Típico de uma Variável em um Processo Contínuo 49

4 X Figura Comportamento Típico de uma Variável em um Processo em Batelada t 2.3 Equações Relacionadas ao Balanço de Massa De uma forma geral, um processo pode ser representado pelo esquema a seguir: e i s j processo Pensando em termos do balanço de qualquer grandeza em relação às fronteiras do processo, tem-se entradas consumo geração acúmulo saídas 50

5 O balanço, ou inventário, da grandeza em relação à fronteira definida é dado por: onde, {e} - {s} + {g} - {c} = {a} e quantidade da grandeza que entra através da fronteira do sistema s quantidade da grandeza que sai através da fronteira do sistema g quantidade da grandeza gerada no interior do sistema c quantidade da grandeza consumida no interior do sistema a quantidade da grandeza acumulada no interior do sistema Uma forma alternativa de representar o balanço une em uma única parcela os termos ligados à geração e ao consumo. A equação geral do balanço é então escrita na forma: {e} - {s} + {g} = {a} onde agora o termo {g} representa a quantidade da grandeza gerada no interior do sistema, agora admitindo valor negativo quando houver consumo. Um exemplo corriqueiro onde aplicamos este conceito de balanço no dia a dia é uma conta corrente ou conta de poupança em um banco, na qual a grandeza envolvida é o dinheiro. Nos balanços de massa a grandeza envolvida está relacionada com a quantidade de matéria. Os balanços de massa podem ser efetuados em termos globais ou por componente. Quando baseados nos componentes eles podem ser representados em termos de substâncias (moléculas) ou de átomos. Balanços de Massa: Global Por Componente: - substâncias (moléculas) - átomos Note que os termos que representam a geração ou o consumo de massa no interior do sistema são, por definição, nulos quando se trabalha em termos globais. Na ausência de reações nucleares, estes termos também são nulos em balanços atômicos. 51

6 Seja o processo representado a seguir, onde há uma corrente de entrada e uma de saída, e três componente: A B x 1 x 2 x 3 y 1 y 2 y 3 Sendo A a vazão total (global) da corrente de entrada e B a da corrente de saída, as respectivas composições são representadas pelas frações correspondentes, x i e y i, onde o índice i varia de 1 a 3 identificando os componentes (por uma obrigação de compatibilidade, se as vazões são informadas em termos mássicos as frações devem ser mássicas ou se as vazões forem molares as frações também têm que ser molares). Para este processo, pode-se escrever: Balanço de Massa Global: A - B + {g} = {a} Balanço de Massa por Componente: Componente 1: e 1 - s 1 + g 1 = a 1 Componente 2: e 2 - s 2 + g 2 = a 2 Componente 3: e 3 - s 3 + g 3 = a 3 O termo que representa a geração na equação global {g} é nulo quando se trabalha em termos mássicos (massa não é gerada) e pode ser diferente de zero em termos molares quando há reação química no interior do processo. Convém ainda ressaltar que, nas equações dos balanços por componente, as vazões dos componentes (e i e s i ) estão relacionadas com as vazões totais através das relações: e i = x i A ou s i = y i B. Assim, por exemplo, e 1 = x 1 A ou s 2 = y 2 B. Pode-se então escrever as equações dos balanços por componente, alternativamente, da seguinte forma: Componente 1: A.x 1 - B.y 1 + g 1 = a 1 Componente 2: A.x 2 - B.y 2 + g 2 = a 2 Componente 3: A.x 3 - B.y 3 + g 3 = a 3 52

7 Além das equações que representam o balanço de massa, em função da definição das frações que representam a composição de cada corrente, há duas restrições implícitas: Observe que, como x = 1 e y = 1. i x i ni = e n = n i n i ; x i = ni n = n n = 1. onde n i é o número de moles do componente i na corrente e n é o número total de moles na corrente. Isto prova a validade das duas restrições apresentadas. Cabe também ressaltar que o somatório das gerações e dos acúmulos, computados em relação à cada componente ({g i ) e {a i }), é igual ao valor global correspondente: Σ {g i } = {g} e Σ {a i } = {a}. Em sistemas sem reações químicas os termos ligados à geração são identicamente nulos. Por outro lado, em operações em regime estacionário os termos ligados aos acúmulos são nulos, por definição. Assim, não havendo reação química e considerando operação em regime estacionário, tem-se: Balanço de Massa Global: A - B = 0 Balanço de Massa por Componente: Componente 1: A.x 1 - B.y 1 = 0 Componente 2: A.x 2 - B.y 2 = 0 Componente 3: A.x 3 - B.y 3 = 0 Restrições de Composição: x = 1 e y = 1. i i 53

8 Note então que, nesse problema, com 3 componentes e 2 correntes, sem reação e em regime estacionário, são obtidas as seguintes equações: 1 BM global 3 BM por componente 6 equações 2 Restrições de Composição Modelo matemático do processo Sistema de equações algébricas A solução deste modelo, que estabelece relações entre diversas variáveis, permite a determinação de variáveis antes não especificadas. Desta forma é possível completar o conhecimento do conjunto de parâmetros que descrevem a operação do processo e são pertinentes para avaliações econômicas, análise de controle, cálculos de otimização etc. posteriores. Neste capítulo, serão trabalhos problemas sem a presença de reação química. Em relação ao acúmulo, os termos correspondentes são normalmente representados por expressões diferenciais, o que gera equações diferenciais para representar os balanços. Como ainda não temos conhecimento suficiente de Cálculo para resolver este tipo de equação, nos restringiremos neste curso a problemas em regime estacionário, nos quais, por definição, o acúmulo é nulo Análise do Grau de Liberdade em Sistemas de Equações Neste ponto é interessante relembrar que para resolver um sistema de equações é necessário efetuar uma análise da relação entre as quantidades disponíveis de variáveis (Nv) e de equações independentes (Neq). Esta análise pode ser feita através do grau de liberdade do sistema(g), definido da seguinte forma: G = Nv - Neq. 54

9 De acordo com o valor do grau de liberdade, tem-se: Nv = Neq G = 0 solução única Nv > Neq G > 0 solução indeterminada Nv < Neq G < 0 solução impossível A seguir são apresentados alguns exemplos para uma melhor visualização do conceito de grau de liberdade. Exemplos: #1. 2x - 3y = 1 3x - 4y = 4 2 eqs independentes 2 variáveis G = 0 Solução única para x e y. #2. 2x - 3y = 1 4x - 6y = 2 2 eqs. dependentes 1 eq. independente 2 variáveis G = 1. Havendo um grau de liberdade, o sistema tem infinitas soluções localizadas sobre a reta, definida pela equação independente do sistema. Assim, 2x - 3y = 1 Infinitas Soluções - Pares (x,y) localizados sobre a reta definida pela equação. 55

10 y x Note que nesse caso, o problema terá solução única se uma das duas variáveis (x ou y) for especificada. Assim, para x = 2, da equação 2x - 3y = 1, temos que y = 1. Observe que, ao especificar o valor de um número de variáveis igual ao grau de liberdade do sistema, o conjunto de equações passa a ter solução única. #3. 2x - 3y = 1 3x - 4y = 4 -x + y = 5 3 eqs. dependentes 2 variáveis G = - 1 G < 0 O sistema não tem solução possível, ou seja, há a especificação de um número excessivo de variáveis. Voltando ao exemplo do balanço de massa, note que a combinação das equações dos balanços por componente com as restrições de composição das correntes leva à equação do balanço de massa global. Desta forma, no conjunto de equações que forma o modelo matemático do problema há uma equação dependente, ou seja, o número de equações independentes é igual ao número de equações menos um. Assim, temos neste modelo 5 equações independentes, ou seja: Neq = 5. Em relação ao número de variáveis envolvidas, tem-se: Nv = 8 ( A, B, x 1, x 2, x 3, y 1, y 2, y 3 ) G = 3 56

11 ou seja, devemos especificar, pelo menos, três variáveis para que o problema seja bem formulado. O estudo dos Balanços de Massa neste Curso será efetuado através da solução comentada de exemplos ilustrativos. Os novos conceitos que aparecem nestes exemplos são apresentados de forma destacada, antes da discussão do exemplo Procedimento para a Solução de Problemas Envolvendo Balanços de Massa: Antes de partirmos para o nosso estudo de balanços de massa, apresentamos uma seqüência de etapas que devem ser cumpridas na solução de problemas. Na realidade, esta seqüência serve para orientar a resolução de problemas envolvendo balanços, principalmente para alunos iniciantes nesta arte. Cabe ressaltar que ela não representa uma receita que deva ser seguida eternamente e de forma imutável, pois certamente, com o passar do tempo e aumento do número de exercícios resolvidos, você acabará desenvolvendo a sua forma de resolver estes problemas. 1) Definir o processo e conseqüentemente as fronteiras nas quais o balanço será efetuado construção do fluxograma: diagrama do fluxo de massa; 2) Rotular vazões e composições, identificando assim as variáveis pertinentes; 3) Verificar valores conhecidos e desconhecidos: colocar no fluxograma 4) Definir a base de representação das vazões e composições (mássicas ou molares) e unificar as unidades nas quais estão representadas as variáveis conhecidas; 5) Fazer os balanços convenientes, escrevendo as equações correpondentes: equações do modelo - lembre que ao fazer cálculos o conjunto de equações deve conter somente equações independentes 6) Selecionar base de cálculo geralmente, próprio dado do problema. 57

12 Exemplo Ilustrativo 01: 1000 kg/h de uma mistura de benzeno e tolueno, que contém 50% de benzeno em massa, são separados por destilação em 2 frações. A vazão mássica na corrente de topo contém 450 kg/h de benzeno e na corrente de fundo há 475 kg/h de tolueno. Calcule as vazões dos componentes, as vazões totais de cada corrente e as frações mássicas e molares dos componentes nas correntes. Solução: B Y b =450kg/h A kg/h z b = 0,5 B kg/h Y b = 450 kg/h Y t = 25 kg/h z t = 0,5 Z b = 500 kg/h Z t = 500 kg/h C X b, X t = 475kg/h C kg/h X b = 50 kg/h X t = 475 kg/h Base de Cálculo: 1000 kg/h na alimentação Equações: Restrição de Composição na corrente A e definição de fração mássica: z b + z t = 1 0,5 + z t = 1 z t = 0,5 Z b = z b * B z b = 0,5*100 z b = 500 kg/h z t = z t * B z t = 0,5*100 z t = 500 kg/h Balanço de Massa por Componente: e = s 58

13 benzeno: Z b = Y b + X b 500 = X b X b = 50 kg/h tolueno: Z t = Y t + X t 500 = Y t Y t = 25 kg/h Assim: B = Y b + Y t = = 475 kg/h C = X b + X t = = 525 kg/h Verificação, utilizando o Balanço de Massa Global: A = B + C 1000 = OK! Note que esse problema envolve poucas equações, sendo então possível resolvê-lo seqüencialmente. Conhecidas as vazões totais e as vazões por componente em cada corrente é possível, a partir da definição de fração, a determinação das frações mássicas de cada componente (w i ) em cada corrente. Lembrando então que: w mi = massa total i = vazão do componente vazão total i corrente A w b = 0,5 e w t = 0,5 corrente B w b = 0,947 e w t = 0,053 corrente C w b = 0,095 e w t = 0,905 Definidas todas as informações na base mássica, pode-se fazer a mudança de base para a molar facilmente, desde que se defina uma quantidade de referência para os cálculos. Lembre-se que a composição de uma mistura não é função da quantidade total da mistura. Assim, essa quantidade de referência pode ser qualquer uma, podendo ser então escolhida de modo a facilitar as contas. Nas tabelas a seguir são mostradas as passagens da base mássica para a molar em todas as correntes. O valor de referência para os cálculos foi arbitrado igual a vazão total de cada corrente. 59

14 Na corrente A: Composto Vazão mássica (kg/h) Massa molecular Vazão Molar (kmol/h) Fração molar benzeno ,41 0,54 tolueno ,44 0, ,85 Na corrente B: Composto Vazão mássica (kg/h) Massa molecular Vazão Molar (kmol/h) Fração molar benzeno ,77 0,955 tolueno ,27 0, ,04 Na corrente C: Composto Vazão mássica (kg/h) Massa molecular Vazão Molar (kmol/h) Fração molar benzeno ,64 0,11 tolueno ,16 0, , Componente Chave ou de Amarração Componente que aparece em um menor número de correntes. Em função desta característica, a equação do balanço de massa deste componente possui menos termos do que as equações para os demais componentes. Este fato implica, em muitas vezes, no aparecimento de somente uma incógnita do problema na equação relativa ao componente chave, permitindo assim a sua imediata determinação. 60

15 Exemplo Ilustrativo 2: O processo de dessalinização de água salgada pode ser conduzido de diversas formas e pode ser utilizado com dois objetivos: produção de sal (NaCl) e produção de água dessalinizada para posterior utilização pela comunidade. A produção de sal (NaCl) a partir da água do mar envolve a concentração da água salgada até a sua saturação, quando inicia a precipitação do sal, que é então separado. Em função das características climáticas no Brasil, aqui este processo é conduzido utilizando energia solar como fonte de energia para o processo de evaporação da água do mar. O local onde ele é conduzido é chamado de salina, sendo praticamente uma atividade artesanal. A produção de água dessalinizada a partir da água do mar é comum nos países do Oriente Médio, onde os recursos hídricos são escassos e há grande disponibilidade de combustíveis fósseis. Com este objetivo, a água do mar é evaporada formando duas correntes: uma de água salgada (salmora), com uma concentração de sal acima da água do mar alimentada, que é retornada ao mar; e outra de vapor livre do sal, que é posteriormente condensado formando a corrente de água dessalinizada. Um esquema simplificado desse processo é mostrado na figura a seguir: Água do Mar Processo de Dessalinização Água Dessalinizada Salmora Considere que a fração mássica de sal na água do mar seja igual a 0,035. Determine a quantidade de água do mar necessária para produzir lb/h de água dessalinizada. Em função de problemas relacionados à corrosão dos equipamentos envolvidos no processo, a fração mássica na salmora descartada está limitada a 0,07. Esquema, com as informações fornecidas: Água do Mar H2Om =? xs = 0,035 xa =? Processo de Dessalinização Salmora H2Os =? ys = 0,07 ya =? Água Dessalinizada H2Od = 1000 lb/ za = 1,0 zs = 0,0 61

16 Balanço de Informações: Solução: Número de incógnitas: 04 Equações: 02 restrições (correntes de água do mar e de salmora); 02 equações do balanço de massa por componente; 01 equação do balanço de massa global; - 01 em função da dependência linear entre as equações de balanço dos componentes e a global; Equações independentes: 04 Grau de liberdade na formulação: G = Ni - Ne = 4-4 = 0 # As frações mássicas restantes são facilmente determinadas através das restrições: Na corrente de água do mar: x a + x s = 1,0 x a + 0,035 = 1,0 x a = 0,965 Na corrente de salmora: y a + y s = 1,0 y a + 0,07 = 1,0 y a = 0,93 # Quantidade necessária de água do mar: Identificando o sal como componente chave neste problemas, temos para o seu balanço de massa: x s. H2Om = y s. H2Os 0,035 H2Om = 0,07 H2Os (1) Do balanço global: H2Om = H2Os + H2Od H2Om = H2Os (2) Resolvendo o sistema formado por (1) e (2): H2Om = lb/h H2Os = lb/h. Observações: i) A equação restante do balanço de massa, não utilizada em função da dependência linear, pode ser empregada para verificar os resultados obtidos: Em relação à água: x a. H2Om = y a. H2Os + z a. H2Od 0,965 x 2000 = 0,93 x x =

17 ii) Apesar da simplicidade destes resultados, eles representam o ponto de partida para o dimensionamento dos equipamentos do processo (evaporadores, condensadores, bombas, etc.) e das tubulações, e permitem ainda uma avaliação preliminar dos custos envolvidos no empreendimento. iii) Apesar de não ter sido especificado, o resultado está baseado na produção de lb/h de água dessalinizada. Este dado é chamado de base de cálculo no procedimento de solução. Exemplo Ilustrativo 3: Um experimento sobre a taxa de crescimento de certos micro-organismos requer que se estabeleça um ambiente de ar úmido enriquecido em oxigênio. Três correntes são alimentadas em um evaporador para produzir a corrente com a composição desejada. As três correntes de entrada são: i) Água líquida, alimentada na vazão de 20 cm 3 /min; ii) Ar (21% de O 2 e 79% de N 2, em base molar); iii) Oxigênio puro, com vazão molar igual a (1/5) da vazão do ar. A corrente de saída, no estado gasoso, apresenta 1,5% de H 2 O, em base molar. Calcule as vazões de ar, de oxigênio puro e de produto, bem como a composição do produto. Dados complementares: Densidade da água líquida: ρ = 1 g/cm 3 ; Massa molar da água: M a = 18 g/mol. Esquema, com as informações fornecidas: 20 cm3/min = W mol/min H2O líq. Ar; Q mol/min 0,21 de O2 0,79 de N2 Evaporador Produto; P mol/min 0,015 de H2O x de O2 y de N2 O2 puro; A mol/min Como as unidades dos dados fornecidos não são compatíveis, nesta etapa de sua organização é importante providenciar a sua homogeneização. Isto feito, não há necessidade de preocupação com unidades ao longo dos cálculos e já se sabe qual a unidade dos resultados obtidos. 63

18 Concentrações: Frações molares; Vazões: Vazões molares, em mol/min. Assim, falta representar a vazão da corrente de água líquida em mol/min: W = 20 cm 3 min g cm ρ 3 1 M a mol g = 1,11 mol / min Balanço de Informações: Número de incógnitas: 05 Equações: 01 restrição (corrente de produto); 03 equações do balanço de massa por componente; 01 equação do balanço de massa global; - 01 em função da dependência linear entre as equações de balanço dos componentes e a global; Equações independentes: 04 Grau de liberdade na formulação: G = Ni - Ne = 5-4 = 1 Este grau de liberdade é especificado através da retrição adicional que indica que a vazão de oxigênio puro é (1/5) da vazão de ar. Solução: Este problema envolve balanços de massa em regime estacionário, sem a presença de reação química. desta forma: Balanço global: W + Q + A = P (1) Balanços por componentes: H 2 O: W = 0,015 P (2) N 2 : 0,79 Q = y P (3) Restrição: x + y + 0,015 = 1 (4) Restrição adicional: A = 0,2 Q (5) A equação representativa do balanço de massa do componente O 2 fica para ser utilizada para verificar o resultado. Resolvendo o sistema formado pelas eqs. (1) a (5): P = 74 mol/min; Q = 60,74 mol/min; A = 12,15 mol/min; 64

19 y = 0,65; x = 0,335. Observação: i) Na solução foram utilizadas as equações representativas dos balanços dos componentes H 2 O e N 2, pois eles aparecem em um menor número de correntes. Exemplo Ilustrativo 4: Encontra-se disponível em uma planta de processo uma vazão de mol/h de uma mistura com a seguinte composição: Componentes Identificação % molar Propano A 20 i-butano B 30 i-pentano C 20 n-pentano D 30 Esta mistura deve ser separada em duas frações por destilação. O destilado (corrente de topo) deve conter todo o propano alimentado e 80% do i-pentano, enquanto a fração molar de i-butano deve ser igual a 0,4 nesta corrente. A corrente de fundo deve conter todo o n-pentano alimentado. Com base nas informações fornecidas, calcule o resto das variáveis do processo. Esquema, com as informações fornecidas: Destilado; D =? C Alimentação O F = 1000 mol/h L U za = 0,2 ; Fa = 200 mol N A A/h zb = 0,3 ; Fb = 300 mol B/h zc = 0,2 ; Fc = 200 mol C/h zd = 0,3 ; Fd = 300 mol D/h xa =? ; Da = 200 mol A/h xb = 0,4 ; Db =? xc =? ; Dc = Fc x 0,8 = 1 xd =? ; Dd =? Corrente de Fundo; B =? ya =? ; Ba =? mol A/h yb =? yc =? ; Bb =? ; Bc =? mol B/h mol C yd =? ; Bd = 300 mol D/h 65

20 Não há necessidade de ajuste de unidades. As vazões e as frações estão todas em base molar. A Base de Cálculo é tomada como mol/h de alimentação. A representação das vazões dos componentes é utilizada em função das informações fornecidas. Balanço de Informações: Como as vazões dos componentes são variáveis diretamente relacionadas às vazões globais e às frações molares, F a = F. x a elas são dependêntes destas duas e não há necessidade de envolvê-las na solução do problema. Desta forma, Número de incógnitas: 09 (vazões globais e frações molares); Equações: 02 restrições (destilado e corrente de fundo); 04 equações do balanço de massa por componente; 01 equação do balanço de massa global; - 01 em função da dependência linear entre as equações de balanço dos componentes e a global; Equações independentes: 06 Grau de liberdade na formulação: G = Ni - Ne = 9-6 = 3 Estes graus de liberdade são amarrados através das imposições de que 80% do isobutano e 100% do propano alimentados saiam na corrente de destilado, assim como a totalidade do n-pentano alimentado deva sair pelo fundo. Estas três imposições têm como consequências, respectivamente: x c D = F c. 0,8 x c D = 200 x 0,8 = 160 mol C/h ; F a = D a B a = 0 y a = 0 ; F d = B d D d = 0 x d = 0. Solução: Como a operação é em regime estacionário e não há reação química: Balanço global: F = B + D 1000 = B + D ; (1) Balanços por componentes: A: F a = x a D + y a B 200 = x a D ; (2) 66

21 B: F b = x b D + y b B 300 = 0,4 D + y b B; (3) D: F d = x d D + y d B 300 = y d B ; (4) Restrições: x a + x b + x c + x d = 1 x a + 0,4 + x c = 1 ; (5) y a + y b + y c + y d = 1 y b + y c + y d = 1 ; (6) Restrição adicional: x c D = 160 ; (7) O sistema acima somente apresenta sete equações, pois as duas restrições que implicam em y a = x d = 0 já estão levadas em conta na definição das expressões. Como de costume, uma das equações representativas dos balanços de massa dos componentes é deixada de lado e pode ser utilizada na verificação do resultado obtido. Resolvendo o sistema formado pelas Eqs. (1) a (7): B = 400 mol/h ; D = 600 mol/h ; x a = 0,33 ; x c = 0,27 ; y b = 0,15 ; y c = 0,1 ; y d = 0,75. Observação: O sistema da forma que está escrito é não-linear. Esta característica contribui para tornar mais complicada a sua solução. Sempre que possível, deve-se procurar formular o modelo utilizando-se equações lineares, pois há métodos sistemáticos e simples para a solução de seus sistemas. A utilização das vazões por componente neste exemplo, como feito no Exemplo Ilustrativo 1, permite a representação do modelo matemático através de um sistema de equações lineares. Nesta abordagem, as frações são substituídas pelas respectivas vazões dos componentes. Como já visto, a relação entre estas variáveis é: A = A i x i, onde A é a vazão total da corrente, A i a vazão do componente na corrente e x i a fração do componente na corrente. Note também que, neste enfoque utilizando as vazões por componentes, as restrições de composição das correntes são escritas na forma: A = A i. 67

22 Desafio: Reescreva o modelo matemático para esta coluna utilizando as vazões por componente, obtendo assim um sistema de equações lineares. Escreva este sistema na forma matricial e resolva-o utilizando cálculo matricial. Dicas/Lembretes: Seja o sistema linear m x n: a a a m1 x x 1 x a a 12 a 22 x... + m2 x 2 2 x a a 1n 2n a x mn Com m = n ele é chamado normal e pode ser escrito na forma matricial: n x n x = n = b = 1 b 2 b m a a... a n1 a a a n a1n a 2n... a nn x1 x 2... x n b1 b 2 =... b n A X = B A matriz A é chamada matriz do sistema. Quando ela tem determinante diferente de zero o sistema tem solução única. Para ordens acima de três, o determinante pode ser determinado pela expressão (Teorema de Laplace): det m m ( A) = aij. Aij = i = 1 j = 1 a ij. A ij Na equação acima, quando o somatório é feito em i (linhas) o valor de j (colunas) deve ser mantido constante e no intervalo 1 j m. Quando ele é feito em j, i é que deve ser mantido constante e 1 i m. Os A ij são os cofatores dos elementos a ij, determinados por: A ij = ( -1) i + j D ij onde D ij são os determinantes das matrizes obtidas ao se retirar a linha i e a coluna j da matriz A. D ij é denominado menor complementar do elemento a ij. Sabendo calcular determinantes, a solução do sistema linear pode ser obtida, por exemplo, utilizando o Teorema de Cramer. Esse teorema dita que a solução de um sistema 68

23 linear normal (representado por uma matriz quadrada A com determinante diferente de zero) é dado por: x i = det A j det (A) na qual A j é a matriz obtida a partir da matriz A com a substituição da coluna i pela coluna dos termos independentes (B) Escalonamento de um Processo Quando as informações sobre o balanço de massa são coerentes, diz-se que elas estão balanceadas ou que o processo encontra-se balanceado. Suponha que 1 kg de benzeno se misture com 1 kg de tolueno, formando uma corrente com 2 kg de mistura com 50% de benzeno e 50% de tolueno, em base mássica, conforme mostrado na figura: 1 kg de benzeno 2 kg de mistura 50% de benzeno 50% de tolueno 1 kg de tolueno Note que a massa de todas as correntes pode ser multiplicada por uma mesmo fator e o processo continua balanceado. O mesmo não é verdade para a composição, que se mantém constante. Como a mudança das unidades que representam a quantidade em cada corrente é feita por uma fator de correção constante, a troca nominal de todas as unidades representativas das quantidades ou vazões de cada corrente também mantém o processo balanceado. Estas características podem ser observadas nas figuras a seguir: 69

24 300 kg de benzeno (x 300) 600 kg de mistura 50% de benzeno 50% de tolueno 300 kg de tolueno 1 lbm/h de benzeno 2 lbm/h de mistura 50% de benzeno 50% de tolueno 1 lbm/h de tolueno Este procedimento de multiplicar todos as correntes de massa por um fator, mantendo a composição constante, é chamado de escalonamento (ou extrapolação) e o fator utilizado é chamado de fator de escala. Em base molar este procedimento somente pode ser aplicado na ausência de reação química. Exemplo Ilustrativo 5: Deseja-se verificar se é economicamente viável um processo para separar mol/h de uma mistura, 60% em benzeno e 40% em tolueno, em base molar. Sabe-se que, para haver lucro, deve-se obter uma quantidade mínima de 540 mol/h de benzeno em uma corrente com 95% de benzeno, em base molar. Em laboratório, 1 mol desta mistura é separada em duas correntes, com características mostrada na figura. Este processo de separação é um processo físico, não havendo reação química entre os compostos nele envolvidos. 70

25 0,5 mol 1 mol 0,6 em benzeno 0,4 em tolueno 0,95 em benzeno 0,05 em tolueno 0,5 mol 0,375 mol de tolueno 0,125 mol de benzeno Solução: Apesar das informações estarem em base molar, como não há reação química no processo, ele pode ser escalonado diretamente com a utilização de um fator de escala. Com um fator de escala igual a ((1200 mol/h)/(1 mol)), obtém-se: 600 mol/h 1200 mol/h 0,6 em benzeno 0,4 em tolueno 0,95 em benzeno 0,05 em tolueno 600 mol/h 0,375 mol de tolueno 0,125 mol de benzeno Na corrente de topo a concentração de benzeno satisfaz a exigência imposta. A quantidade de benzeno nesta corrente é igual a: 600 x 0,95 = 570 mol/h > 540 mol/h. Assim, o processo será econômico. Observação Importante: Agindo desta forma pode parecer que o escalonamento de processos na prática é muito simples. Não é realidade! Esta situação de somente utilizar um fator de escala no escalonamento (ou extrapolação) considera condições ideais, nas quais todas as condições geométricas, cinemáticas e dinâmicas são fielmente reproduzidas nas diferentes escalas. Na prática, esta reprodução de condições nas diversas escalas é praticamente impossível, e a extrapolação de escala é um dos grandes desafios a serem enfrentados. 71

26 Exemplo Ilustrativo 6: Uma mistura dos compostos A e B, 60% e 40% em base molar, respectivamente, é separada em duas frações. Em uma operação em batelada, são os seguintes os resultados obtidos: 50 mol 100 mol 0,6 em A 0,4 em B 0,95 mol A/mol 0,05 mol B/mol 12,5 mol de A 37,5 mol de B Deseja-se obter a mesma separação em uma operação contínua, com uma alimentação da solução de A e B original a uma vazão de lbmol/h. Esboce o fluxograma do processo contínuo. Solução: As informações solicitadas podem ser obtidas diretamente a partir dos dados da operação em batelada através da utilização do seguinte fator de escala(fe): 1250 lbmol / h FE = = 12, mol lbmol / h mol Assim, obtém-se: 625 lbmol/h 1250 lbmol/h 0,6 em A 0,4 em B 0,95 lbmol A/lbmol 0,05 lbmol B/lbmol 156 lbmol de A/h 469 lbmol de B/h Note que no processo de escalonamento as composições não se alteram. 72

27 Exemplo Ilustrativo 7: Uma solução aquosa de hidróxido de sódio contém 20% em massa de NaOH. Desejase produzir uma solução de NaOH, 8% em massa, através da diluição da corrente a 20% utilizando-se uma corrente de água pura. Com base nas informações fornecidas: i) Calcule as razões (g de H 2 O/g de solução a 20%) e (g de solução produto/g de solução a 20%); ii) Determine as vazões de solução a 20% e de água pura necessárias à produção de 2310 lb m /min de solução a 8%. Esquema, com as informações fornecidas: Adotando como base de cálculo 100g de solução a 20% alimentada no processo: 100 g de solução 0,2 NaOH 0,8 H2O solução produto 0,08 NaOH 0,92 H2O água pura; Q1(g) Balanço de Informações: Número de incógnitas: 02 Equações: 02 equações do balanço de massa por componente; 01 equação do balanço de massa global; - 01 em função da dependência linear entre as equações de balanço dos componentes e a global; Equações independentes: 02 Solução: Note que o NaOH é um componente de amarração neste problema. Assim, o seu balanço de massa fornece: 0,2 x 100 = 0,08 Q2 Q2 = 250 g 73

28 Do balanço de massa global: Q1 = 250 Q1 = 150 g Com as variáveis todas determinadas, pode-se calcular as razões solicitadas, utilizando-se a base de cálculo adotada: g H2O pura 150 R 1 = = = g de solução 20% 100 1,5 g de solução produzida 250 R 2 = = = g de solução 20% 100 2,5 Para determinar as quantidades nas alimentações para a produção de 2310 lb m de solução/min utiliza-se um fator de escala convenientemente definido: FE = 2310 lb m de produto/min 250 g = lb 9,24 m /min g Assim, as correntes na alimentação para a produção desejada serão: # solução a 20%: 100 x 9,24 = 924 lb m /min; # água pura: 150 x 9,24 = 1386 lb m /min. Exemplo Ilustrativo 8: Uma corrente de ar úmido entra em um condensador, no interior do qual 95% do vapor d'água é condensado, formando uma corrente com uma vazão de 225 l/h de água líquida. Calcule a vazão da corrente de gás que deixa o condensador e a sua composição, expressandoa em frações molares. O ar seco pode ser considerado formado por 21% de O 2 e 79% de N 2, em base molar ou volumétrica, e a mistura alimentada no condensador pode ser considerada um gás ideal a uma pressão total de 1 atm abs e 35 C. 74

29 Esquema, com as informações fornecidas: ar úmido CONDENSADOR com n1 (mol/h de ar seco) tem-se 0,21.n1 de O2 0,79.n1 de N2 água n2 (mol/h de H2O) gás n4 (mol/h de O2) n5 (mol/h de N2) n6 (mol/h de H2O 225 l/h => n3 = mol/h (95% da H2O presente na car A única vazão fornecida encontra-se em litros/hora enquanto as informações sobre composições estão em base molar. Por simplicidade, define-se trabalhar na base molar e então, a unidade de trabalho para as vazões pode ser mol/h. Assim, antes de qualquer procedimento, deve-se passar a vazão da corrente de água fornecida para a unidade de trabalho: n3 = 225 ρ H2O 1 M H2O A densidade e a massa molar da água são, respectivamente, 1 g/cm 3 = 1000 g/l e 18 g/mol. Substituindo os valores na expressão, obtém-se: n3 = mol/h. Em função do número de incógnitas no problema, a opção por trabalhar com base nas vazões de componentes nas correntes evita o aparecimento das não linearidades que ocorrem ao se trabalhar com as frações dos componentes sem que se conheça todas as vazões, como já comentado em exemplos anteriores. Desta forma, o sistema de equações originário do balanço de massa será linear. Balanço de Informações: Número de incógnitas: 05 (n 1, n 2, n 4, n 5, n 6 ) Equações: 03 equações do balanço de massa por componente; 01 restrição especial(95% da água da carga em n3) Equações independentes: 04 Note que neste equacionamento, como não estão sendo utilizadas as vazões globais das correntes, o uso das restrições de composição é descartado. Por exemplo, a restrição de composição na corrente de gás que sai do condensador: 75

30 n( gás) = 6 n i i= 4, representa uma equação independente, mas também adiciona ao problema mais uma incógnita, n(gás). Da forma que está colocado, este problema tem grau de liberdade igual a 1. Assim, há a necessidade da especificação de mais uma restrição para que se tenha uma solução única. Um parâmetro que pode ser medido e então especificado é a umidade relativa da corrente de ar úmido alimentada no condensador. A umidade relativa, definida como a razão entre a pressão parcial do vapor d'água presente no ar e a pressão parcial do vapor d'água que satura a mistura nas mesmas condições de pressão total e temperatura, é um parâmetro largamente utilizado para indicar o grau de umidade (concentração de água) no ar úmido. A pressão de vapor d'água que satura a mistura é chamada de pressão de saturação. Quando a pressão parcial do vapor d'água atinge uma valor igual ao da pressão de saturação há a sua condensação. Para uma determinada temperatura, a pressão de saturação da água (pressão de vapor) é obtida por uma expressão na forma (Equação de Antoine): sat ( ) ln P B = A C+ T (8.1) Para a água, com P sat [=] mmhg e T [=] K, as constantes da equação de Antoine, para 284 T 441 K são: A = 18,3036; B = 3816,44 e C = - 46,13 (Himmelblau). Com base no exposto, pode-se então especificar a umidade relativa da corrente de alimentação igual a 80%. Utilizando a Eq.(8.1), obtém-se que a pressão de saturação do vapor d'água a 35 C é de P sat = 41,67 mmhg. Então, a partir da definição da umidade relativa, a pressão parcial do vapor d'água na corrente de alimentação é igual a UR P Psat = H2O H2O ( T) T x 100 ( ) PH2O 80 = x 100 ; 41,67 P H2O = 33,34 mmhg. Como a mistura tem comportamento de gás ideal, pode-se escrever diretamente: n n P = H O P H2O 2 total total n2 n1 + n2 = 33,34 mmhg 760 mmhg 76

31 n 2 = 0,042 n1 (8.2) A Eq.(8.2) é a representação matemática da restrição imposta pela especificação de 80% para a umidade relativa na corrente de alimentação. Solução: Em função da organização dada aos dados anteriormente, são utilizados para a solução os balanços por componente, além das restrições impostas. Desta forma: Balanços por componentes: H 2 O: n2 = n6 (8.3) N 2 : 0,79 n1 = n5 (8.4) O 2 : 0,21 n1 = n6 (8.5) Restrições: i) n3 = 0,95 n2 (8.6) ii) n2 = 0,042 n1 (8.2) Resolvendo o sistema linear, formado pelas Eqs. (8.2) a (8.6), obtém-se: n1 = n2 = n4 = n5 = n6 = Desafio Computacional: As condições ambientes podem apresentar variação sensíveis ao longo do ano, e mesmo durante um único dia. Considerando que o condensador continue operando nas mesmas condições, analise o comportamento da composição da corrente de gás na saída se a umidade relativa do ar alimentado variar de 50% a 100%. Represente graficamente os resultados obtidos Alguns Equipamentos Típicos da Indústria de Processos Nos processos químicos há um grande número de equipamentos que operam com base em diversos conceitos físicos e físico-químicos. A seguir são apresentados alguns equipamentos mais comuns, nos quais o balanço de massa fornece informações importantes Divisor de Corrente: Não é propriamente um equipamento. Representa um ponto na tubulação onde há divisão da vazão de uma corrente (à montante do divisor) em duas ou mais correntes (à 77

32 jusante do divisor). Como não ocorre nenhum processo físico ou químico neste ponto, a composição das novas correntes é igual a da corrente à montante do divisor. No caso de haver divisão em duas correntes, a distribuição da vazão entre as correntes à jusante do divisor é descrita por um fator α, que pode ser definido na forma: F F F F 2 & = α = 1 α com 0 α 1 As vazões F i são especificadas na Figura O valor de α é definido pelo controle operacional da planta, ou seja, um agente externo especifica o seu valor. A relação desse valor com os parâmetros operacionais serão estudos em Mecânica dos Fluidos Ponto de Mistura: Ponto onde há a simples união (mistura) de duas ou mais correntes. Como não ocorre nenhum processo físico ou químico neste ponto, a vazão e a composição da corrente à jusante do ponto de mistura são determinadas pelo balanço de massa no ponto de mistura. Na Figura é apresentado um esquema de um ponto de mistura com duas correntes à montante. F2; xi F1; xi D F3; xi Região à montante do divisor (D) Região à jusante divisor ( Figura Divisor de Corrente com a Formação de Duas Correntes à Jusante 78

33 F1; xi M F3; wi F2; yi Região à montante do misturador (M) Região à jusante misturador ( Figura Ponto de Mistura de Duas Correntes Do balanço de massa global no ponto da Figura : F 1 + F 2 = F 3. Do balanço de massa por componente, para o componente i: x i F 1 + y i F 2 = w i F Tambor de Flash Tambor mantido em condições de temperatura e/ou de pressão diferentes da temperatura e/ou da pressão da corrente nele alimentada. Esta diferença de condições operacionais é imposta com o objetivo de vaporizar parcialmente a corrente de entrada, que normalmente encontra-se no estado líquido, separando-a em duas correntes: uma vapor e outra líquida. A causa principal desta vaporização parcial neste equipamento é uma despressurização, ou seja, a pressão na corrente que entre no tambor é maior do que a pressão no seu interior. Assim, o fluido ao entrar no Tambor de Flash passa por uma "expansão". Nesta vaporização parcial, os componentes não vaporizam nas mesmas proporções em que estão presentes no líquido. Os componentes mais voláteis têm uma maior tendência para vaporizar, causando em situações onde o processo de mudança de fase não é completo uma maior concentração dos componentes mais voláteis na fase vapor e dos menos voláteis na fase líquida. Este fato pode ser observado na Figura X.1, onde é mostrado um processo envolvendo 79

34 uma corrente (F), no estado líquido, formada de iguais quantidades molares de etano e butano. Os resultados na Figura X.1 deixam claro que se o Flash for utilizado com objetivo de separação, ele somente é efetivo se a vaporização for parcial, situação na qual as concentrações das correntes de saída são diferentes da concentração da corrente original. Após a expansão, no interior do tambor de flash há um processo físico de equilíbrio entre as fases vapor e líquida, formadas e mantidas em contato no seu interior. Sabe-se da prática, que sempre que duas fases distintas são colocadas em contato elas tendem a entrar em equilíbrio. Esta condição de equilíbrio dita algumas relações entre as variáveis que descrevem os estados das fases presentes. mais tarde, no curso de Termodinâmica, você irá estudar este fenômeno com mais detalhes. No momento, o que nos interessa é saber que as composições das fases que deixam o tambor de flash devem obedecer uma relação de equilíbrio, que pode ser representada da forma mais simples pela expressão: y i = K i x i, (3.1) onde y i é a fração molar do componente i na fase vapor, que forma a corrente V; x i é a fração molar do componente i na fase líquida, que forma a corrente L; e K i é uma constante de equilíbrio, com valores distintos para cada componente i. F 0,5 C2H6 0,5 C4H10 V L 0,8 C2H6 0,2 C4H10 0,3 C2H6 0,7 C4H10 Tambor de Flash Vaporização Parcial F 0,5 C2H6 0,5 C4H10 V 0,5 C2H6 0,5 C4H10 L = 0 Tambor de Flash Vaporização Total Figura X.1 - Processo de Flash 80

35 Mais tarde, nos seus estudos de Termodinâmica, você verá como os valores de K i na Eq.(3.1) podem ser previstos a partir das variáveis que definem o sistema(pressão, temperatura e composições). Formas mais gerais para representar esta relação de equilíbrio serão estudas naquela ocasião, bem como serão mostrados critérios que permitirão uma previsão da "capacidade" do Tambor de Flash realizar uma certa separação desejada. Com estes conhecimentos mais avançados, você ainda será capaz de prever quais deverão ser a temperatura e a pressão no interior do tambor para uma determinada separação especificada. Na Figura X.2 são mostradas as variáveis relevantes para o balanço de massa em um Tambor de Flash. Se considerarmos as constantes de equilíbrio K i conhecidas e um processo envolvendo n componentes, um balanço de informações indica que: Número de incógnitas: 3n + 3 Equações: n equações do balanço de massa por componente; 01 equação do balanço de massa global; 03 restrições em relações as composições; n relações de equilíbrio (Eq. (3.1)); - 01 em função da dependência linear entre as equações de balanço dos componentes e a global; Equações independentes: 2n + 3 Graus de Liberdade: (3n + 1) (2n + 1) = n V F zi yi L xi Figura X.2: Tambor de Flash 81

36 Alguns problemas na Engenharia Química recebem nomes especiais não só pela freqüência em que elas aparecem mais também pela sua importância no projeto e análise de equipamentos e de processos químicos. Um exemplo é o chamado problema de simulação. A nível de equipamento, um problema é dito de simulação quando são fornecidos todas as variáveis que especificam o estado das correntes de entrada e as que especificam as condições operacionais no interior do equipamento, e deve-se calcular as variáveis que definem o estado das correntes de saída. A simulação de um Tanque de Flash é exemplificada na Figura X.3. Neste caso, a composição (z i ) da corrente de entrada, com n componentes, é conhecida, bem como a sua vazão global. As condições operacionais no interior do equipamento ditam os valores dos K i, que também são considerados conhecidos. Do balanço das informações disponíveis: Número de incógnitas: 2n + 2 Equações: n equações do balanço de massa por componente; 01 equação do balanço de massa global; 02 restrições em relações as composições; n relações de equilíbrio (Eq. (3.1)); - 01 em função da dependência linear entre as equações de balanço dos componentes e a global; Equações independentes: 2n + 2 ; podemos verificar que o problema de simulação apresenta grau de liberdade igual a zero, ou seja, tem resposta única. V =? F zi Ki yi = L =? xi =? Figura X.3 - Problema de Simulação de um Tanque de Flash 82

37 Colunas de Destilação Como observado anteriormente, a separação completa de uma mistura é muito difícil em um único tambor de flash. Uma possibilidade então é colocar um conjunto de tambores em série. Assim, são obtidas melhores separações. Esta idéia de vários flashes em série é utilizada nas colunas de destilação. Estas colunas são equipamentos nos quais podemos considerar a presença de diversas regiões, independentes e ligadas em série, de contato líquido-vapor, que funcionam como vários flashes. Em sua operação, via de regra, é alimentada uma corrente de uma mistura líquida em sua lateral e em seu interior há uma corrente gasosa, rica nos elementos mais voláteis, escoando na direção ascendente, e uma corrente líquida, rica nos componente menos voláteis, escoando na direção descendente. Em sua parte superior (topo da coluna) é retirada esta corrente gasosa e resfriada em um condensador (equipamento onde há condensação de vapores). Parte do condensado formado sai como produto de topo e a parte complementar é retornada a coluna para dar início a corrente líquida que escoa no sentido descendente. Na base da coluna ocorre o inverso, ou seja, parte do líquido que chega é retirado como produto de fundo e a outra parte passa através de um equipamento que fornece calor (este equipamento tem o nome especial de refervedor), vaporizando este líquido, que é então realimentado na coluna, dando origem a corrente de vapor ascendente. Desta forma, tendo como objetivo somente o balanço de massa, uma coluna de destilação é muito parecida com o tambor de flash: há uma corrente de alimentação e duas de saída: (i) uma no topo, rica nos componentes não voláteis e (ii) uma no fundo, rica nos componentes não voláteis. Como esta distribuição de componentes nas correntes ocorre, não é mais função de uma única relação de equilíbrio. Você, ao longo do curso de Operações Unitárias vai aprender como utilizar as relações de equilíbrio no projeto das colunas de destilação. Neste primeiro curso, ao lidarmos com colunas de destilação, nos restringiremos a utilização de equações diretamente ligadas aos balanços de massa. 83

38 Na figura X.4 é mostrado um esquema básico de uma coluna de destilação e as principais correntes envolvidas. Produt o de topo Alimentaçã o Produto de fundo Figura X.4 Esquema Básico de uma Coluna de Destilação Extratores O extrator é um equipamento onde uma corrente, normalmente pura, chamada de solvente, é colocada em contato com uma mistura com objetivo de retirar, preferencialmente, um dos componentes desta mistura. São então formadas duas correntes: uma formada por uma solução envolvendo o solvente e as substâncias extraídas, chamada de extrato, e outra composta do material restante da mistura original, chamada de rafinado. Um exemplo clássico de extração ocorre na preparação do café. A mistura original é representada pelo pó de café e a água quente desempenha o papel de solvente. Está água quente entra em contato com o pó do café, retirando preferencialmente substâncias que conferem o sabor e aroma ao líquido obtido, que é o extrato. O pó restante, agora sem as substâncias de interesse, representa o rafinado. 84

39 Solução Solvent e Extrato r Decantado r Extrat o Rafinad o Figura X.5 Esquema Básico de um Extrator, formado por um etapa de Extração propriamente dita e uma Etapa de Separação 2.7 Balanços Envolvendo Múltiplas Unidades Na prática os processo têm várias unidades e é importante em uma primeira análise obter a vazão e principais parâmetros das correntes que unem estes equipamentos. Assim, uma análise preliminar do tamanho dos equipamentos e, consequentemente, de seu desempenho e custo pode ser efetuada. Esse tipo de análise é importante em uma primeira estimativa da viabilidade econômica do processo. Foi visto que balanços são efetuados em volumes de controle, que são arbitrariamente definidos em função da conveniência dos cálculos a serem efetuados.. Então, em um problema envolvendo vários equipamentos, a diferença para os problemas com um único equipamento é a possibilidade de definição de diversos volumes de controle e assim de diversos conjuntos de equações. Seja o exemplo da Figura 2.7.1, onde há um ponto de mistura, um divisor de correntes e dois equipamentos. As correntes A 1, A 2 e A 3 são correntes de entrada no processo; e as correntes P 1, P 2 e P 3 são correntes de saída. Um volume de controle envolvendo todo o 85

107484 Controle de Processos Aula: Balanço de massa

107484 Controle de Processos Aula: Balanço de massa 107484 Controle de Processos Aula: Balanço de massa Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2015 E. S. Tognetti (UnB) Controle de processos

Leia mais

Curso de Farmácia. Operações Unitárias em Indústria Prof.a: Msd Érica Muniz 6 /7 Período DESTILAÇÃO

Curso de Farmácia. Operações Unitárias em Indústria Prof.a: Msd Érica Muniz 6 /7 Período DESTILAÇÃO Curso de Farmácia Operações Unitárias em Indústria Prof.a: Msd Érica Muniz 6 /7 Período DESTILAÇÃO 1 Introdução A destilação como opção de um processo unitário de separação, vem sendo utilizado pela humanidade

Leia mais

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 4. SISTEMAS LINEARES 4.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

Módulo VII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Princípio de Conservação da Massa. Regime Permanente.

Módulo VII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Princípio de Conservação da Massa. Regime Permanente. Módulo VII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Princípio de Conservação da Massa. Regime Permanente. Conservação da Massa A massa, assim como a energia, é uma propriedade que se conserva,

Leia mais

Funcionamento de uma Torre de Resfriamento de Água

Funcionamento de uma Torre de Resfriamento de Água Funcionamento de uma Torre de Resfriamento de Água Giorgia Francine Cortinovis (EPUSP) Tah Wun Song (EPUSP) 1) Introdução Em muitos processos, há necessidade de remover carga térmica de um dado sistema

Leia mais

Autor: Artur Franceschini Richter UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA

Autor: Artur Franceschini Richter UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG07053 - TRABALHO DE DIPLOMAÇÃO EM ENGENHARIA QUÍMICA Comparativo de Simulações Estacionárias de Colunas

Leia mais

CAPÍTULO 4 - BALANÇOS MATERIAIS. Existem dois tipos fundamentais de entidade em termodinâmica, estados de um sistema, e os processos de um sistema.

CAPÍTULO 4 - BALANÇOS MATERIAIS. Existem dois tipos fundamentais de entidade em termodinâmica, estados de um sistema, e os processos de um sistema. Existem dois tipos fundamentais de entidade em termodinâmica, estados de um sistema, e os processos de um sistema. Sempre que duas ou mais propriedades de um sistema variam, diz-se que ocorreu um processo.

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

Operações Unitárias II

Operações Unitárias II UNIVERSIDADE FEDERAL DO PARANÁ Operações Unitárias II Evaporação Professor Paul Fernand Milcent Monitora Patrícia Carrano Moreira Pereira 2013 Sumário 1. Introdução... 2 1.1. Fontes de energia... 2 1.2.

Leia mais

CAPITULO 1 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS 1.1 CIÊNCIAS TÉRMICAS

CAPITULO 1 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS 1.1 CIÊNCIAS TÉRMICAS CAPITULO 1 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS 1.1 CIÊNCIAS TÉRMICAS Este curso se restringirá às discussões dos princípios básicos das ciências térmicas, que são normalmente constituídas pela termodinâmica,

Leia mais

EQUILÍBRIO QUÍMICO 1

EQUILÍBRIO QUÍMICO 1 EQUILÍBRIO QUÍMICO 1 1- Introdução Uma reação química é composta de duas partes separadas por uma flecha, a qual indica o sentido da reação. As espécies químicas denominadas como reagentes ficam à esquerda

Leia mais

Exemplo 1: As Indústrias Químicas SA tem como um de seus produtos principais o 3- vinil- 1,5- hexadieno que é processado em um tanque com agitação

Exemplo 1: As Indústrias Químicas SA tem como um de seus produtos principais o 3- vinil- 1,5- hexadieno que é processado em um tanque com agitação Exemplo 1: As Indústrias Químicas SA tem como um de seus produtos principais o 3- vinil- 1,5- hexadieno que é processado em um tanque com agitação que funciona com cargas intermitentes. Você é convidado

Leia mais

Cinética Química Aplicada (LOQ 4003)

Cinética Química Aplicada (LOQ 4003) - Universidade de São Paulo - Escola de Engenharia de Lorena Cinética Química Aplicada (LOQ 4003) 1º semestre de 2014 Prof. Dr. João Paulo Alves Silva jpalves80@usp.br Aula anterior Equação de Velocidade

Leia mais

CAPÍTULO 4 - BALANÇOS MATERIAIS.

CAPÍTULO 4 - BALANÇOS MATERIAIS. 4.3 Procedimentos para os Cálculos de Balanços Materiais. O primeiro passo em cálculos é o de entender o problema. (I) Desenhe um diagrama do processo, mostrando todas as informações relevantes. Escolha

Leia mais

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Curso: Engenharia Mecânica Disciplina : Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Prof. Evandro Rodrigo Dário, Dr. Eng. Vazão mássica e vazão volumétrica A quantidade de massa que

Leia mais

2 Comportamento Termodinâmico de Fluidos no Reservatório

2 Comportamento Termodinâmico de Fluidos no Reservatório Comportamento Termodinâmico de Fluidos no Reservatório 39 2 Comportamento Termodinâmico de Fluidos no Reservatório 2.1 Introdução Apresenta-se neste capítulo uma breve análise dos princípios básicos do

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

3.2 Equilíbrio de Fases Vapor - Líquida - Sólida numa Substância Pura Consideremos como sistema a água contida no conjunto êmbolo - cilindro abaixo:

3.2 Equilíbrio de Fases Vapor - Líquida - Sólida numa Substância Pura Consideremos como sistema a água contida no conjunto êmbolo - cilindro abaixo: - Resumo do Capítulo 0 de Termodinâmica: Capítulo - PROPRIEDADES DE UMA SUBSTÂNCIA PURA Nós consideramos, no capítulo anterior, três propriedades familiares de uma substância: volume específico, pressão

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

BOLETIM de ENGENHARIA Nº 001/15

BOLETIM de ENGENHARIA Nº 001/15 BOLETIM de ENGENHARIA Nº 001/15 Este boletim de engenharia busca apresentar informações importantes para conhecimento de SISTEMAS de RECUPERAÇÃO de ENERGIA TÉRMICA - ENERGY RECOVERY aplicados a CENTRAIS

Leia mais

Fase Identifica um estado uniforme de

Fase Identifica um estado uniforme de DIAGRAMAS DE FASES Definições Fase Identifica um estado uniforme de matéria, não só no que se refere à composição química, mas também no que se refere ao estado físico. Número de fases numa mistura P 1

Leia mais

A Matéria Química Geral

A Matéria Química Geral Química Geral A Matéria Tudo o que ocupa lugar no espaço e tem massa. A matéria nem sempre é visível Noções Preliminares Prof. Patrícia Andrade Mestre em Agricultura Tropical Massa, Inércia e Peso Massa:

Leia mais

OBJETIVOS: CARGA HORÁRIA MÍNIMA CRONOGRAMA:

OBJETIVOS: CARGA HORÁRIA MÍNIMA CRONOGRAMA: ESTUDO DIRIGIDO COMPONENTE CURRICULAR: Controle de Processos e Instrumentação PROFESSOR: Dorival Rosa Brito ESTUDO DIRIGIDO: Métodos de Determinação de Parâmetros de Processos APRESENTAÇÃO: O rápido desenvolvimento

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

TERMODINÂMICA CONCEITOS FUNDAMENTAIS. Sistema termodinâmico: Demarcamos um sistema termodinâmico em. Universidade Santa Cecília Santos / SP

TERMODINÂMICA CONCEITOS FUNDAMENTAIS. Sistema termodinâmico: Demarcamos um sistema termodinâmico em. Universidade Santa Cecília Santos / SP CONCEITOS FUNDAMENTAIS Sistema termodinâmico: Demarcamos um sistema termodinâmico em Universidade função do que Santa desejamos Cecília Santos estudar / SP termodinamicamente. Tudo que se situa fora do

Leia mais

Termodinâmica Química: Lista 1: Gases. Resolução comentada de exercícios selecionados

Termodinâmica Química: Lista 1: Gases. Resolução comentada de exercícios selecionados Termodinâmica Química: Lista 1: Gases. Resolução comentada de exercícios selecionados Prof. Fabrício R. Sensato Semestre 4º Engenharia: Materiais Período: Matutino/diurno Regimes: Normal/DP Agosto, 2005

Leia mais

Concentração física de minerais

Concentração física de minerais Concentração física de minerais 2. Definição de concentração e balanço de massa Prof. Dr. André Carlos Silva CONCENTRAÇÃO A concentração de minérios ocorre quando é preciso separar os minerais de interesse

Leia mais

14 COMBUSTÍVEIS E TEMPERATURA DE CHAMA

14 COMBUSTÍVEIS E TEMPERATURA DE CHAMA 14 COMBUSTÍVEIS E TEMPERATURA DE CHAMA O calor gerado pela reação de combustão é muito usado industrialmente. Entre inúmeros empregos podemos citar três aplicações mais importantes e frequentes: = Geração

Leia mais

Matéria: Química Assunto: Materiais Prof. Gilberto Ramos

Matéria: Química Assunto: Materiais Prof. Gilberto Ramos Matéria: Química Assunto: Materiais Prof. Gilberto Ramos Química Materiais, suas propriedades e usos Estados Físicos Estado vem do latim status (posição,situação, condição,modo de estar). O estado físico

Leia mais

Módulo VIII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Regime Permanente, Dispositivos de Engenharia com Escoamento e Regime Transiente.

Módulo VIII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Regime Permanente, Dispositivos de Engenharia com Escoamento e Regime Transiente. Módulo VIII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Regime Permanente, Dispositivos de Engenharia com Escoamento e Regime Transiente. Bocais e Difusores São normalmente utilizados em motores

Leia mais

CURSO ONLINE RACIOCÍNIO LÓGICO

CURSO ONLINE RACIOCÍNIO LÓGICO AULA QUINZE: Matrizes & Determinantes (Parte II) Olá, amigos! Pedimos desculpas por não ter sido possível apresentarmos esta aula na semana passada. Motivos de força maior nos impediram de fazê-lo, mas

Leia mais

Aluno (a): Professor:

Aluno (a): Professor: 3º BIM P1 LISTA DE EXERCÍCIOS CIÊNCIAS 6º ANO Aluno (a): Professor: Turma: Turno: Data: / / Unidade: ( ) Asa Norte ( ) Águas Lindas ( )Ceilândia ( ) Gama ( )Guará ( ) Pistão Norte ( ) Recanto das Emas

Leia mais

Coletânea de Exercícios Operações Unitárias V FAT 04-07959 Prof. Alexandre Rodrigues Tôrres artorres.uerj@gmail.com

Coletânea de Exercícios Operações Unitárias V FAT 04-07959 Prof. Alexandre Rodrigues Tôrres artorres.uerj@gmail.com Universidade do Estado do Rio de Janeiro Faculdade de Tecnologia - DEQA Curso de Engenharia de Produção Coletânea de Exercícios Operações Unitárias V FAT 04-07959 Prof. Alexandre Rodrigues Tôrres artorres.uerj@gmail.com

Leia mais

Se um sistema troca energia com a vizinhança por trabalho e por calor, então a variação da sua energia interna é dada por:

Se um sistema troca energia com a vizinhança por trabalho e por calor, então a variação da sua energia interna é dada por: Primeira Lei da Termodinâmica A energia interna U de um sistema é a soma das energias cinéticas e das energias potenciais de todas as partículas que formam esse sistema e, como tal, é uma propriedade do

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

USP EEL - Escola de Engenharia de Lorena Reatores Aula 1 Introdução a Engenharia de Reatores

USP EEL - Escola de Engenharia de Lorena Reatores Aula 1 Introdução a Engenharia de Reatores 1 - Introdução A cinética química e o projeto de reatores estão no coração de quase todos os produtos químicos industriais. É, principalmente, o conhecimento da cinética química e o projeto do reator que

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

Ajuste dos Parâmetros de um Controlador PI em uma Coluna de Destilação Binária

Ajuste dos Parâmetros de um Controlador PI em uma Coluna de Destilação Binária Ajuste dos Parâmetros de um Controlador PI em uma Coluna de Destilação Binária Marina Roberto Martins 1*, Fernando Palú 1 (1) Universidade Estadual do Oeste do Paraná, Curso de Engenharia Química. e-mail:

Leia mais

Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES

Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES Formulação A programação linear lida com problemas nos quais uma função objectivo linear deve ser optimizada (maximizada ou minimizada)

Leia mais

4.2 Modelação da estrutura interna

4.2 Modelação da estrutura interna 4.2 Modelação da estrutura interna AST434: C4-25/83 Para calcular a estrutura interna de uma estrela como o Sol é necessário descrever como o gás que o compõe se comporta. Assim, determinar a estrutura

Leia mais

8 PRESSÃO DE VAPOR, SATURAÇÃO, CONDENSAÇÃO E VÁCUO

8 PRESSÃO DE VAPOR, SATURAÇÃO, CONDENSAÇÃO E VÁCUO 8 PRESSÃO DE VAPOR, SATURAÇÃO, CONDENSAÇÃO E VÁCUO Um gás que existe abaixo de sua temperatura crítica é normalmente chamado de VAPOR, porque pode condensar. SE O VAPOR E O LÍQUIDO DE UM COMPONENTE PURO

Leia mais

Pesquisa Operacional Programação em Redes

Pesquisa Operacional Programação em Redes Pesquisa Operacional Programação em Redes Profa. Alessandra Martins Coelho outubro/2013 Modelagem em redes: Facilitar a visualização e a compreensão das características do sistema Problema de programação

Leia mais

Quando juntamos duas espécies químicas diferentes e, não houver reação química entre elas, isto é, não houver formação de nova(s) espécie(s), teremos

Quando juntamos duas espécies químicas diferentes e, não houver reação química entre elas, isto é, não houver formação de nova(s) espécie(s), teremos SOLUÇÕES Quando juntamos duas espécies químicas diferentes e, não houver reação química entre elas, isto é, não houver formação de nova(s) espécie(s), teremos uma MISTURA Quando na mistura tiver apenas

Leia mais

MODELAGEM COM EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM E APLICAÇÕES À ECONOMIA

MODELAGEM COM EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM E APLICAÇÕES À ECONOMIA MODELAGEM COM EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM E APLICAÇÕES À ECONOMIA PAULO, João Pedro Antunes de Universidade Estadual de Goiás UnU de Iporá jpadepaula@hotmail.com RESUMO Esta pesquisa foi feita

Leia mais

AVALIAÇÃO DE POLÍTICAS DE OPERAÇÃO DE COLUNAS DE DESTILAÇÃO EM BATELADA

AVALIAÇÃO DE POLÍTICAS DE OPERAÇÃO DE COLUNAS DE DESTILAÇÃO EM BATELADA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA TRABALHO DE DIPLOMAÇÃO EM ENGENHARIA QUÍMICA AVALIAÇÃO DE POLÍTICAS DE OPERAÇÃO DE COLUNAS DE DESTILAÇÃO

Leia mais

Módulo VIII Princípios da Psicrometria. Bulbo Seco e Úmido. Cartas Psicrométricas.

Módulo VIII Princípios da Psicrometria. Bulbo Seco e Úmido. Cartas Psicrométricas. Módulo VIII Princípios da Psicrometria. Bulbo Seco e Úmido. Cartas Psicrométricas. Ar Úmido Ar úmido significa uma mistura de ar seco (substância pura) mais vapor d água. É assumida que essa mistura comporta-se

Leia mais

PROF. KELTON WADSON OLIMPÍADA 8º SÉRIE ASSUNTO: TRANSFORMAÇÕES DE ESTADOS DA MATÉRIA.

PROF. KELTON WADSON OLIMPÍADA 8º SÉRIE ASSUNTO: TRANSFORMAÇÕES DE ESTADOS DA MATÉRIA. PROF. KELTON WADSON OLIMPÍADA 8º SÉRIE ASSUNTO: TRANSFORMAÇÕES DE ESTADOS DA MATÉRIA. 1)Considere os seguintes dados obtidos sobre propriedades de amostras de alguns materiais. Com respeito a estes materiais,

Leia mais

Balanço de Massa e Energia Aula 4

Balanço de Massa e Energia Aula 4 Gases e Vapores Na maioria das pressões e temperaturas, uma substância pura no equilíbrio existe inteiramente como um sólido, um líquido ou um gás. Contudo, em certas temperaturas e pressões, duas ou mesmo

Leia mais

PROPRIEDADES DA MATÉRIA

PROPRIEDADES DA MATÉRIA Profª Msc.Anna Carolina A. Ribeiro PROPRIEDADES DA MATÉRIA RELEMBRANDO Matéria é tudo que tem massa e ocupa lugar no espaço. Não existe vida nem manutenção da vida sem matéria. Corpo- Trata-se de uma porção

Leia mais

CQ049 : FQ IV - Eletroquímica. CQ049 FQ Eletroquímica. prof. Dr. Marcio Vidotti LEAP Laboratório de Eletroquímica e Polímeros mvidotti@ufpr.

CQ049 : FQ IV - Eletroquímica. CQ049 FQ Eletroquímica. prof. Dr. Marcio Vidotti LEAP Laboratório de Eletroquímica e Polímeros mvidotti@ufpr. CQ049 FQ Eletroquímica prof. Dr. Marcio Vidotti LEAP Laboratório de Eletroquímica e Polímeros mvidotti@ufpr.br 1 a estrutura I-S (água) ion central moléculas de água orientadas interações ion - dipolo

Leia mais

O interesse da Química é analisar as...

O interesse da Química é analisar as... O interesse da Química é analisar as... PROPRIEDADES CONSTITUINTES SUBSTÂNCIAS E MATERIAIS TRANSFORMAÇÕES ESTADOS FÍSICOS DOS MATERIAIS Os materiais podem se apresentar na natureza em 3 estados físicos

Leia mais

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA CAPÍTULO 1 AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA Talvez o conceito físico mais intuitivo que carregamos conosco, seja a noção do que é uma força. Muito embora, formalmente, seja algo bastante complicado

Leia mais

Unidade III FINANÇAS EM PROJETO DE TI. Prof. Fernando Rodrigues

Unidade III FINANÇAS EM PROJETO DE TI. Prof. Fernando Rodrigues Unidade III FINANÇAS EM PROJETO DE TI Prof. Fernando Rodrigues Quando se trabalha com projetos, é necessária a utilização de técnicas e ferramentas que nos auxiliem a estudálos, entendê-los e controlá-los.

Leia mais

Preparação e padronização de uma solução 0,10 mol/l de ácido clorídrico

Preparação e padronização de uma solução 0,10 mol/l de ácido clorídrico Universidade Estadual de Goiás UnUCET - Anápolis Química Industrial Química Experimental II Preparação e padronização de uma solução 0,10 mol/l de ácido clorídrico Alunos: Bruno Ramos; Wendel Thiago; Thales

Leia mais

11.1 EQUAÇÃO GERAL DOS BALANÇOS DE ENERGIA. Acúmulo = Entrada Saída + Geração Consumo. Acúmulo = acúmulo de energia dentro do sistema

11.1 EQUAÇÃO GERAL DOS BALANÇOS DE ENERGIA. Acúmulo = Entrada Saída + Geração Consumo. Acúmulo = acúmulo de energia dentro do sistema 11 BALANÇOS DE ENERGIA EM PROCESSOS FÍSICOS E QUÍMICOS Para utilizar adequadamente a energia nos processos é preciso que sejam entendidos os princípios básicos envolvidos na geração, utilização e transformação

Leia mais

METEOROLOGIA OBSERVACIONAL I UMIDADE DO AR. Ar úmido CONCEITO DE AR SECO, AR ÚMIDO E AR SATURADO

METEOROLOGIA OBSERVACIONAL I UMIDADE DO AR. Ar úmido CONCEITO DE AR SECO, AR ÚMIDO E AR SATURADO METEOROLOGIA OBSERVACIONAL I UMIDADE DO AR COMET Professor: Ar úmido A água está presente em certo grau em toda atmosfera em três estados: sólido, líquido e gasoso. O estado gasoso, ou vapor de água atmosférico

Leia mais

PROCESSOS DE SEPARAÇÃO I

PROCESSOS DE SEPARAÇÃO I UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA PROCESSOS DE SEPARAÇÃO I OPERAÇÕES POR ESTÁGIOS ABSORÇÃO I PROFESSOR: DR. ROMILDO BRITO CAMPINA

Leia mais

Linguagem da Termodinâmica

Linguagem da Termodinâmica Linguagem da Termodinâmica Termodinâmica N A = 6,022 10 23 Ramo da Física que estuda sistemas que contêm um grande nº de partículas constituintes (átomos, moléculas, iões,...), a partir da observação das

Leia mais

Práticas de Físico Química QB75B. Experimento 7

Práticas de Físico Química QB75B. Experimento 7 1 PR UNIVERSIDADE TECNOLÓGICA EDERAL DO PARANÁ MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA EDERAL DO PARANÁ - UTPR DEPARTAMENTO ACADÊMICO DE QUÍMICA E BIOLOGIA BACHARELADO EM QUÍMICA Práticas de ísico

Leia mais

TERMODINÂMICA EXERCÍCIOS RESOLVIDOS E TABELAS DE VAPOR

TERMODINÂMICA EXERCÍCIOS RESOLVIDOS E TABELAS DE VAPOR TERMODINÂMICA EXERCÍCIOS RESOLVIDOS E TABELAS DE VAPOR Prof. Humberto A. Machado Departamento de Mecânica e Energia DME Faculdade de Tecnologia de Resende - FAT Universidade do Estado do Rio de Janeiro

Leia mais

Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos

Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos Prof. Daniel Coutinho coutinho@das.ufsc.br Departamento de Automação e Sistemas DAS Universidade Federal de Santa Catarina UFSC DAS 5101

Leia mais

Processos em Engenharia: Sistemas com Reação Química

Processos em Engenharia: Sistemas com Reação Química Processos em Engenharia: Sistemas com Reação Química Prof. Daniel Coutinho coutinho@das.ufsc.br Departamento de Automação e Sistemas DAS Universidade Federal de Santa Catarina UFSC DAS 5101 - Aula 12 p.1/37

Leia mais

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO Luciano Pereira Magalhães - 8º - noite lpmag@hotmail.com Orientador: Prof Gustavo Campos Menezes Banca Examinadora: Prof Reinaldo Sá Fortes, Prof Eduardo

Leia mais

As Propriedades das Misturas (Aulas 18 a 21)

As Propriedades das Misturas (Aulas 18 a 21) As Propriedades das Misturas (Aulas 18 a 21) I Introdução Em Química, solução é o nome dado a dispersões cujo tamanho das moléculas dispersas é menor que 1 nanometro (10 Angstrons). A solução ainda pode

Leia mais

4ª aula Compressores (complemento) e Sistemas de Tratamento do Ar Comprimido

4ª aula Compressores (complemento) e Sistemas de Tratamento do Ar Comprimido 4ª aula Compressores (complemento) e Sistemas de Tratamento do Ar Comprimido 3ª Aula - complemento - Como especificar um compressor corretamente Ao se estabelecer o tamanho e nº de compressores, deve se

Leia mais

Estequiometria. Prof a. Dr a. Flaviana Tavares Vieira

Estequiometria. Prof a. Dr a. Flaviana Tavares Vieira Universidade Federal dos Vales do Jequitinhonha e Mucuri Bacharelado em Ciência e Tecnologia Diamantina - MG Estequiometria Prof a. Dr a. Flaviana Tavares Vieira -A palavra estequiometria deriva das palavras

Leia mais

Lista de Exercícios 4 Indústrias Químicas Resolução pelo Monitor: Rodrigo Papai de Souza

Lista de Exercícios 4 Indústrias Químicas Resolução pelo Monitor: Rodrigo Papai de Souza Lista de Exercícios 4 Indústrias Químicas Resolução pelo Monitor: Rodrigo Papai de Souza 1) a-) Calcular a solubilidade do BaSO 4 em uma solução 0,01 M de Na 2 SO 4 Dissolução do Na 2 SO 4 : Dado: BaSO

Leia mais

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Método Simple.. Solução eata para os modelos de Programação Linear O modelo de Programação Linear (PL) reduz um sistema real a um conjunto

Leia mais

Propriedades de uma Substância Pura

Propriedades de uma Substância Pura Propriedades de uma Substância Pura A substância pura Composição química invariável e homogênea. Pode existir em mais de uma fase, porém sua composição química é a mesma em todas as fases. Equilíbrio Vapor-líquido-sólido

Leia mais

CAPÍTULO 7 PSICROMETRIA. - Dimensionamento de sistemas de acondicionamento térmico para animais e plantas

CAPÍTULO 7 PSICROMETRIA. - Dimensionamento de sistemas de acondicionamento térmico para animais e plantas CAPÍTULO 7 PSICROMETRIA 1. Introdução a) Quantificação do vapor d água na atmosfera. b) Importância da quantificação da umidade atmosférica: - Dimensionamento de sistemas de acondicionamento térmico para

Leia mais

Soluções integrais. Há cinco degraus para se alcançar a sabedoria: calar, ouvir, lembrar, agir, estudar. Anônimo. Soluções do Capítulo 1

Soluções integrais. Há cinco degraus para se alcançar a sabedoria: calar, ouvir, lembrar, agir, estudar. Anônimo. Soluções do Capítulo 1 Soluções integrais Há cinco degraus para se alcançar a sabedoria: calar, ouvir, lembrar, agir, estudar. Anônimo Soluções do Capítulo 1 Basta somar os valores, lembrando que seta para baixo indica valor

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Termodinâmica Química Lista 2: 1 a Lei da Termodinâmica. Resolução comentada de exercícios selecionados

Termodinâmica Química Lista 2: 1 a Lei da Termodinâmica. Resolução comentada de exercícios selecionados Termodinâmica Química Lista 2: 1 a Lei da Termodinâmica. Resolução comentada de exercícios selecionados Prof. Fabrício R. Sensato Semestre 4º Engenharia: Materiais Período: Matutino/diurno Regimes: Normal/DP

Leia mais

COLÉGIO SANTA TERESINHA R. Madre Beatriz 135 centro Tel. (33) 3341-1244 www.colegiosantateresinha.com.br

COLÉGIO SANTA TERESINHA R. Madre Beatriz 135 centro Tel. (33) 3341-1244 www.colegiosantateresinha.com.br PLANEJAMENTO DE AÇÕES DA 2 ª ETAPA 2015 PERÍODO DA ETAPA: 01/09/2015 á 04/12/2015 TURMA: 9º Ano EF II DISCIPLINA: CIÊNCIAS / QUÍMICA 1- S QUE SERÃO TRABALHADOS DURANTE A ETAPA : Interações elétricas e

Leia mais

Fig.: Esquema de montagem do experimento.

Fig.: Esquema de montagem do experimento. Título do Experimento: Tratamento de água por Evaporação 5 Conceitos: Mudanças de fases Materiais: Pote de plástico de 500 ml ou 1L; Filme PVC; Pote pequeno de vidro; Atilho (Borracha de dinheiro); Água

Leia mais

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia ENG 1403 Circuitos Elétricos e Eletrônicos Resposta Transitória de Circuitos com Elementos Armazenadores de Energia Guilherme P. Temporão 1. Introdução Nas últimas duas aulas, vimos como circuitos com

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04

ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04 ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 15 Sumário Trabalho e EP Energia potencial Forças conservativas Calculando

Leia mais

Sólidos, líquidos e gases

Sólidos, líquidos e gases Mudanças de fase Sólidos, líquidos e gases Estado sólido Neste estado, os átomos da substâncias se encontram muito próximos uns dos outros e ligados por forças eletromagnéticas relativamente grandes. Eles

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 04. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 04. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 04 Prof. Dr. Marco Antonio Leonel Caetano Guia de Estudo para Aula 04 Aplicação de Produto Escalar - Interpretação do produto escalar

Leia mais

TEMA 4 VAPOR DE ÁGUA, NÚVENS, PRECIPITAÇÃO E O CICLO HIDROLÓGICO

TEMA 4 VAPOR DE ÁGUA, NÚVENS, PRECIPITAÇÃO E O CICLO HIDROLÓGICO TEMA 4 VAPOR DE ÁGUA, NÚVENS, PRECIPITAÇÃO E O CICLO HIDROLÓGICO 4.1 O Processo da Evaporação Para se entender como se processa a evaporação é interessante fazer um exercício mental, imaginando o processo

Leia mais

ESTEQUIOMETRIA. Prof. João Neto

ESTEQUIOMETRIA. Prof. João Neto ESTEQUIOMETRIA Prof. João Neto 1 Lei de Lavoisier Leis Ponderais Lei de Dalton Lei de Proust 2 Fórmula molecular Fórmula mínima Tipos de Fórmulas Fórmula eletrônica ou de Lewis Fórmula Centesimal Fórmula

Leia mais

ESCOLA SECUNDÁRIA DR. SOLANO DE ABREU ABRANTES TURMA: I ANO: 12º ANO LETIVO 2011/2012 ATIVIDADES ESTRATÉGIAS. Diagnose da turma. Trabalho individual

ESCOLA SECUNDÁRIA DR. SOLANO DE ABREU ABRANTES TURMA: I ANO: 12º ANO LETIVO 2011/2012 ATIVIDADES ESTRATÉGIAS. Diagnose da turma. Trabalho individual ESCOLA SECUNDÁRIA DR. SOLANO DE ABREU ABRANTES Curso Profissional de Técnico de Higiene e Segurança do Trabalho e Ambiente DISCIPLINA: FÌSICA E QUÌMICA TURMA: I ANO: 12º ANO LETIVO 2011/2012 COMPETÊNCIAS

Leia mais

Diagramas de Fase. Objetivos:

Diagramas de Fase. Objetivos: 1 Diagramas de Fase Objetivos: Interpretar diagramas de fases de substâncias puras Deslocamento da fronteira entre as fases Interpretar diagramas de fases de compostos Diagramas de misturas líquidas Diagramas

Leia mais

Representação de Modelos Dinâmicos em Espaço de Estados Graus de Liberdade para Controle

Representação de Modelos Dinâmicos em Espaço de Estados Graus de Liberdade para Controle Representação de Modelos Dinâmicos em Espaço de Estados Graus de Liberdade para Controle Espaço de Estados (CP1 www.professores.deq.ufscar.br/ronaldo/cp1 DEQ/UFSCar 1 / 69 Roteiro 1 Modelo Não-Linear Modelo

Leia mais

Módulo VII Mistura de Gases Ideais. Relações p-v-t. Entalpia, Energia Interna, Entropia e Calores Específicos. Sistemas com Misturas.

Módulo VII Mistura de Gases Ideais. Relações p-v-t. Entalpia, Energia Interna, Entropia e Calores Específicos. Sistemas com Misturas. Módulo VII Mistura de Gases Ideais. Relações p-v-t. Entalpia, Energia Interna, Entropia e Calores Específicos. Sistemas com Misturas. Composição de uma Mistura de Gases A especificação do estado de uma

Leia mais

Material Condutividade térmica (Kcal/s)/(m. C) Cobre 9,2.10-2

Material Condutividade térmica (Kcal/s)/(m. C) Cobre 9,2.10-2 7 TRANSFERÊNCIA DE CALOR O calor é a forma de energia que se propaga de uma região a uma temperatura mais alta para outra região de temperatura mais baixa. A energia transferida pelo fluxo de calor não

Leia mais

Equações do primeiro grau

Equações do primeiro grau Módulo 1 Unidade 3 Equações do primeiro grau Para início de conversa... Você tem um telefone celular ou conhece alguém que tenha? Você sabia que o telefone celular é um dos meios de comunicação que mais

Leia mais

A Matéria e Diagrama de Fases. Profº André Montillo www.montillo.com.br

A Matéria e Diagrama de Fases. Profº André Montillo www.montillo.com.br A Matéria e Diagrama de Fases Profº André Montillo www.montillo.com.br Substância: É a combinação de átomos de elementos diferentes em uma proporção de um número inteiro. O átomo não é criado e não é destruído,

Leia mais

Separação de Misturas

Separação de Misturas 1. Introdução Separação de Misturas As misturas são comuns em nosso dia a dia. Como exemplo temos: as bebidas, os combustíveis, e a própria terra em que pisamos. Poucos materiais são encontrados puros.

Leia mais

EM34F Termodinâmica A

EM34F Termodinâmica A EM34F Termodinâmica A Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br Propriedades 2 Fase e Substância Pura Fase: refere-se a uma quantidade de matéria que é homogênea como um todo, tanto em composição

Leia mais

Reações a altas temperaturas. Diagrama de Equilíbrio

Reações a altas temperaturas. Diagrama de Equilíbrio Reações a altas temperaturas Diagrama de Equilíbrio Propriedades de um corpo cerâmico Determinadas pelas propriedades de cada fase presente e pelo modo com que essas fases (incluindo a porosidade) estão

Leia mais

Transformações físicas de substâncias puras Aula 1

Transformações físicas de substâncias puras Aula 1 Transformações físicas de substâncias puras Aula 1 Físico-Química 2 Termodinâmica Química 2 Profa. Claudia de Figueiredo Braga Diagramas de Fases Diagramas de fases: Uma das formas mais compactas de exibir

Leia mais

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 9 (pág. 102) AD TM TC. Aula 10 (pág. 102) AD TM TC. Aula 11 (pág.

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 9 (pág. 102) AD TM TC. Aula 10 (pág. 102) AD TM TC. Aula 11 (pág. Física Setor B Prof.: Índice-controle de Estudo Aula 9 (pág. 102) AD TM TC Aula 10 (pág. 102) AD TM TC Aula 11 (pág. 104) AD TM TC Aula 12 (pág. 106) AD TM TC Aula 13 (pág. 107) AD TM TC Aula 14 (pág.

Leia mais

FÍSICA 3 Circuitos Elétricos em Corrente Contínua. Circuitos Elétricos em Corrente Contínua

FÍSICA 3 Circuitos Elétricos em Corrente Contínua. Circuitos Elétricos em Corrente Contínua FÍSICA 3 Circuitos Elétricos em Corrente Contínua Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba EMENTA Carga Elétrica Campo Elétrico Lei de Gauss Potencial Elétrico Capacitância Corrente e resistência

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares

Leia mais

SEPARAÇÃO DE MISTURAS Exercícios

SEPARAÇÃO DE MISTURAS Exercícios SEI Ensina - MILITAR Química SEPARAÇÃO DE MISTURAS Exercícios 1.A água potável é um recurso natural considerado escasso em diversas regiões do nosso planeta. Mesmo em locais onde a água é relativamente

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

Matriz - Prova de recuperação modular- Cursos profissionais Física e Química- Módulo Q3- Reações Químicas Duração da Prova: 90 min (prova escrita)

Matriz - Prova de recuperação modular- Cursos profissionais Física e Química- Módulo Q3- Reações Químicas Duração da Prova: 90 min (prova escrita) Matriz - Prova de recuperação modular- Cursos profissionais Física e Química- Módulo Q3- Reações Químicas Duração da Prova: 90 min (prova escrita) O presente documento divulga informação relativa à prova

Leia mais

Objetivos: Construção de tabelas e gráficos, escalas especiais para construção de gráficos e ajuste de curvas à dados experimentais.

Objetivos: Construção de tabelas e gráficos, escalas especiais para construção de gráficos e ajuste de curvas à dados experimentais. 7aula Janeiro de 2012 CONSTRUÇÃO DE GRÁFICOS I: Papel Milimetrado Objetivos: Construção de tabelas e gráficos, escalas especiais para construção de gráficos e ajuste de curvas à dados experimentais. 7.1

Leia mais