Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 20 - Backpropagation

Tamanho: px
Começar a partir da página:

Download "Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 20 - Backpropagation"

Transcrição

1 Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 20 - Backroagation

2 Introdução Redes de uma camada resolvem aenas roblemas linearmente searáveis Solução: utilizar mais de uma camada Camada 1: uma rede Percetron ara cada gruo de entradas linearmente searáveis Camada 2: uma rede combina as saídas das redes da rimeira camada, roduzindo a classificação final

3 Introdução

4 Introdução Treinamento da Rede Treinar a rede indeendentemente Saber como dividir o roblema em subroblemas Nem semre é ossível Treinar toda a rede Qual o erro dos neurônios da camada intermediária? Qual função de ativação?

5 Introdução Função de ativação linear Cada camada comuta uma função linear Comosição de funções lineares é uma função linear Semre vai existir uma rede com uma camada equivalente a uma rede multicamadas com funções de ativação lineares

6 Introdução Função de ativação ara redes multicamadas (MLP) Não devem ser todas lineares Exemlos de função não lineares Função sigmóide logística Função tangente hierbólica Etc...

7 Rede Multi-Layer Percetron A rede MLP é a arquitetura de RNA mais utilizada Possuem uma ou mais camadas intermediárias de nós Geralmente utiliza função de ativação sigmóide logística

8 Arendizagem em uma RNA Arendizagem Processo de Arendizagem Algoritmos de Arendizagem Paradígmas de Arendizagem Arendizado or correção de Erro Arendizado cometitivo Arendizado Hebbiano Arendizado Suervisionado Arendizado or Reforço Arendizado Não - Suervisionado Arendizado de Boltzman

9 Treinamento de redes MLP Grande variedade de Algoritmos Geralmente suervisionados Estáticos Não alteram a estrutura da rede Backroagation, Função de Base Redial (RBF) Construtivos Alteram estrutura da rede Ustar, Cascade Correlation

10 Treinamento de Redes MLP Treinamento estático MLP s com formatos e tamanhos diferentes odem utilizar mesma regra de arendizado Toologias diferentes odem resolver o mesmo roblema Regra mais utilizada: Backroagation

11 Backroagation Rede é treinada com ares entradasaída Cada entrada de treinamento está associada a uma saída desejada Treinamento é feito em duas etaas, cada uma ercorrendo a rede em um sentido

12 Fases do treinamento Fase forward(sinal) Fase backward (erro)

13 MLP com Backroagation Pardrão de Dados Camada de Entrada Camada de Saída Camadas Intermadiárias

14 Fase Forward Entrada é aresentada à rimeira camada da rede Aós os neurônios da camada i calcularem seus sinais de saída, os neurônios da camada i+1 calculam seus sinais de saída Saídas roduzidas elos neurônios da última camada são comaradas com as saídas desejadas Erro ara cada neurônio da camada de saída é calculado

15 Fase Backward A artir da última camada O nó ajusta seu eso de modo a reduzir o seu erro Nós das camadas anteriores tem seu erro definidos or: Erros dos nós da camada seguinte conectados a ele onderados elos esos das conexões entre eles

16 Backroagation Processamento Forward Testa um determinado adrão Backward Treinamento Ajusta os esos da rede

17 Arendizado or Correção de Erro E= 1 2 ( ) t o j 2 E Erro ara o adrão o Saída atual do nodo j ara o adrão t Saída desejada (target)

18 Minimização do Erro Vetor que aonta na direção de decrescimo da função erro: E = E w ij wˆ ij Pela regra da Cadeia: E w ij = E net net w ij

19 Desenvolvendo net w ij = w ij k w kj o = o E net = E o o net

20 Desenvolvendo o net = net ( f ( net ) = f ( net ) j j O outro termo deende de qual camada estamos: intermediária ou final! Camada de Saída: E o = o 1 2 j ( ) 2 t o = ( t o )

21 Desenvolvendo Sendo assim E net = f j ( net )( ) t o = δ Camadas intermediárias: E o = k E net k net o k = k δ k w kj

22 Desenvolvendo Gradiente do Erro: E w ij = δ o i Onde: δ = f f j j ( net )( t o ) ( net ) k δ k w o jk i,, Se camada de Saída Se camada intemediária

23 Função de Ativação Sigmoide Logistica: 1 f = 1 + e ( net ) net λ Deriovando: f ( net ) = λf ( net )( 1 f ( net )) = ( 1 ) λo o

24 Atualização dos Pesos w ij ( t + 1) = w ( t ) + w ij ij Ajuste ara o mínimo de Erro: (η - Taxa de Arendizagem) w w ij ij = E w ij E η = w ij ηδ o i

25 Backroagation - Resumo Função de saída Função de identidade y i = a i Treinamento Suervisionado Ajuste de Pesos w ij = ηx i y i (1-y i )δ i δ j = (d i -y i ) (se última camada) δ j = Σw jk δ k ( se camadas intermediárias) Não há garantias de convergência ara o treinamento

26 Treinamento - Algorítimo 1) Iniciar Todas as conexões com valores aleatórios e equenos ([-0.5,0.5] 2) Reita Erro = 0 Para cada ara de treinamento (X, d) Para cada camda k:=1 to N Para cada Neurônio j:=1 To M Calcular Saída y jk Se Erro > ε Então ara cada camada k:=n to 1 Para cada neurônio j:=1 to M Atualizar esos Até Erro < ε

Aula 2 RNA Arquiteturas e Treinamento

Aula 2 RNA Arquiteturas e Treinamento 2COP229 Aula 2 RNA Arquiteturas e Treinamento 2COP229 Sumário 1- Arquiteturas de Redes Neurais Artificiais; 2- Processos de Treinamento; 2COP229 1- Arquiteturas de Redes Neurais Artificiais -Arquitetura:

Leia mais

MLP (Multi Layer Perceptron)

MLP (Multi Layer Perceptron) MLP (Multi Layer Perceptron) André Tavares da Silva andre.silva@udesc.br Roteiro Rede neural com mais de uma camada Codificação de entradas e saídas Decorar x generalizar Perceptron Multi-Camada (MLP -

Leia mais

Inteligência Artificial. Redes Neurais Artificiais

Inteligência Artificial. Redes Neurais Artificiais Curso de Especialização em Sistemas Inteligentes Aplicados à Automação Inteligência Artificial Redes Neurais Artificiais Aulas Práticas no Matlab João Marques Salomão Rodrigo Varejão Andreão Matlab Objetivos:

Leia mais

Complemento II Noções Introdutória em Redes Neurais

Complemento II Noções Introdutória em Redes Neurais Complemento II Noções Introdutória em Redes Neurais Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

Projeto de Redes Neurais e MATLAB

Projeto de Redes Neurais e MATLAB Projeto de Redes Neurais e MATLAB Centro de Informática Universidade Federal de Pernambuco Sistemas Inteligentes IF684 Arley Ristar arrr2@cin.ufpe.br Thiago Miotto tma@cin.ufpe.br Baseado na apresentação

Leia mais

Redes Neurais. Profa. Flavia Cristina Bernardini

Redes Neurais. Profa. Flavia Cristina Bernardini Redes Neurais Profa. Flavia Cristina Bernardini Introdução Cérebro & Computador Modelos Cognitivos Diferentes Cérebro Computador Seqüência de Comandos Reconhecimento de Padrão Lento Rápido Rápido Lento

Leia mais

Gestão de Riscos e Investimentos

Gestão de Riscos e Investimentos VAR e diversificação Normalmente, investimos simultaneamente em dois ou mais ativos Ou estamos exostos simultaneamente a dois ou mais fatores de risco VAR e diversificação (Cont.) Os fatores de risco são

Leia mais

Atmosfera Padrão. Atmosfera Padrão

Atmosfera Padrão. Atmosfera Padrão 7631 2º Ano da Licenciatura em Engenharia Aeronáutica 1. Introdução O desemenho de aviões e de motores atmosféricos deende da combinação de temeratura, ressão e densidade do ar circundandante. O movimento

Leia mais

Redes Neurais Artificiais: Funções de Base Radial

Redes Neurais Artificiais: Funções de Base Radial Treinamento COELCE CEFET UFC MÓDULO II 2008.1 Redes Neurais Artificiais: Funções de Base Radial Prof. Dr. Guilherme de Alencar Barreto Depto. Engenharia de Teleinformática (DETI/UFC) URL: www.deti.ufc.br/~guilherme

Leia mais

Algoritmos Construtivos. Prof. Júlio Cesar Nievola PPGIA PUCPR Especialização em Inteligência Computacional

Algoritmos Construtivos. Prof. Júlio Cesar Nievola PPGIA PUCPR Especialização em Inteligência Computacional Algoritmos Construtivos PPGIA PUCPR Introdução Motivação: transformar o treinamento em um problema simples de aprendizagem de uma célula: Algoritmo da torre Algoritmo da pirâmide Algoritmo de correlação

Leia mais

Matlab - Neural Networw Toolbox. Ana Lívia Soares Silva de Almeida

Matlab - Neural Networw Toolbox. Ana Lívia Soares Silva de Almeida 27 de maio de 2014 O que é a Neural Networw Toolbox? A Neural Network Toolbox fornece funções e aplicativos para a modelagem de sistemas não-lineares complexos que não são facilmente modelados com uma

Leia mais

Redes Neurais Construtivas. Germano Crispim Vasconcelos Centro de Informática - UFPE

Redes Neurais Construtivas. Germano Crispim Vasconcelos Centro de Informática - UFPE Redes Neurais Construtivas Germano Crispim Vasconcelos Centro de Informática - UFPE Motivações Redes Feedforward têm sido bastante utilizadas em aplicações de Reconhecimento de Padrões Problemas apresentados

Leia mais

Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais

Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais Elisângela Lopes de Faria (a) Marcelo Portes Albuquerque (a) Jorge Luis González Alfonso (b) Márcio Portes Albuquerque (a) José

Leia mais

3. REDES DE CAMADA ÚNICA

3. REDES DE CAMADA ÚNICA 3. REDES DE CAMADA ÚNICA Perceptron Forma mais simples de RN Utilizado para classificação de padrões (linearmente separáveis) Consiste em um único neurônio, com pesos sinápticos ajustáveis e bias 3.1 Funções

Leia mais

Relatório da Aula Prática sobre Redes Neurais Artificiais

Relatório da Aula Prática sobre Redes Neurais Artificiais Relatório da Aula Prática sobre Redes Neurais Artificiais Instituto de Informática UFRGS Carlos Eduardo Ramisch Cartão: 134657 INF01017 Redes Neurais e Sistemas Fuzzy Porto Alegre, 16 de outubro de 2006.

Leia mais

PROVA DE FÍSICA 2º ANO - ACUMULATIVA - 2º TRIMESTRE TIPO A

PROVA DE FÍSICA 2º ANO - ACUMULATIVA - 2º TRIMESTRE TIPO A PROA DE FÍSICA º ANO - ACUMULATIA - º TRIMESTRE TIPO A 0) Considere as seguintes roosições referentes a um gás erfeito. I. Na transformação isotérmica, o roduto. é roorcional à temeratura do gás. II. Na

Leia mais

Aplicação de Técnicas de Mineração de Dados em Problemas de Classificação de Padrões

Aplicação de Técnicas de Mineração de Dados em Problemas de Classificação de Padrões Laboratório de Comutação Evolucionária Deartamento de Engenharia Elétrica UFMG Av. Pres. Antônio Carlos, 6627 CEP 31.270 010 Fone: 5531 3409 34 26 5531 3409 4826 Alicação de Técnicas de Mineração de Dados

Leia mais

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS Curso: Informática Disciplina: Redes Neurais Prof. Fernando Osório E-mail: osorio@exatas.unisinos.br EXEMPLO DE QUESTÕES DE PROVAS ANTIGAS 1. Supondo que

Leia mais

3 Redes Neurais Artificiais

3 Redes Neurais Artificiais 3 Redes Neurais Artificiais 3.1. Introdução A capacidade de implementar computacionalmente versões simplificadas de neurônios biológicos deu origem a uma subespecialidade da inteligência artificial, conhecida

Leia mais

Aplicações Práticas com Redes Neurais Artificiais em Java

Aplicações Práticas com Redes Neurais Artificiais em Java com em Java Luiz D Amore e Mauro Schneider JustJava 2009 17 de Setembro de 2009 Palestrantes Luiz Angelo D Amore luiz.damore@metodista.br Mauro Ulisses Schneider mauro.schneider@metodista.br http://blog.mauros.org

Leia mais

P(seleção de um elemento baixo) = p P(seleção de um elemento médio) = p. P(seleção de um elemento alto) = p

P(seleção de um elemento baixo) = p P(seleção de um elemento médio) = p. P(seleção de um elemento alto) = p . A Distribuição Multinomial - Teste Qui-Quadrado. Inferência Estatística Uma imortante generalização da rova de Bernoulli (), é a chamada rova multinomial. Uma rova de Bernoulli () ode roduzir dois resultados

Leia mais

OTIMIZAÇÃO DE REDES NEURAIS PARA PREVISÃO DE SÉRIES TEMPORAIS

OTIMIZAÇÃO DE REDES NEURAIS PARA PREVISÃO DE SÉRIES TEMPORAIS OTIMIZAÇÃO DE REDES NEURAIS PARA PREVISÃO DE SÉRIES TEMPORAIS Trabalho de Conclusão de Curso Engenharia da Computação Adélia Carolina de Andrade Barros Orientador: Prof. Dr. Adriano Lorena Inácio de Oliveira

Leia mais

Fundamentos de Inteligência Artificial [5COP099]

Fundamentos de Inteligência Artificial [5COP099] Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Departamento de Computação - UEL Disciplina Anual Assunto Aula 16 Redes Neurais Artificiais (MLP) 2 de 24 (MLP) Sumário Introdução

Leia mais

3)Seno de alguns arcos importantes

3)Seno de alguns arcos importantes Aula 4-A -Funções trigonométricas no ciclo trigonométrico ) Função seno (definição) )Gráfico da função seno )Seno de alguns arcos imortantes 4) Equações e inequações 5) Resolução de exercícios ) Função

Leia mais

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO DEPARTAMENTO DE FÍSICA E MATEMÁTICA

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO DEPARTAMENTO DE FÍSICA E MATEMÁTICA UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO DEPARTAMENTO DE FÍSICA E MATEMÁTICA CURSO: LICENCIATURA EM COMPUTAÇÃO DISCIPLINA: PROGRAMAÇÃO PARALELA E DISTRIBUÍDA PROFESSOR: JONES OLIVEIRA ALUNO: JONAS FRANCISCO

Leia mais

Multi-Layer. Perceptrons. Algoritmos de Aprendizado. Perceptrons. Perceptrons

Multi-Layer. Perceptrons. Algoritmos de Aprendizado. Perceptrons. Perceptrons Algoritmos de Aprendizado Regra de Hebb Perceptron Delta Rule (Least Mean Square) Back Propagation Multi-Layer Perceptrons Redes de apenas uma camada só representam funções linearmente separáveis Redes

Leia mais

O USO DE REDES NEURAIS ARTIFICIAIS NO DIAGNÓSTICO PREDITIVO DOS TIPOS MAIS FREQÜENTES DE CEFALÉIA

O USO DE REDES NEURAIS ARTIFICIAIS NO DIAGNÓSTICO PREDITIVO DOS TIPOS MAIS FREQÜENTES DE CEFALÉIA O USO DE REDES NEURAIS ARTIFICIAIS NO DIAGNÓSTICO PREDITIVO DOS TIPOS MAIS FREQÜENTES DE CEFALÉIA KARINA BORGES MENDES O USO DE REDES NEURAIS ARTIFICIAIS NO DIAGNÓSTICO PREDITIVO DOS TIPOS MAIS FREQÜENTES

Leia mais

Modelo Fuzzy de tomada de decisão para avaliação de projetos de Responsabilidade Socioambiental (RSA)

Modelo Fuzzy de tomada de decisão para avaliação de projetos de Responsabilidade Socioambiental (RSA) Modelo uzzy de tomada de decisão ara avaliação de rojetos de Resonsabilidade Socioambiental (RSA) Katia Cristina Garcia Laboratório Interdiscilinar de Meio Ambiente - COPPE/URJ Centro de Tecnologia, Bloco

Leia mais

Modelos Pioneiros de Aprendizado

Modelos Pioneiros de Aprendizado Modelos Pioneiros de Aprendizado Conteúdo 1. Hebb... 2 2. Perceptron... 5 2.1. Perceptron Simples para Classificaçãod e Padrões... 6 2.2. Exemplo de Aplicação e Motivação Geométrica... 9 2.3. Perceptron

Leia mais

CAPÍTULO 3 - RETIFICAÇÃO

CAPÍTULO 3 - RETIFICAÇÃO CAPÍTULO 3 - RETFCAÇÃO A maioria dos circuitos eletrônicos recisa de uma tensão cc ara oder trabalhar adequadamente Como a tensão da linha é alternada, a rimeira coisa a ser feita em qualquer equiamento

Leia mais

RENATO DE FREITAS LARA. Departamento de Ciência da Computação - Universidade Presidente Antônio Carlos (UNIPAC) - Barbacena - MG Brasil

RENATO DE FREITAS LARA. Departamento de Ciência da Computação - Universidade Presidente Antônio Carlos (UNIPAC) - Barbacena - MG Brasil RECONHECIMENTO DE CADEIAS DE NÚMEROS NAS ETIQUETAS IDENTIFICADORAS DOS BLOCOS DE AÇO, UTILIZANDO PROCESSAMENTO DIGITAL DE IMAGENS E REDES NEURAIS ARTIFICIAIS RENATO DE FREITAS LARA Departamento de Ciência

Leia mais

Redes Neurais Artificiais

Redes Neurais Artificiais Redes Neurais Artificiais Inteligência Artificial Prof. Cedric Luiz de Carvalho Instituto de Informática UFG 2006 2/164 Tópicos Introdução Redes Neurais Humanas O que são Redes Neurais Artificiais Características

Leia mais

Colégio Politécnico da UFSM DPADP0024 : Processamento Digital de Imagens (Prof. Dr. Elódio Sebem)

Colégio Politécnico da UFSM DPADP0024 : Processamento Digital de Imagens (Prof. Dr. Elódio Sebem) Para melhor aroveitamento das informações roduzidas or diferentes sensores, alguns métodos de rocessamento de imagens têm sido roostos. Estes métodos combinam imagens de diferentes características esectrais

Leia mais

Figura 5.1.Modelo não linear de um neurônio j da camada k+1. Fonte: HAYKIN, 2001

Figura 5.1.Modelo não linear de um neurônio j da camada k+1. Fonte: HAYKIN, 2001 47 5 Redes Neurais O trabalho em redes neurais artificiais, usualmente denominadas redes neurais ou RNA, tem sido motivado desde o começo pelo reconhecimento de que o cérebro humano processa informações

Leia mais

Relatório de uma Aplicação de Redes Neurais

Relatório de uma Aplicação de Redes Neurais UNIVERSIDADE ESTADUAL DE MONTES CLAROS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIAS DA COMPUTACAÇÃO ESPECIALIZAÇÃO EM ENGENHARIA DE SISTEMAS DISCIPLINA: REDES NEURAIS PROFESSOR: MARCOS

Leia mais

UMA ABORDAGEM DE PODA PARA MÁQUINAS DE APRENDIZADO EXTREMO VIA ALGORITMOS GENÉTICOS

UMA ABORDAGEM DE PODA PARA MÁQUINAS DE APRENDIZADO EXTREMO VIA ALGORITMOS GENÉTICOS UMA ABORDAGEM DE PODA PARA MÁQUINAS DE APRENDIZADO EXTREMO VIA ALGORITMOS GENÉTICOS Alisson S. C. Alencar, Ajalmar R. da Rocha Neto Departamento de Computação, Instituto Federal do Ceará (IFCE). Programa

Leia mais

1. Introdução 2. OMCC e a Pesquisa Perfil-Opinião

1. Introdução 2. OMCC e a Pesquisa Perfil-Opinião Perfil Socioeconômico e Cultural dos Visitantes dos Museus Fluminenses e Paulistas: Uma Análise Comarativa. Camila Pereira Koehler (ENCE); José Matias de Lima (ENCE); Leandro Lins Marino (Fundação Cesgranrio)

Leia mais

Análise de Risco de Crédito em Correspondentes Bancários através de Redes Neurais

Análise de Risco de Crédito em Correspondentes Bancários através de Redes Neurais Análise de Risco de Crédito em Correspondentes Bancários através de Redes Neurais Marcelo França Corrêa, Marley Vellasco ICA: Applied Computational Intelligence Laboratory Department of Electrical Engineering

Leia mais

Probabilidade parte 2. Robério Satyro

Probabilidade parte 2. Robério Satyro Probabilidade arte Robério Satyro Definição de robabilidade Vamos analisar o fenômeno aleatório lançamento de uma moeda erfeita. Nesse caso, temos: = {C, C} () = Os subconjuntos de são, {C}, { C} e {C,

Leia mais

Rememorando. Situação-problema 5. Teorema do Limite Central. Estatística II. Aula II

Rememorando. Situação-problema 5. Teorema do Limite Central. Estatística II. Aula II UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARAN PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Rememorando Estatística II Aula II Profa. Renata G. Aguiar 1 Figura 7 Distribuição de uma amostra (n = 150).

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Tipos de aprendizagem 3. Paradigmas de aprendizagem 4. Modos de aprendizagem

Leia mais

-10 0 10 20 30 40 50 60 70 80

-10 0 10 20 30 40 50 60 70 80 . Uma artícula desloca-se sobre uma reta na direção x. No instante t =, s, a artícula encontra-se na osição e no instante t = 6, s encontra-se na osição, como indicadas na figura abaixo. Determine a velocidade

Leia mais

c) Repita as alíneas (a) e (b), admitindo que o investidor pretende agora obter um rendimento esperado de 12%.

c) Repita as alíneas (a) e (b), admitindo que o investidor pretende agora obter um rendimento esperado de 12%. Casos Práticos Caso 3.1 Considere as seguintes inormações relativas a duas acções: cção cção Rendibilidade eserada 15% 10% Desvio adrão da rentabilidade eserada 1% 8% Valor de cotação EUR10 EUR15 Coeiciente

Leia mais

Redes Neurais: MLP. Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação

Redes Neurais: MLP. Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Redes Neurais: MLP DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Tópicos Redes diretas de múltiplas

Leia mais

Relatório Iniciação Científica

Relatório Iniciação Científica Relatório Iniciação Científica Ambientes Para Ensaios Computacionais no Ensino de Neurocomputação e Reconhecimento de Padrões Bolsa: Programa Ensinar com Pesquisa-Pró-Reitoria de Graduação Departamento:

Leia mais

Classificação de Padrões. Abordagem prática com Redes Neurais Artificiais

Classificação de Padrões. Abordagem prática com Redes Neurais Artificiais Classificação de Padrões Abordagem prática com Redes Neurais Artificiais Agenda Parte I - Introdução ao aprendizado de máquina Parte II - Teoria RNA Parte III - Prática RNA Parte IV - Lições aprendidas

Leia mais

A metodologia utilizada neste trabalho consiste basicamente de três etapas: ensaio, pré-processamento e simulações.

A metodologia utilizada neste trabalho consiste basicamente de três etapas: ensaio, pré-processamento e simulações. SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GCE 20 14 a 17 Outubro de 2007 Rio de Janeiro - RJ GRUPO XIV GRUPO DE ESTUDO DE CONSERVAÇÃO DE ENERGIA ELÉTRICA UTILIZAÇÃO DE REDES

Leia mais

Projeto de Trabalho de Conclusão de Curso

Projeto de Trabalho de Conclusão de Curso MARCELO RIBEIRO DA LUZ MARCOS KUFNER Projeto de Trabalho de Conclusão de Curso Trabalho aresentado ara a discilina de Laboratório de Estatística II do curso de graduação em Estatística da Universidade

Leia mais

Processamento de Imagens para Identificação de Veículos utilizando Inteligência Artificial

Processamento de Imagens para Identificação de Veículos utilizando Inteligência Artificial Processamento de Imagens para Identificação de Veículos utilizando Inteligência Artificial André Faria Ruaro, Nader Ghoddosi Universidade Federal do Santa Catarina (UFSC) Florianópolis SC Brasil Pós-Graduação

Leia mais

Árvores Binárias de Pesquisa. Programação II Prof. Mateus Raeder. Árvores Binárias de Pesquisa. Árvores Binárias de Pesquisa. Classe Nodo Binário

Árvores Binárias de Pesquisa. Programação II Prof. Mateus Raeder. Árvores Binárias de Pesquisa. Árvores Binárias de Pesquisa. Classe Nodo Binário Programação II Conhecida também como: Árvore binária ordenada Árvore binária de busca Aresenta relação de ordem entre os nodos Ordem definida através do camo chamado chave CHAVE Prof. Mateus Raeder Chaves

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Tipos de aprendizagem 3. Paradigmas de aprendizagem 4. Modos de aprendizagem

Leia mais

RNAs, Classificação de Padrões e Motivação Geométrica. Conteúdo

RNAs, Classificação de Padrões e Motivação Geométrica. Conteúdo RNAs, Classificação de Padrões e Motiação Geométrica Conteúdo. O problema do OU-eclusio.... Um problema mais geral de mapeamento não-linear... 0 3. Mapeamentos não-lineares genéricos... 4 4. Redes neurais

Leia mais

Neste pequeno artigo resolveremos o problema 2 da USAMO (USA Mathematical Olympiad) 2005: (x 3 + 1)(x 3 + y) = 147 157 (x 3 + y)(1 + y) = 157 147 z 9

Neste pequeno artigo resolveremos o problema 2 da USAMO (USA Mathematical Olympiad) 2005: (x 3 + 1)(x 3 + y) = 147 157 (x 3 + y)(1 + y) = 157 147 z 9 Ésófatorar... Serámesmo? Neste equeno artigo resolveremos o roblema 2 da USAMO (USA Mathematical Olymiad) 2005: Problema. Prove que o sistema x 6 + x + x y + y = 147 157 x + x y + y 2 + y + z 9 = 157 147

Leia mais

5º CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS

5º CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS 5º CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS TÍTULO DO TRABALHO: REDES NEURAIS APLICADAS EM INDÚSTRIAS PETROQUÍMICAS DE FABRICAÇÃO DE FIBRAS DE POLIÉSTER. AUTORES: Lívia Maciel

Leia mais

TÉCNICAS DE APRENDIZAGEM DE MÁQUINA PARA PREVISÃO DE SUCESSO EM IMPLANTES DENTÁRIOS

TÉCNICAS DE APRENDIZAGEM DE MÁQUINA PARA PREVISÃO DE SUCESSO EM IMPLANTES DENTÁRIOS TÉCNICAS DE APRENDIZAGEM DE MÁQUINA PARA PREVISÃO DE SUCESSO EM IMPLANTES DENTÁRIOS Trabalho de Conclusão de Curso Engenharia da Computação Nome do Aluno: Carolina Baldisserotto Orientador: Prof. Adriano

Leia mais

Previsão do Índice da Bolsa de Valores do Estado de São Paulo utilizandoredes Neurais Artificiais

Previsão do Índice da Bolsa de Valores do Estado de São Paulo utilizandoredes Neurais Artificiais Previsão do Índice da Bolsa de Valores do Estado de São Paulo utilizandoredes Neurais Artificiais Redes Neurais Artificiais Prof. Wilian Soares João Vitor Squillace Teixeira Ciência da Computação Universidade

Leia mais

AVALIAÇÃO DE UMA MEDIDA DE EVIDÊNCIA DE UM PONTO DE MUDANÇA E SUA UTILIZAÇÃO NA IDENTIFICAÇÃO DE MUDANÇAS NA TAXA DE CRIMINALIDADE EM BELO HORIZONTE

AVALIAÇÃO DE UMA MEDIDA DE EVIDÊNCIA DE UM PONTO DE MUDANÇA E SUA UTILIZAÇÃO NA IDENTIFICAÇÃO DE MUDANÇAS NA TAXA DE CRIMINALIDADE EM BELO HORIZONTE versão imressa ISSN -7438 / versão online ISSN 678-542 AVALIAÇÃO DE UMA MEDIDA DE EVIDÊNCIA DE UM PONTO DE MUDANÇA E SUA UTILIZAÇÃO NA IDENTIFICAÇÃO DE MUDANÇAS NA TAXA DE CRIMINALIDADE EM BELO HORIZONTE

Leia mais

TÍTULO: PROPOSTA DE METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS MLP PARA A PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES DE POTÊNCIA

TÍTULO: PROPOSTA DE METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS MLP PARA A PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES DE POTÊNCIA TÍTULO: PROPOSTA DE METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS MLP PARA A PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES DE POTÊNCIA CATEGORIA: CONCLUÍDO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS

Leia mais

Capítulo 7. Limitações

Capítulo 7. Limitações Capítulo 7 Limitações Os principais problemas das arquiteturas MLP que serão abordados são a sensibilidade a mínimos locais, o não conhecimento a priori da arquitetura ótima de rede e a implementação destes

Leia mais

APLICAÇÕES DO CONTROLE ESTATÍSTICO MULTIVARIADO DA QUALIDADE: MONITORAMENTO DE GARRAFEIRAS PLÁSTICAS NUMA EMPRESA DO ESTADO DA PARAÍBA

APLICAÇÕES DO CONTROLE ESTATÍSTICO MULTIVARIADO DA QUALIDADE: MONITORAMENTO DE GARRAFEIRAS PLÁSTICAS NUMA EMPRESA DO ESTADO DA PARAÍBA APLICAÇÕES DO CONTROLE ESTATÍSTICO MULTIVARIADO DA QUALIDADE: MONITORAMENTO DE GARRAFEIRAS PLÁSTICAS NUMA EMPRESA DO ESTADO DA PARAÍBA Marcio Botelho da Fonseca Lima (UFPB) tismalu@uol.com.br ROBERTA DE

Leia mais

Segunda aula de mecânica dos fluidos básica. Estática dos Fluidos capítulo 2 do livro do professor Franco Brunetti

Segunda aula de mecânica dos fluidos básica. Estática dos Fluidos capítulo 2 do livro do professor Franco Brunetti Segunda aula de mecânica dos fluidos básica Estática dos Fluidos caítulo 2 do livro do rofessor Franco Brunetti NO DESENVOLVIMENTO DESTA SEGUNDA AULA NÃO IREI ME REPORTAR DIRETAMENTE AO LIVRO MENCIONADO

Leia mais

Algoritmos de Aprendizado. CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico. Regra de HEBB.

Algoritmos de Aprendizado. CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico. Regra de HEBB. CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico Conceitos Básicos Neurônio Artificial, Modos de Interconexão Processamento Neural Recall e Learning Regras de Aprendizado

Leia mais

RELATÓRIO DE CONSULTORIA

RELATÓRIO DE CONSULTORIA Recomendação ao Sr. Silva RELATÓRIO DE CONSULTORIA CONSTITUIÇÃO DO ÍNDICE PSI0 ALTRI SGPS, S.A. BCP Banco Comercial Português, S.A. BES Banco Esírito Santo, S.A. BPI Banco Português de Investimento, S.A.

Leia mais

Revista Hispeci & Lema On Line ano III n.3 nov. 2012 ISSN 1980-2536 unifafibe.com.br/hispecielemaonline Centro Universitário UNIFAFIBE Bebedouro-SP

Revista Hispeci & Lema On Line ano III n.3 nov. 2012 ISSN 1980-2536 unifafibe.com.br/hispecielemaonline Centro Universitário UNIFAFIBE Bebedouro-SP Reconhecimento de face utilizando banco de imagens monocromáticas e coloridas através dos métodos da análise do componente principal (PCA) e da Rede Neural Artificial (RNA) [Recognition to face using the

Leia mais

RECONHECIMENTO DE GÊNERO ATRAVÉS DA VOZ

RECONHECIMENTO DE GÊNERO ATRAVÉS DA VOZ RECONHECIMENTO DE GÊNERO ATRAVÉS DA VOZ Marcela Ribeiro Carvalho marcela@enecar.com.br IFG/Câmpus Goiânia Hipólito Barbosa Machado Filho hipolito.barbosa@ifg.edu.br IFG/Câmpus Goiânia Programa Institucional

Leia mais

Redes Neurais Artificiais (RNA) Definições. Prof. Juan Moisés Mauricio Villanueva

Redes Neurais Artificiais (RNA) Definições. Prof. Juan Moisés Mauricio Villanueva Redes Neurais Artificiais (RNA) Definições Prof. Juan Moisés Mauricio Villanueva jmauricio@cear.ufpb.br 1 Conteúdo 1. 2. 3. 4. 5. 6. Introdução Modelos básicos e regras de aprendizagem Rede neural de retro

Leia mais

Tensão Induzida por Fluxo Magnético Transformador

Tensão Induzida por Fluxo Magnético Transformador defi deartamento de fíica Laboratório de Fíica www.defi.ie.i.t Tenão Induzida or Fluxo Magnético Tranformador Intituto Suerior de Engenharia do Porto- Deartamento de Fíica Rua Dr. António Bernardino de

Leia mais

Redes Neurais no MATLAB 6.1

Redes Neurais no MATLAB 6.1 Redes Neurais no MATLAB 6.1 Redes Neurais no MATLAB Duas formas de utilização: Linhas de comando, e m-files Interface gráfica (NNTool) 1 Redes Neurais no MATLAB Duas formas de utilização: Linhas de comando,,

Leia mais

Redes Neurais Artificiais na Engenharia Nuclear 2 Aula-1 Ano: 2005

Redes Neurais Artificiais na Engenharia Nuclear 2 Aula-1 Ano: 2005 Redes Neurais Artificiais na Engenharia Nuclear 1 - Apresentação do Professor: dados, lista de E-mail s, etc. - Apresentação da Turma: Estatística sobre origem dos alunos para adaptação do curso - Apresentação

Leia mais

Verificação e validação do coeficiente de arrasto frontal para escoamento supersônico e hipersônico de ar sobre cones

Verificação e validação do coeficiente de arrasto frontal para escoamento supersônico e hipersônico de ar sobre cones Verificação e validação do coeficiente de arrasto frontal ara escoamento suersônico e hiersônico de ar sobre cones Guilherme Bertoldo Universidade Tecnológica Federal do Paraná (UTFPR) 85601-970, Francisco

Leia mais

Redes Neurais. A IA clássica segue o paradigma da computação simbólica

Redes Neurais. A IA clássica segue o paradigma da computação simbólica Abordagens não simbólicas A IA clássica segue o paradigma da computação simbólica Redes Neurais As redes neurais deram origem a chamada IA conexionista, pertencendo também a grande área da Inteligência

Leia mais

Solução dos exercícios do capítulo 2, pp (a) Expansão isotérmica de um gás ideal. Trabalho: pdv = NRT 1

Solução dos exercícios do capítulo 2, pp (a) Expansão isotérmica de um gás ideal. Trabalho: pdv = NRT 1 Solução dos exercícios do caítulo 2,. 31-32 Equações de um gás ideal = NRT U = NcT U = c R Exercício 1. (a) Exansão isotérmica de um gás ideal. Trabalho: W = 2 1 d = NRT 2 1 1 d = NRT ln 2 1 omo a energia

Leia mais

Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro

Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro Tiago Mendes Dantas t.mendesdantas@gmail.com Departamento de Engenharia Elétrica,

Leia mais

1. ENTALPIA. (a) A definição de entalpia. A entalpia, H, é definida como:

1. ENTALPIA. (a) A definição de entalpia. A entalpia, H, é definida como: 1 Data: 31/05/2007 Curso de Processos Químicos Reerência: AKINS, Peter. Físico- Química. Sétima edição. Editora, LC, 2003. Resumo: Proas. Bárbara Winiarski Diesel Novaes 1. ENALPIA A variação da energia

Leia mais

EA072 Prof. Fernando J. Von Zuben DCA/FEEC/Unicamp. Tópico P2.7: Teoria de Jogos 3. EA072 Prof. Fernando J. Von Zuben DCA/FEEC/Unicamp

EA072 Prof. Fernando J. Von Zuben DCA/FEEC/Unicamp. Tópico P2.7: Teoria de Jogos 3. EA072 Prof. Fernando J. Von Zuben DCA/FEEC/Unicamp Teoria de Jogos ntrodução... Exemlo de jogos... 5. Pilha de alitos... 5. Jogo de sinuca (bilhar inglês ou snooker)... 5.3 Duelo... 6.4 Lançamento de novos rodutos no mercado... 6.5 Dilema do risioneiro...

Leia mais

Universidade Federal do Rio de Janeiro. Escola Politécnica. Departamento de Eletrônica e de Computação

Universidade Federal do Rio de Janeiro. Escola Politécnica. Departamento de Eletrônica e de Computação Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Eletrônica e de Computação Reconhecimento de Caracteres de Placa Veicular Usando Redes Neurais Autor: Orientador: Allan Almeida

Leia mais

ANEXOS. r : raio do tubo (externo se o liquido molhar o tubo) g : aceleração da gravidade. m g (Lei de Tate) eq. A1

ANEXOS. r : raio do tubo (externo se o liquido molhar o tubo) g : aceleração da gravidade. m g (Lei de Tate) eq. A1 254 ANEXOS Anexo A: Método da gota endente ara medir tensão interfacial Introdução As moléculas na suerfície de um líquido estão sujeitas a fortes forças de atração das moléculas interiores. A resultante

Leia mais

1. Introdução... 2. 2. As origens da RNA... 3. 3. O nosso cérebro... 5. 3.1. Plasticidade e modulação sináptica... 5

1. Introdução... 2. 2. As origens da RNA... 3. 3. O nosso cérebro... 5. 3.1. Plasticidade e modulação sináptica... 5 Sumário 1. Introdução... 2 2. As origens da RNA... 3 3. O nosso cérebro... 5 3.1. Plasticidade e modulação sináptica... 5 4. As redes neurais artificiais... 7 4.1. Estrutura da RNA... 7 4.3. Modelos de

Leia mais

ROTINA COMPUTACIONAL PARA A PREVISÃO DA CAPACIDADE DE CARGA EM ESTACAS

ROTINA COMPUTACIONAL PARA A PREVISÃO DA CAPACIDADE DE CARGA EM ESTACAS 38 ROTINA COMPUTACIONA PARA A PREVISÃO DA CAPACIDADE DE CARGA EM ESTACAS Comutational routine to rovision of the caacity of load in iles. Tobias Ribeiro Ferreira 1, Rodrigo Gustavo Delalibera 2, Wellington

Leia mais

UM ESTUDO COMPARATIVO PARA PREVISÃO DA COTAÇÃO DE AÇÕES DA BM&FBOVESPA UTILIZANDO REDES NEURAIS ARTIFICIAIS

UM ESTUDO COMPARATIVO PARA PREVISÃO DA COTAÇÃO DE AÇÕES DA BM&FBOVESPA UTILIZANDO REDES NEURAIS ARTIFICIAIS UM ESTUDO COMPARATIVO PARA PREVISÃO DA COTAÇÃO DE AÇÕES DA BM&FBOVESPA UTILIZANDO REDES NEURAIS ARTIFICIAIS Trabalho de Conclusão de Curso Engenharia da Computação Igor Menezes Marinho de Souza Orientador:

Leia mais

ESTUDO COMPARATIVO ENTRE TÉCNICAS DE APRENDIZAGEM DE MÁQUINA PARA SISTEMAS DE DETECÇÃO DE INTRUSÃO (IDS)

ESTUDO COMPARATIVO ENTRE TÉCNICAS DE APRENDIZAGEM DE MÁQUINA PARA SISTEMAS DE DETECÇÃO DE INTRUSÃO (IDS) ESTUDO COMPARATIVO ENTRE TÉCNICAS DE APRENDIZAGEM DE MÁQUINA PARA SISTEMAS DE DETECÇÃO DE INTRUSÃO (IDS) Trabalho de Conclusão de Curso Engenharia da Computação Thyago Antonio Barbosa Vieira da Rocha Orientador:

Leia mais

DESENVOLVIMENTO DE FERRAMENTA COMPUTACIONAL PARA PROJETOS DE REDES NEURAIS ARTIFICIAIS

DESENVOLVIMENTO DE FERRAMENTA COMPUTACIONAL PARA PROJETOS DE REDES NEURAIS ARTIFICIAIS IFSP - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO DESENVOLVIMENTO DE FERRAMENTA COMPUTACIONAL PARA PROJETOS DE REDES NEURAIS ARTIFICIAIS HUGO DA SILVA BERNARDES GONÇALVES São Paulo

Leia mais

Elasticidade - Demanda e Preço

Elasticidade - Demanda e Preço José Lásaro Cotta Elasticidade - Demanda e Preço Monografia aresentada ao Curso de Esecialização em Matemática Para Professores, elaborado elo Deartamento de Matemática da Universidade Federal de Minas

Leia mais

Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica

Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica João Paulo Teixeira*, José Batista*, Anildio Toca**, João Gonçalves**, e Filipe Pereira** * Departamento de Electrotecnia

Leia mais

Revisão Inteligência Artificial ENADE. Prof a Fabiana Lorenzi Outubro/2011

Revisão Inteligência Artificial ENADE. Prof a Fabiana Lorenzi Outubro/2011 Revisão Inteligência Artificial ENADE Prof a Fabiana Lorenzi Outubro/2011 Representação conhecimento É uma forma sistemática de estruturar e codificar o que se sabe sobre uma determinada aplicação (Rezende,

Leia mais

Redes Neurais. Mapas Auto-Organizáveis. 1. O Mapa Auto-Organizável (SOM) Prof. Paulo Martins Engel. Formação auto-organizada de mapas sensoriais

Redes Neurais. Mapas Auto-Organizáveis. 1. O Mapa Auto-Organizável (SOM) Prof. Paulo Martins Engel. Formação auto-organizada de mapas sensoriais . O Mapa Auto-Organizável (SOM) Redes Neurais Mapas Auto-Organizáveis Sistema auto-organizável inspirado no córtex cerebral. Nos mapas tonotópicos do córtex, p. ex., neurônios vizinhos respondem a freqüências

Leia mais

GLOBALIZAÇÃO, ALTERAÇÕES ESTRUTURAIS DAS EXPORTAÇÕES E TERMOS DE TROCA DE PORTUGAL*

GLOBALIZAÇÃO, ALTERAÇÕES ESTRUTURAIS DAS EXPORTAÇÕES E TERMOS DE TROCA DE PORTUGAL* Artigos Primavera 2008 GLOBALIZAÇÃO, ALTERAÇÕES ESTRUTURAIS DAS EXPORTAÇÕES E TERMOS DE TROCA DE PORTUGAL* Fátima Cardoso** Paulo Soares Esteves** 1. INTRODUÇÃO As flutuações dos termos de troca constituem

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica REDES NEURAIS ARTIFICIAIS AULA 03 Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 INTRODUÇÃO Aprendizagem é um processo pelo qual os parâmetros livres de uma rede neural são adaptados através de um processo

Leia mais

3 Conceitos Fundamentais

3 Conceitos Fundamentais 3 Coneitos Fundamentais Neste aítulo são aresentados oneitos fundamentais ara o entendimento e estudo do omressor axial, assim omo sua modelagem termodinâmia 3 Máquinas de Fluxo As máquinas de fluxo odem

Leia mais

Crescimento Econômico, Progresso Técnico e Distribuição de Renda : uma abordagem pluralista

Crescimento Econômico, Progresso Técnico e Distribuição de Renda : uma abordagem pluralista Caítulo 7 O Modelo de Crescimento Harrod-Domar e seus desdobramentos. 7.1 Introdução. A abordagem ós-keynesiana ara o crescimento e distribuição de renda tem sua origem com as contribuições seminais de

Leia mais

Revisão e Dicas de Projeto Conceitual Modelo ER

Revisão e Dicas de Projeto Conceitual Modelo ER Revisão e Dicas de Projeto Conceitual Modelo ER Modelo definido or Peter Chen em 1976 modelo sofreu diversas extensões e notações ao longo do temo Padrão ara modelagem conceitual de BD modelo simles oucos

Leia mais

Redes Neuronais. Redes neuronais artificiais. Redes neuronais artificiais. Redes neuronais artificiais

Redes Neuronais. Redes neuronais artificiais. Redes neuronais artificiais. Redes neuronais artificiais Redes neuronais artificiais Surgiram nos anos 40 com o objectivo de conhecer melhor o cérebro humano e emular o seu comportamento. Departamento de Matemática Universidade dos Açores Redes Neuronais Introdução

Leia mais

APARECIDO NARDO JUNIOR APLICAÇÃO DE REDES NEURAIS UTILIZANDO O SOFTWARE MATLAB

APARECIDO NARDO JUNIOR APLICAÇÃO DE REDES NEURAIS UTILIZANDO O SOFTWARE MATLAB FUNDAÇÃO DE ENSINO EURÍPIDES SOARES DA ROCHA CENTRO UNIVERSITÁRIO EURÍPIDES DE MARÍLIA - UNIVEM BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO APARECIDO NARDO JUNIOR APLICAÇÃO DE REDES NEURAIS UTILIZANDO O SOFTWARE

Leia mais

Rede MLP: Perceptron de Múltiplas Camadas

Rede MLP: Perceptron de Múltiplas Camadas Rede MLP: Perceptron de Múltiplas Camadas Conteúdo. Neurônio artificial.... Eemplos mais usuais de funções de ativação... 3 3. Produto interno e projeção... 5 4. Função de epansão ortogonal... 7 5. Redes

Leia mais

Fluxo de Potência em Redes de Distribuição Radiais

Fluxo de Potência em Redes de Distribuição Radiais COE/UFRJ rograma de Engenharia Elétrica COE 751 Análise de Redes Elétricas Fluxo de otência em Redes de Distribuição Radiais 1.1 Formulação do roblema Os métodos convencionais de cálculo de fluxo de otência

Leia mais

Do neurônio biológico ao neurônio das redes neurais artificiais

Do neurônio biológico ao neurônio das redes neurais artificiais Do neurônio biológico ao neurônio das redes neurais artificiais O objetivo desta aula é procurar justificar o modelo de neurônio usado pelas redes neurais artificiais em termos das propriedades essenciais

Leia mais

Rede RBF (Radial Basis Function)

Rede RBF (Radial Basis Function) Rede RBF (Radial Basis Function) André Tavares da Silva andre.silva@udesc.br Roteiro Introdução à rede neural artificial RBF Teorema de Cover da separabilidade de padrões RBF x MLP RBF Função de ativação

Leia mais

Perceptron de Múltiplas Camadas e Backpropagation

Perceptron de Múltiplas Camadas e Backpropagation Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Perceptron de Múltiplas Camadas e Backpropagation Redes Neurais Artificiais Site: http://jeiks.net

Leia mais

SARCO SISTEMA AUTOMÁTICO DE RECONHECIMENTO E CONTAGEM DE OVOS DA DENGUE

SARCO SISTEMA AUTOMÁTICO DE RECONHECIMENTO E CONTAGEM DE OVOS DA DENGUE UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE INFORMÁTICA ENGENHARIA DA COMPUTAÇÃO SARCO SISTEMA AUTOMÁTICO DE RECONHECIMENTO E CONTAGEM DE OVOS DA DENGUE Trabalho de Graduação Aluno: Styve Stallone da

Leia mais