ELETRÔNICA DIGITAL Aula 4-Álgebra de Boole e Simplificações de circuitos lógicos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "ELETRÔNICA DIGITAL Aula 4-Álgebra de Boole e Simplificações de circuitos lógicos"

Transcrição

1 ELETRÔNICA DIGITAL Aula 4-Álgebra de Boole e Simplificações de circuitos lógicos Prof.ª Eng. Msc. Patricia Pedroso Estevam Ribeiro 08/10/2016 1

2 Introdução Os circuitos lógicos correspondem expressões booleanas, as quais representam problemas no mundo real, entretanto os circuitos gerados por tabelas verdade e expressões booleanas muitas vezes admitem simplificações, o que reduz o número de portas lógicas; essa redução diminui o grau de dificuldade na montagem e custo do sistema digital. 2

3 Variáveis e Expressões na Álgebra de Boole Através de postulados, propriedades, teoremas fundamentais e identidades da álgebra de Boole é possível a simplificação das expressões que representam os circuitos lógicos. 3

4 Variáveis e Expressões na Álgebra de Boole Existem apenas duas constantes booleanas 0 (zero) 1 (um) As variáveis booleaneas são representadas através de letras e podem assumir apenas dois valores: 0 e 1. Exemplos: A, B, C Expressão booleana é uma expressão matemática cujas variáveis são booleanas. Exemplos: S = A.B S = A+B.C 4

5 Postulados e Propriedades Na álgebra booleana há postulados (axiomas) a partir dos quais são estabelecidas várias propriedades. Existem várias propriedades da negação (complemento, inversor), adição (porta E) e soma (porta OU). Estas propriedades podem ser verificadas como equivalências lógicas. Para demonstrar cada uma, iremos utilizar as tabelas-verdade, constatando a equivalência. 5

6 Postulados da Complementação Este postulado, mostra como são as regras da complementação na álgebra de Boole. Chamaremos de A o complemento de A: Através do postulado da complementação, podemos estabelecer a seguinte identidade: 6

7 Postulados da Complementação Assim sendo, podemos escrever: O bloco lógico que executa o postulado da complementação é o inversor. 7

8 Postulado da Adição Este postulado, mostra como são as regras da adição dentro da álgebra de Boole. Podemos estabelecer as seguintes identidades: A + 0 = A. A pode ser 0 ou 1, vejamos então, todas as possibilidades: Se A = 0 -> = 0 Se A = 1 -> = 1 Notamos que o resultado será sempre igual à variável A. O bloco lógico que executa o postulado da adição é o OU. 8

9 Postulado da Adição A+1=1, vejamos todas as possibilidades: se A=0 -> 0+1=1 ; se A=1 -> 1+1=1 A+0=A, se A=0 -> 0+0=0 ; se A=1 -> 1+0=1 A+A=A, se A=0 ->0+0=0 ; se A=1 ->1+1=1, A + A = 1, se A=1 e A=0 -> 1+0=1 se A=0 e A=1 -> 0+1=1 ; Regra da Adição 9

10 Postulado da Multiplicação As regras da multiplicação booleana são: Podemos estabelecer as identidades: A.0=0 Podemos confirmar, verificando todas as possibilidades: Se A=0 -> 0.0=0 Se A=1 -> 1.0=0 Notamos que todo número multiplicado por 0 é 0. O bloco lógico que executa o postulado da multiplicação é o E. 10

11 Postulado da Multiplicação A.1=A, Analisando todas as possibilidades: se A=0 -> 0.1=0 ; se A=1 -> 1.1=1 A.A=A, se A=0 -> 0.0=0 ; se A=1 -> 1.1=1 A. A = 0, se A=1 e A=0 -> 1.0=0 se A=0 e A=1 -> 0.1=0 ; Regra da Multiplicação 11

12 Propriedades Propriedade Comutativa na adição: na multiplicação: Essa propriedade é valida tanto na adição, bem como na multiplicação 12

13 Propriedades Propriedade Associativa na adição: 13

14 Propriedades Propriedade Associativa na multiplicação: 14

15 Propriedades Propriedade Distributiva: 15

16 Teoremas de De Morgan Os teoremas de De Morgan são muito empregados na prática, em simplificações de expressões boolenas e, ainda, no desenvolvimento de circuito digitais. 16

17 Teoremas de De Morgan 1º Teoremas de De Morgan O complemento do produto é igual a soma dos complementos. Tabela Verdade A. B = A + B 17

18 Teoremas de De Morgan 2º Teoremas de De Morgan O complemento da soma é igual ao produto dos complementos. Este teorema é uma extensão do primeiro: A. B = A + B <- 1º teorema Rescrevendo assim: E chamando A de X e B de Y Tem-se o 2º teorema X. Y = X + Y, reescrevendo A. B = A + B 18

19 Teoremas de De Morgan 19

20 A + A.B=A Identidades auxiliares Utilizando a propriedade distributiva: A + A.B=A -> A.(1+B)=A E do postulado da soma, temos: 1+B=1, logo temos: A.(1+B)=A -> A.1=A A.1=A A + A.B=A 20

21 Identidades auxiliares (A+B).(A+C)=A+B.C (A+B).(A+C) = A.A + A.C + A.B + B.C -> Propriedade Distributiva = A + A.C + A.B + B.C -> Identidade A.A =A = A.(1+B+C)+B.C -> Propriedade Distributiva = A.1 + B.C -> Identidades 1+B+C=1 e A.1=A = A + B.C (A+B).(A+C) = A+B.C 21

22 A + A.B=A+B Identidades auxiliares 22

23 Resumo 23

24 Resumo A. (A+B) = A 24

25 Exercício Mostre, usando simplificação por postulados e propriedades, ou seja, por transformações algébricas que: A+A.B = A A.(A+B) = A 25

26 Solução 26

27 Exercício Mostre, usando simplificação por postulados e propriedades, ou seja, por transformações algébricas que: A + Ā.B = A + B (A+B).(A+C) = A + B.C 27

28 Solução 28

29 Solução 29

30 Simplificações de circuitos lógicos Utilizando o conceito da álgebra de Boole, podemos sim simplificar expressões e consequentemente circuito. Para efetuarmos estas simplificações, existem, basicamente, dois processos. O primeiro deles é a simplificação através de álgebra de Boole. Vamos simplificá-la, utilizando a álgebra de Boole. Primeiramente, vamos evidenciar o termo A: 30

31 Simplificações de circuitos lógicos 31

32 Simplificações de circuitos lógicos Esta expressão mostra a importância da simplificação e a consequente minimização do circuito, pois os resultados são idênticos aos valores assumidos pela variável A, assim sendo, todo o circuito pode ser substituído por um único fio ligado à variável A. 32

33 Exercícios 1- Simplifique as expressões booleanas, apresentadas a seguir: 33

34 Solução 34

ÁLGEBRA DE BOOLE POSTULADOS, TEOREMAS E PROPRIEDADES

ÁLGEBRA DE BOOLE POSTULADOS, TEOREMAS E PROPRIEDADES ÁLGEBRA DE BOOLE POSTULADOS, TEOREMAS E PROPRIEDADES A aplicação principal da álgebra de Boole é o estudo e a simplificação algébrica de circuitos lógicos. As variáveis booleanas podem assumir apenas dois

Leia mais

Álgebra de Boole. Nikolas Libert. Aula 4B Eletrônica Digital ET52C Tecnologia em Automação Industrial

Álgebra de Boole. Nikolas Libert. Aula 4B Eletrônica Digital ET52C Tecnologia em Automação Industrial Álgebra de Boole Nikolas Libert Aula 4B Eletrônica Digital ET52C Tecnologia em Automação Industrial Álgebra de Boole Álgebra de Boole Augustus De Morgan (1806-1871) e George Boole (1815-1864). Desenvolvimento

Leia mais

Apostila Mapas de Veitch-Karnaugh

Apostila Mapas de Veitch-Karnaugh Apostila Mapas de Veitch-Karnaugh Álgebra de Boole e Simplificação de Circuitos Lógicos... 3 Variáveis e Expressões na Álgebra de Boole... 3 Postulados... 3 Postulados da Complementação... 3 Postulado

Leia mais

COLÉGIO DO INSTITUTO BATISTA AMERICANO PROF. ABIMAILTON PRATTI DA SILVA Rua Mariana N.º 70 Retiro Volta Redonda Telefone: (24)

COLÉGIO DO INSTITUTO BATISTA AMERICANO PROF. ABIMAILTON PRATTI DA SILVA Rua Mariana N.º 70 Retiro Volta Redonda Telefone: (24) COLÉGIO DO INSTITUTO BATISTA AMERICANO PROF. ABIMAILTON PRATTI DA SILVA Rua Mariana N.º 70 Retiro Volta Redonda Telefone: (24) 33381279 SOLICITAÇÃO Não temos direito autoral reservado para o presente trabalho.

Leia mais

Álgebra de Boole. George Simon Boole ( ) O criador da álgebra dos circuitos digitais. Profª Jocelma Rios. Out/2012

Álgebra de Boole. George Simon Boole ( ) O criador da álgebra dos circuitos digitais. Profª Jocelma Rios. Out/2012 Out/2012 Álgebra de Boole George Simon Boole (1815-1864) O criador da álgebra dos circuitos digitais Profª Jocelma Rios O que pretendemos: Contar um pouco sobre a história da Álgebra, especialmente a Álgebra

Leia mais

Prof. Leonardo Augusto Casillo

Prof. Leonardo Augusto Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Aula 6 Álgebra de Boole Prof. Leonardo Augusto Casillo Álgebra de Boole (ou Boleana) Desenvolvida pelo matemático britânico George

Leia mais

Álgebra de Boole. Este material é uma adaptação das notas de aula dos professores Edino Fernandes, Juliano Maia, Ricardo Martins e Luciana Guedes

Álgebra de Boole. Este material é uma adaptação das notas de aula dos professores Edino Fernandes, Juliano Maia, Ricardo Martins e Luciana Guedes Álgebra de Boole Este material é uma adaptação das notas de aula dos professores Edino Fernandes, Juliano Maia, Ricardo Martins e Luciana Guedes Álgebra de Boole Álgebra Booleana ou Álgebra de Boole Conjunto

Leia mais

Eletrônica Digital. Funções e Portas Lógicas. Prof. Renato Moraes

Eletrônica Digital. Funções e Portas Lógicas. Prof. Renato Moraes Eletrônica Digital Funções e Portas Lógicas Prof. Renato Moraes Introdução Em 1854, o matemático inglês George Boole apresentou um sistema matemático de análise lógica conhecido como Álgebra de Boole.

Leia mais

Aula 07 : Portas Lógicas e Álgebra Booleana

Aula 07 : Portas Lógicas e Álgebra Booleana ELE 0316 / ELE 0937 Eletrônica Básica Departamento de Engenharia Elétrica FEIS - UNESP Aula 07 : Portas Lógicas e Álgebra Booleana 1. 1 7.1 Portas Lógicas e Expressões Algébricas 1. 2 7.1 Portas Lógicas

Leia mais

Abaixo descreveremos 6 portas lógicas: AND, OR, NOT, NAND, NOR e XOR.

Abaixo descreveremos 6 portas lógicas: AND, OR, NOT, NAND, NOR e XOR. 9. Apêndice - Portas e Operações Lógicas Uma porta lógica é um circuito eletrônico (hardware) que se constitui no elemento básico de um sistema de computação. A CPU, as memórias, as interfaces de E/S são

Leia mais

CAPÍTULO 1 REVISÃO DE LÓGICA COMBINACIONAL

CAPÍTULO 1 REVISÃO DE LÓGICA COMBINACIONAL 1 CAPÍTULO 1 REVISÃO DE LÓGICA COMBINACIONAL Sumário 1.1. Sistemas de Numeração... 3 1.1.1. Conversão Decimal Binária... 3 1.1.2. Conversão Binária Decimal... 3 1.1.3. Conversão Binária Hexadecimal...

Leia mais

LOGIC CIRCUITS CMOS Circuitos Lógicos CMOS

LOGIC CIRCUITS CMOS Circuitos Lógicos CMOS LOGIC CIRCUITS CMOS Circuitos Lógicos CMOS M-1112A *Only illustrative image./imagen meramente ilustrativa./ Imagem meramente ilustrativa. EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos

Leia mais

Eletrônica Digital. Funções lógicas, álgebra de boole e circuitos lógicos combinacionais básicos. Professor: Francisco Ary

Eletrônica Digital. Funções lógicas, álgebra de boole e circuitos lógicos combinacionais básicos. Professor: Francisco Ary Eletrônica Digital Funções lógicas, álgebra de boole e circuitos lógicos combinacionais básicos Professor: Francisco Ary Introdução Vimos na aula anterior conversão de números binário fracionários em decimal;

Leia mais

Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções

Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções João Paulo Baptista de Carvalho (Prof. Auxiliar do IST) joao.carvalho@inesc.pt Álgebra de Boole Binária A Álgebra de Boole binária

Leia mais

Organização de computadores

Organização de computadores Organização de computadores Aula 6 - Álgebra de Boole Professora Marcela Santos marcela@edu.estacio.br Tópicos Portas lógicas e álgebra de boole Álgebra de boole regras e propriedades Provas de algumas

Leia mais

S = ABC + A( C + B) -> Aplicando identidades auxiliares B C + B= C+B

S = ABC + A( C + B) -> Aplicando identidades auxiliares B C + B= C+B Resolução do Exercício feito em sala de aula: A B S 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 Expressão por Soma dos produtos: S = AB + AB + AB + AB Simplificação: S = AB + A( B +

Leia mais

Introdução à Informática. Álgebra de Boole. Ageu Pacheco e Alexandre Meslin

Introdução à Informática. Álgebra de Boole. Ageu Pacheco e Alexandre Meslin Introdução à Informática Álgebra de oole geu Pacheco e lexandre Meslin Objetivo da ula: Estudar os conceitos e regras que regem o projeto e funcionamento dos circuitos lógicos dos computadores digitais.

Leia mais

ÁLGEBRA DE BOOLE Operações Fundamentais, Autoavaliação, Indução Perfeita e Simulação

ÁLGEBRA DE BOOLE Operações Fundamentais, Autoavaliação, Indução Perfeita e Simulação ÁLGEBRA DE BOOLE Operações Fundamentais, Autoavaliação, Indução Perfeita e Simulação OBJETIVOS: a) Conhecer na prática os principais fundamentos da álgebra de Boole; b) Comprovar na prática os teoremas

Leia mais

ÁLGEBRA BOOLEANA. Foi um modelo formulado por George Boole, por volta de 1850.

ÁLGEBRA BOOLEANA. Foi um modelo formulado por George Boole, por volta de 1850. ÁLGEBRA BOOLEANA Foi um modelo formulado por George Boole, por volta de 1850. Observando a lógica proposicional e a teoria de conjuntos verificamos que elas possuem propriedades em comum. Lógica Proposicional

Leia mais

Teoria dos anéis 1 a parte 3

Teoria dos anéis 1 a parte 3 A U L A Teoria dos anéis 1 a parte 3 Meta da aula Descrever a estrutura algébrica de anel como uma generalização de determinadas propriedades dos números inteiros. objetivos Ao final desta aula, você deverá

Leia mais

CEFET/RJ - Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro, 23 de setembro de 2008.

CEFET/RJ - Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro, 23 de setembro de 2008. CEFET/RJ - Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro, 23 de setembro de 2008. 1 a LISTA DE EXERCÍCIOS DE ELETRÔNICA DIGITAL Prof. Alessandro Jacoud Peixoto 1. Implemente

Leia mais

3. Computadores Industriais

3. Computadores Industriais UNIVERSIDADE DO ESTADO DE SANTA CATARINA UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT DEPARTAMENTO DE ENG. DE PRODUÇÃO E SISTEMAS - DEPS INFORMÁTICA INDUSTRIAL IFD 3. Computadores Industriais Igor Kondrasovas

Leia mais

3. CAPÍTULO LÓGICAS DIGITAIS

3. CAPÍTULO LÓGICAS DIGITAIS 3. CAPÍTULO LÓGICAS DIGITAIS 3.1. Introdução A Lógica é um conjunto de regras para raciocínio sobre um determinado assunto, ela é muito utilizada no ramo da Filosofia e da Matemática. 3.2. Portas lógicas

Leia mais

Introdução à Computação: Álgebra Booleana

Introdução à Computação: Álgebra Booleana Introdução à Computação: Álgebra Booleana Beatriz F. M. Souza (bfmartins@inf.ufes.br) http://inf.ufes.br/~bfmartins/ Computer Science Department Federal University of Espírito Santo (Ufes), Vitória, ES

Leia mais

APOSTILA COMPLEMENTAR

APOSTILA COMPLEMENTAR APOSTILA COMPLEMENTAR Conteúdo A ÁLGEBRA DE BOOLE... 1 Os níveis lógicos... 2 Operações Lógicas... 3 Função Lógica NÃO ou Inversora... 4 Função Lógica E... 5 Função lógica OU... 6 Função NÃO E... 7 Função

Leia mais

Transistor. Portas Lógicas (2) Base; Coletor; Emissor.

Transistor. Portas Lógicas (2) Base; Coletor; Emissor. Nível da Lógica Digital Nível da Lógica Digital (Aula 6) Portas Lógicas e Lógica Digital Estudar vários aspectos da lógica digital Base de estudo para os níveis mais elevados da hierarquia das máquinas

Leia mais

1.2. ELEMENTOS DE ÁLGEBRA EXPANSÃO DE PRODUTOS

1.2. ELEMENTOS DE ÁLGEBRA EXPANSÃO DE PRODUTOS 1.2. ELEMENTOS DE ÁLGEBRA 1.2.1. EXPANSÃO DE PRODUTOS Em álgebra, é frequente termos de expandir produtos cujos fatores são expressões algébricas (polinômios, por exemplo). Para isso, aplicamos a propriedade

Leia mais

Material Teórico - Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas. Produtos Notáveis. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas. Produtos Notáveis. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Produtos Notáveis e Fatoração de Epressões Algébricas Produtos Notáveis Oitavo Ano Prof. Ulisses Lima Parente Uma identidade algébrica é uma equação em que os dois membros

Leia mais

FUNDAMENTOS DA AUTOMAÇÃO Funções e Portas Lógicas. Prof. Luiz Fernando Laguardia Campos FMS

FUNDAMENTOS DA AUTOMAÇÃO Funções e Portas Lógicas. Prof. Luiz Fernando Laguardia Campos FMS FUNDAMENTOS DA AUTOMAÇÃO Funções e Portas Lógicas Prof. Luiz Fernando Laguardia Campos FMS lflcampos@machadosobrinho.com.br Funções e Portas Lógicas Funções lógicas e, ou, não, ne e nou. Nas funções lógicas,

Leia mais

Material Teórico - Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas. Produtos Notáveis. Oitavo Ano

Material Teórico - Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas. Produtos Notáveis. Oitavo Ano Material Teórico - Módulo de Produtos Notáveis e Fatoração de Epressões Algébricas Produtos Notáveis Oitavo Ano Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto Uma identidade algébrica

Leia mais

Representação de Circuitos Lógicos

Representação de Circuitos Lógicos 1 Representação de Circuitos Lógicos Formas de representação de um circuito lógico: Representação gráfica de uma rede de portas lógicas Expressão booleana Tabela verdade 3 representações são equivalentes:

Leia mais

------------------------------------------------------------------------------------------------------------------------------ Variáveis Lógicas Uma variável lógica é aquela que pode assumir apenas os

Leia mais

A B f(a, B) = A + B. A f(a ) = A

A B f(a, B) = A + B. A f(a ) = A Álgebra de Boole ESTV-ESI-Sistemas Digitais-Álgebra de Boole 1/7 A Álgebra de Boole é uma ferramenta matemática muito utilizada na representação e simplificação de funções binárias (ou lógicas), sendo

Leia mais

Circuitos Sequenciais

Circuitos Sequenciais Circuitos Sequenciais Tópicos: Contadores Memórias Circuitos Sequenciais Teoremas DeMorgan Mapas de Karnaugh Multiplexadores Flip Flops Flip Flop Os flip flops são unidades básicas de memória. Cada circuito

Leia mais

CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos

CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos CONJUNTO DOS NÚMEROS REAIS NÚMEROS RACIONAIS Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos Numero racional é todo o numero que pode ser escrito na forma a/b (com b diferente de zero) : a)

Leia mais

AULA 7 EXPRESSÕES ALGÉBRICAS. Substituindo x pelo número -4 na expressão (x + 1). (x + 2). (x + 3), temos:

AULA 7 EXPRESSÕES ALGÉBRICAS. Substituindo x pelo número -4 na expressão (x + 1). (x + 2). (x + 3), temos: AULA 7 EXPRESSÕES ALGÉBRICAS Resoluções: a) (x + ). (x + ). (x + ), para x = -4 Substituindo x pelo número -4 na expressão (x + ). (x + ). (x + ), temos: (-4 + ). (-4 + ). (-4 + ) = -. (-). (-) = 6. (-)

Leia mais

Álgebra de Boole. João Paulo Cerquinho Cajueiro 19 de agosto de 2009

Álgebra de Boole. João Paulo Cerquinho Cajueiro 19 de agosto de 2009 Álgebra de Boole João Paulo Cerquinho Cajueiro 19 de agosto de 2009 A álgebra de Boole foi desenvolvida por George Boole(1815 1864) em seu livro An Investigation of the Laws of Thought on Which are Founded

Leia mais

Automação Industrial Parte 8

Automação Industrial Parte 8 Automação Industrial Parte 8 Prof. Ms. Getúlio Teruo Tateoki http://www.getulio.eng.br/meusalunos/autind.html -Vamos supor que seja necessário determinar a função lógica interna de um sistema desconhecido.

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

(A1) As operações + e são comutativas, ou seja, para todo x e y em A, x + y = y + x e x y = y x

(A1) As operações + e são comutativas, ou seja, para todo x e y em A, x + y = y + x e x y = y x Notas de aula de MAC0329 (2003) 17 3 Álgebra Booleana Nesta parte veremos uma definição formal de álgebra booleana, a qual é feita via um conjunto de axiomas (ou postulados). Veremos também algumas leis

Leia mais

A Lógica e Álgebra de George Boole. Alexssandra Dayanne Soares de Campos 1 Natalie Geny Silva Braz 2 Nicole Motta Ferreira 3

A Lógica e Álgebra de George Boole. Alexssandra Dayanne Soares de Campos 1 Natalie Geny Silva Braz 2 Nicole Motta Ferreira 3 A Lógica e Álgebra de George Boole Alexssandra Dayanne Soares de Campos 1 Natalie Geny Silva Braz 2 Nicole Motta Ferreira 3 Resumo: O presente trabalho apresenta a vida e obra de George Boole, denominado

Leia mais

Introdução à Informática. Funções Lógicas. Ageu Pacheco e Alexandre Meslin

Introdução à Informática. Funções Lógicas. Ageu Pacheco e Alexandre Meslin Introdução à Informática Funções Lógicas Ageu Pacheco e Alexandre Meslin Objetivo da Aula: Estudar os principais métodos empregados na simplificação/minimização de funções lógicas (booleanas( booleanas).

Leia mais

Matrizes e sistemas de equações algébricas lineares

Matrizes e sistemas de equações algébricas lineares Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37 Definições Equação linear Uma equação (algébrica)

Leia mais

UFMT. Ministério da Educação UNIVERSIDADE FEDERAL DE MATO GROSSO PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO PLANO DE ENSINO

UFMT. Ministério da Educação UNIVERSIDADE FEDERAL DE MATO GROSSO PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO PLANO DE ENSINO UFMT 1) IDENTIFICAÇÃO: Disciplina: Lógica Matemática e Elementos de Lógica Digital Ministério da Educação UNIVERSIDADE FEDERAL DE MATO GROSSO PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO PLANO DE ENSINO Curso:

Leia mais

Uma fração é algébrica se seu numerador e seu denominador forem expressões algébricas.

Uma fração é algébrica se seu numerador e seu denominador forem expressões algébricas. FRAÇÕES ALGÉBRICAS DEFINIÇÃO: Uma fração é algébrica se seu numerador e seu denominador forem epressões algébricas. a Como eemplos de tais frações podemos ter onde o numerador é a e o denominador é b 1

Leia mais

Capítulo 3. Álgebra de Bool

Capítulo 3. Álgebra de Bool Capítulo 3 Álgebra de Bool Adaptado dos transparentes das autoras do livro The Essentials of Computer Organization and Architecture Objectivos Compreender a relação entre lógica Booleana e os circuitos

Leia mais

Introdução à Informática Aulas 27 e 28

Introdução à Informática Aulas 27 e 28 FAPAN SISTEMAS DE INFORMAÇÃO - SI Introdução à Informática Aulas 27 e 28 Prof. Roberto Tikao Tsukamoto Júnior Cáceres, 18 de abril de 2011. REVISÃO Conversão Decimal para Binário Exemplo 1: número 107

Leia mais

Técnicas Digitais para Computação

Técnicas Digitais para Computação INF 8 Técnicas Digitais para Computação Minimização de Funções Booleanas Aula Técnicas Digitais. Mapas de Karnaugh com 2 variáveis Diagrama onde cada célula corresponde a um mintermo Exemplo com 2 variáveis

Leia mais

ELETRÔNICA DIGITAL Aula 1- Sistemas de Numeração. Prof.ª Msc. Patricia Pedroso Estevam Ribeiro

ELETRÔNICA DIGITAL Aula 1- Sistemas de Numeração. Prof.ª Msc. Patricia Pedroso Estevam Ribeiro ELETRÔNICA DIGITAL Aula 1- Sistemas de Numeração Prof.ª Msc. Patricia Pedroso Estevam Ribeiro Email: patriciapedrosoestevam@hotmail.com 12/08/2016 1 Critérios de avaliação Duas provas e listas de exercícios

Leia mais

CURSO DE ELETRÔNICA DIGITAL A ÁLGEBRA DE BOOLE

CURSO DE ELETRÔNICA DIGITAL A ÁLGEBRA DE BOOLE LIÇÃO 2 A ÁLGEBRA DE BOOLE Na primeira lição do nosso curso aprendemos o significado das palavras Digital e Lógica empregadas na Eletrônica e nos computadores. Vimos que os computadores são denominados

Leia mais

Eletrônica Digital para Instrumentação

Eletrônica Digital para Instrumentação G4 Eletrônica Digital para Instrumentação Prof. Márcio Portes de Albuquerque (mpa@cbpf.br) Prof. Herman P. Lima Jr (hlima@cbpf.br) Centro Brasileiro de Pesquisas Físicas Ministério da Ciência e Tecnologia

Leia mais

Nível da Lógica Digital (Aula 6) Portas Lógicas e Lógica Digital Nível da Lógica Digital Estudar vários aspectos da lógica digital Base de estudo para os níveis mais elevados da hierarquia das máquinas

Leia mais

4. Álgebra Booleana e Simplificação Lógica. 4. Álgebra Booleana e Simplificação Lógica 1. Operações e Expressões Booleanas. Objetivos.

4. Álgebra Booleana e Simplificação Lógica. 4. Álgebra Booleana e Simplificação Lógica 1. Operações e Expressões Booleanas. Objetivos. Objetivos 4. Álgebra Booleana e Simplificação Lógica Aplicar as leis e regras básicas da álgebra Booleana Aplicar os teoremas de DeMorgan em expressões Booleanas Descrever circuitos de portas lógicas com

Leia mais

2. PRODUTOS NOTÁVEIS 2.1. EXPANSÃO DE PRODUTOS

2. PRODUTOS NOTÁVEIS 2.1. EXPANSÃO DE PRODUTOS 2. PRODUTOS NOTÁVEIS 2.1. EXPANSÃO DE PRODUTOS Em álgebra, é frequente termos de expandir produtos cujos fatores são expressões algébricas (polinômios, por exemplo). Para isso, aplicamos a propriedade

Leia mais

EXPERIÊNCIA 4 CIRCUITOS COMBINACIONAIS

EXPERIÊNCIA 4 CIRCUITOS COMBINACIONAIS MEC UTFPR-CT DAELT CURSO: ENGENHARIA INDUSTRIAL ELÉTRICA DISCIPLINA: ELETRÔNICA DIGITAL PROF.: EXPERIÊNCIA 4 CIRCUITOS COMBINACIONAIS DATA REALIZAÇÃO: DATA ENTREGA: ALUNOS:,, OBJETIVOS Aplicar portas lógicas:

Leia mais

Profs. Alexandre Lima e Moraes Junior 1

Profs. Alexandre Lima e Moraes Junior  1 Raciocínio Lógico-Quantitativo para Traumatizados Aula 07 Matrizes, Determinantes e Solução de Sistemas Lineares. Conteúdo 7. Matrizes, Determinantes e Solução de Sistemas Lineares...2 7.1. Matrizes...2

Leia mais

Apresentar o conceito de anel, suas primeiras definições, diversos exemplos e resultados. Aplicar as propriedades dos anéis na relação de problemas.

Apresentar o conceito de anel, suas primeiras definições, diversos exemplos e resultados. Aplicar as propriedades dos anéis na relação de problemas. Aula 10 O CONCEITO DE ANEL META Apresentar o conceito de anel, suas primeiras definições, diversos exemplos e resultados. OBJETIVOS Definir, exemplificar e classificar anéis. Aplicar as propriedades dos

Leia mais

Prof. Leonardo Augusto Casillo

Prof. Leonardo Augusto Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Aula 4 Portas Lógicas Prof. Leonardo Augusto Casillo Analisando o circuito (1)... A Acesa Apagada S Apagada Acesa O emissor do transistor

Leia mais

SCE Elementos de Lógica Digital I

SCE Elementos de Lógica Digital I SCE - Elementos de Lógica Digital I Introdução aos circuitos lógicos Prof. Vanderlei Bonato Tópicos da Aula de Hoje Variáveis e funções lógicas Tabela verdade Álgebra Booleana Diagrama de Venn Processo

Leia mais

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b

Leia mais

Simplificação de Expressões Booleanas e Circuitos Lógicos

Simplificação de Expressões Booleanas e Circuitos Lógicos Simplificação de Expressões Booleanas e Circuitos Lógicos Margrit Reni Krug Julho/22 Tópicos Revisão Álgebra Booleana Revisão portas lógicas Circuitos lógicos soma de produtos produto de somas Simplificação

Leia mais

Aula 4: Álgebra booleana

Aula 4: Álgebra booleana Aula 4: Álgebra booleana Circuitos Digitais Rodrigo Hausen CMCC UFABC 01 de fevereiro de 2013 http://compscinet.org/circuitos Rodrigo Hausen (CMCC UFABC) Aula 4: Álgebra booleana 01 de fevereiro de 2013

Leia mais

MONÔMIOS E POLINÔMIOS

MONÔMIOS E POLINÔMIOS MONÔMIOS E POLINÔMIOS Problema: Observa as figuras. 6-9 6 4 Sabendo que as figuras são equivalentes, determina as dimensões do retângulo. Resolução: Se as figuras são equivalentes significa que têm a mesma

Leia mais

Notas de aula de MAC0329 Álgebra Booleana e Aplicações

Notas de aula de MAC0329 Álgebra Booleana e Aplicações Notas de aula de MAC0329 Álgebra Booleana e Aplicações Nina S. T. Hirata Depto. de Ciência da Computação IME / USP Este texto é uma referência-base para o curso de MAC0329 (Álgebra Booleana e Aplicações).

Leia mais

Números Inteiros Axiomas e Resultados Simples

Números Inteiros Axiomas e Resultados Simples Números Inteiros Axiomas e Resultados Simples Apresentamos aqui diversas propriedades gerais dos números inteiros que não precisarão ser provadas quando você, aluno, for demonstrar teoremas nesta disciplina.

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

Equipe de Matemática MATEMÁTICA. Matrizes

Equipe de Matemática MATEMÁTICA. Matrizes Aluno (a): Série: 3ª Turma: TUTORIAL 14B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Matrizes Introdução O crescente uso dos computadores tem feito com que a teoria das matrizes seja cada vez mais

Leia mais

Sistemas Digitais Minimização de Funções: Mapas de Karnaugh

Sistemas Digitais Minimização de Funções: Mapas de Karnaugh Sistemas Digitais Minimização de Funções: Mapas de Karnaugh João Paulo Baptista de Carvalho (Prof. Auxiliar do IST) joao.carvalho@inesc-id.pt Minimização de uma Função Trata-se de obter a expressão mínima

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Este capítulo visa oferecer uma breve revisão sobre teoria elementar dos conjuntos. Além de conceitos básicos importantes em matemática, a sua imprtância reside no fato da

Leia mais

Portas Lógicas Básicas Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h

Portas Lógicas Básicas Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h Portas Lógicas Básicas Prof. Rômulo Calado Pantaleão Camara Carga Horária: 2h/60h Colegiado de Engenharia da Computação CECOMP Introdução à Algebra de Boole Em lógica tradicional, uma decisão é tomada

Leia mais

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro.

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. FRAÇÕES O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a dividimos em quatro

Leia mais

Introdução à Computação: Introdução às Portas Lógicas

Introdução à Computação: Introdução às Portas Lógicas Introdução à Computação: Introdução às Portas Lógicas Beatriz F. M. Souza (bfmartins@inf.ufes.br) http://inf.ufes.br/~bfmartins/ Computer Science Department Federal University of Espírito Santo (Ufes),

Leia mais

Nº de Questões. FATORAÇÃO Fatorar um polinômio significa escrever esse polinômio como uma multiplicação de dois ou mais fatores.

Nº de Questões. FATORAÇÃO Fatorar um polinômio significa escrever esse polinômio como uma multiplicação de dois ou mais fatores. COLÉGIO SETE DE SETEMBRO Rua Ver. José Moreira, 80 Fone 301-301 Paulo Afonso BA Aluno Ano 8º Turma Curso Ensino Fundamental II Nº de Questões Tipo de Prova Bimestre Data Nota 09 --- I 01/09/01 Disciplina

Leia mais

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são:

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são: FATORAÇÃO Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como produto de outras expressões.

Leia mais

Mapas de Karnaugh Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h

Mapas de Karnaugh Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h Mapas de Karnaugh Prof. Rômulo Calado Pantaleão Camara Carga Horária: 2h/60h Mapas de Karnaugh O mapa de Veitch-Karnaugh, ou simplesmente mapa de Karnaugh, é uma tabela montada de forma a facilitar o processo

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Matrizes - Parte II. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2

Matrizes - Parte II. Juliana Pimentel.  juliana.pimentel. Sala Bloco A, Torre 2 Matrizes - Parte II Juliana Pimentel juliana.pimentel@ufabc.edu.br http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 AB BA (Comutativa) Considere as matrizes [ ] [ 1 0 1 2 A =

Leia mais

5 AULA. Teorias Axiomáticas LIVRO. META: Apresentar teorias axiomáticas.

5 AULA. Teorias Axiomáticas LIVRO. META: Apresentar teorias axiomáticas. 1 LIVRO Teorias Axiomáticas 5 AULA META: Apresentar teorias axiomáticas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Criar teorias axiomáticas; Provar a independência dos axiomas de uma

Leia mais

Eduardo. Matemática Matrizes

Eduardo. Matemática Matrizes Matemática Matrizes Eduardo Definição Tabela de números dispostos em linhas e colunas. Representação ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos

Leia mais

UFMG DCC Álgebra de Boole. Slides ligeiramente adaptados daqueles do professor Osvaldo Farhat de Carvalho, DCC, UFMG

UFMG DCC Álgebra de Boole. Slides ligeiramente adaptados daqueles do professor Osvaldo Farhat de Carvalho, DCC, UFMG UFMG DCC001 2013-1 1 Álgebra de Boole Slides ligeiramente adaptados daqueles do professor Osvaldo Farhat de Carvalho, DCC, UFMG UFMG DCC001 2013-1 2 Bits e informação Representamos números, caracteres,

Leia mais

Circuitos Lógicos Capítulo 3 Portas Lógicas e Álgebra Booleana Parte II

Circuitos Lógicos Capítulo 3 Portas Lógicas e Álgebra Booleana Parte II UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL REI Circuitos Lógicos Capítulo 3 Portas Lógicas e Álgebra Booleana Parte II Prof. Davidson Lafitte Firmo http://www.ppgel.net.br/davidson davidson@ufsj.edu.br São João

Leia mais

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um FRAÇÕES Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Texto de apoio às aulas. Amélia Bastos, António Bravo Dezembro 2010 Capítulo 1 Números reais As propriedades do conjunto dos números reais têm por base um conjunto restrito

Leia mais

Sistemas Digitais I LESI :: 2º ano

Sistemas Digitais I LESI :: 2º ano Sistemas Digitais I LESI :: 2º ano - Álgebra António Joaquim Esteves João Miguel Fernandes www.di.uminho.pt/~aje Bibliografia: secções 3. e 4., DDPP, Wakerly DEP. DE INFORMÁTICA ESCOLA DE ENGENHARIA UNIVERSIDADE

Leia mais

Sistema Decimal - Permite representar qualquer quantidade por intermédio de uma soma ponderada de potências de base 10.

Sistema Decimal - Permite representar qualquer quantidade por intermédio de uma soma ponderada de potências de base 10. 1 Coelh ho, J.P. @ Sistem mas Digita ais : Y20 Sistemas de Numeração e Códigos Binários sistema de numeração que permitia, através de dez símbolos distintos (algarismos), representar uma determinada grandeza

Leia mais

ELETRÔNICA DIGITAL APLICADA Aula 6- Amplificadores Operacionais com filtros

ELETRÔNICA DIGITAL APLICADA Aula 6- Amplificadores Operacionais com filtros ELETRÔNICA DIGITAL APLICADA Aula 6- Amplificadores Operacionais com filtros Prof.ª Msc. Patricia Pedroso Estevam Ribeiro Email: patriciapedrosoestevam@hotmail.com 05/11/2016 1 Introdução Filtros são circuitos

Leia mais

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante.

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante. Conjunto dos Números Naturais A noção de um número natural surge com a pura contagem de objetos. Ao contar, por exemplo, os livros de uma estante, temos como resultado um número do tipo: N = {0,1,2,3 }

Leia mais

Notas de Aula - Álgebra de Boole Parte 1

Notas de Aula - Álgebra de Boole Parte 1 Universidade de Brasília Departamento de Engenharia Elétrica Sistemas Digitais 1 Prof. Dr. Alexandre Romariz Revisado em 27/4/06 Notas de Aula - Álgebra de Boole Parte 1 1 Introdução Fundamentos, Teoremas

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

ÁLGEBRA BOOLEANA E LÓGICA DIGITAL AULA 04 Arquitetura de Computadores Gil Eduardo de Andrade

ÁLGEBRA BOOLEANA E LÓGICA DIGITAL AULA 04 Arquitetura de Computadores Gil Eduardo de Andrade ÁLGEBRA BOOLEANA E LÓGICA DIGITAL AULA 04 Arquitetura de Computadores Gil Eduardo de Andrade O conteúdo deste documento é baseado no livro Princípios Básicos de Arquitetura e Organização de Computadores

Leia mais

INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS JOINVILLE CURSO TÉCNICO DE ELETROELETRÔNICA ELETRÔNICA DIGITAL. Prof. M. Sc. Mauricio Martins Taques

INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS JOINVILLE CURSO TÉCNICO DE ELETROELETRÔNICA ELETRÔNICA DIGITAL. Prof. M. Sc. Mauricio Martins Taques INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS JOINVILLE CURSO TÉCNICO DE ELETROELETRÔNICA ELETRÔNICA DIGITAL Prof. M. Sc. Mauricio Martins Taques 1. SISTEMAS DE NUMERAÇÃO Provavelmente, o primeiro sistema

Leia mais

4 AULA. Regras de Inferência e Regras de Equivalência LIVRO. META: Introduzir algumas regras de inferência e algumas regras de equivalência.

4 AULA. Regras de Inferência e Regras de Equivalência LIVRO. META: Introduzir algumas regras de inferência e algumas regras de equivalência. 1 LIVRO Regras de Inferência e Regras de Equivalência 4 AULA META: Introduzir algumas regras de inferência e algumas regras de equivalência. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de:

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II 1 Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 03 Página 1 2 ÁLGEBRA - é o ramo que estuda as generalizações dos conceitos e operações aritméticas. Hoje em dia o termo Álgebra é bastante

Leia mais

Concurso Público Conteúdo

Concurso Público Conteúdo Concurso Público 2016 Conteúdo 1ª parte Números inteiros e racionais: operações (adição, subtração, multiplicação, divisão, potenciação); expressões numéricas; múltiplos e divisores de números naturais;

Leia mais

EXPERIÊNCIA 3 COMBINAÇÃO DE PORTAS LÓGICAS

EXPERIÊNCIA 3 COMBINAÇÃO DE PORTAS LÓGICAS 1 MEC UTFPR-CT DAELT CURSO: ENGENHARIA INDUSTRIAL ELÉTRICA DISCIPLINA: ELETRÔNICA DIGITAL PROF.: EXPERIÊNCIA 3 COMBINAÇÃO DE PORTAS LÓGICAS DATA REALIZAÇÃO: DATA ENTREGA: ALUNOS: 1. Introdução 1.1 Objetivos

Leia mais

Sistemas de Numeração

Sistemas de Numeração Sistemas de Numeração UNIDADE 1 PROF. ANTONIO LOPES DE SOUZA, Ph.D. DEPARTAMENTO DE ENGENHARIA ELÉTRICA / UFRJ Sistemas de Numeração O sistema de numeração com o qual estamos mais familiarizados é o decimal,

Leia mais

Professor conteudista: Ricardo Holderegger

Professor conteudista: Ricardo Holderegger Lógica Professor conteudista: Ricardo Holderegger Sumário Lógica Unidade I 1 SISTEMAS DICOTÔMICOS...3 1.1 Proposições...3 1.1.1 Proposições lógicas...3 1.1.2 Símbolos da lógica matemática...4 1.1.3 A negação...4

Leia mais

Circuitos Lógicos Aula 8

Circuitos Lógicos Aula 8 Circuitos Lógicos Aula 8 Aula passada Portas NAND e NOR Teoremas booleanos Teorema de DeMorgan Universalidade NAND e NOR Aula de hoje Circuitos Combinacionais Expressão SOP Simplificação Construindo circuito

Leia mais

PLANIFICAÇÃO ANUAL DE MATEMÁTICA

PLANIFICAÇÃO ANUAL DE MATEMÁTICA 1.º Período Agrupamento de Escolas António Correia de Oliveira PLANIFICAÇÃO ANUAL DE MATEMÁTICA 7.º ANO ANO LETIVO 2016/17 Números Racionais Números e operações NO7 Números racionais - Simétrico da soma

Leia mais

Sistemas Digitais Universidade Católica do Salvador Professor Marco Antônio C. Câmara. Aula 03 Simplificação de Expressões Lógicas.

Sistemas Digitais Universidade Católica do Salvador Professor Marco Antônio C. Câmara. Aula 03 Simplificação de Expressões Lógicas. Sistemas Digitais Universidade Católica do Salvador Professor Marco Antônio C. Câmara Aula 03 Simplificação de Expressões Lógicas Roteiro da Aula : Nesta aula conheceremos os métodos mais utilizados para

Leia mais