MEDIDAS DE DISPERSÃO 9. MEDIDAS DE DISPERSÃO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MEDIDAS DE DISPERSÃO 9. MEDIDAS DE DISPERSÃO"

Transcrição

1 Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa MEDIDAS DE DISPERSÃO 9 9. MEDIDAS DE DISPERSÃO A formação forecda por uma medda de dspersão complemeta a déa da medda de posção mostrado a varabldade de um determado valor em relação a uma posção cetral dos valores, ou seja, a méda. Tas valores podem ser determados para a amostra ou para a população. Aqu uma orma para omeclatura das varáves referete a valores tomados para a população e para a amostra deve ser dferecada pela letra. Os valores referecados por letras gregas são referetes à população e os valores letras romaas são referetes a amostra. Parâmetro (valores reas) População Varável Amostra Méda X Varâca S Desvo padrão S 9.1 Ampltude total A ampltude total já mecoada aterormete represeta a varação etre o meor e maor valor de um determado cojuto de dados e pode ser obtda a partr da expressão: X X MAX X MIN Prof. M. Sc Aquo 83

2 Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa Exemplo 1: Calcule a ampltude dos dados abaxo: { } Solução: Como os dados estão em forma de ROL; X X MAX X Logo a ampltude é de 6 potos etre o mímo e o máxmo. MIN Desvo médo absoluto Represeta uma varação em toro de um valor cetral que é a méda. O desvo médo determado para dados agrupados, tato para a amostra e para a população respectvamete pelas expressões: D m 1 X X. f 1 f e 1 X. f 1 f Ode represeta a méda artmétca para a população. Exemplo : Calcule o desvo médo absoluto dos dados abaxo: { } Solução: Como os dados são agrupáves será aplcada a méda poderada pela frequêca. Ica-se por motar a tabela com os dados: f f - f , , , , , ,667 1,7778 ~ Logo o valor será 18, é o desvo absoluto a méda poderada. Prof. M. Sc Aquo 84

3 Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa 9.3 Varâca Expressa a varabldade dos valores em relação a um determado valor de referêca. Quato maor for o valor da varâca, maor será a varabldade Varâca a população [ ] A varâca a população determa a varabldade dos dados a população. Para dados ão agrupados é determado pela expressão: 1 ( X ) Ode represeta a méda artmétca para a população. Para o caso em que os dados estejam agrupados, utlza-se a expressão: 1 ( X ) 1 f f 9.3. Varâca a amostra [ s ] Neste caso é cosderado para amostras de uma determada população. Para que se teha uma melhor estmatva do resultado é aplcada a correção de Bessel a varâca da população, ou seja: s 1 Portato a expressão para a varâca a amostra fca defa como: s 1 ( X 1 X ) Prof. M. Sc Aquo 85

4 Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa defda como: De forma aáloga para dados amostras agrupados, a expressão fca s 1 ( X X ) 1 f Exemplo : Calcule a varâca cosderado todos os dados e determe a varâca para uma amostra que descosdere o mímo e o máxmo da dstrbução. { } Solução: Prmero caso, cosderado todos os dados está sedo aplcada a varâca sobre a população. Com sso: f f - f , , , , , ,667 4 Logo a varâca da população é =4 1 ( X ) 1 f f Segudo caso, pede-se elmar os máxmos e mímos, o caso 15 e 1 motado uma amostra com sso. Será aplcada a varâca sobre a amostra. Com sso: X f f X x - X X f , , , ,57,95 s 1 ( X X ) 1 f Logo a varâca a amostra é s =3 Prof. M. Sc Aquo 86

5 9.4 Desvo padrão Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa O desvo padrão é a raz da varâca. Sedo cosderado para amostras de uma determada população. Quato meor o resultado do cálculo para o desvo padrão mas próxmo do valor verdadero (que ão poder ser determado) o valor obtdo estará. O resultado cotráro mostrará o quato os valores estão afastados do valor verdadero. Se em algum caso o valor for zero, sgfcará que todos os valores são exatamete guas. Como o desvo padrão é determado a partr de uma raz esta uca deverá ser egatva Desvo padrão a população [ ] O desvo padrão para a população é determado pela expressão: 1 ( X ) 9.4. Desvo padrão a amostra [ s ] Para o caso de valores agrupados da população, o desvo padrão pode ser obtdo pela expressão: s 1 ( X 1 X ) Para o caso de amostras cujos dados foram agrupados, é aplcada a expressão com a correção de Bessel coforme a expressão: s 1 ( X X ) 1 f Prof. M. Sc Aquo 87

6 Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa Exemplo 3: Calcule o desvo padrão para as varâcas determadas o exemplo. Qual obteve melhor resultado? Solução: Prmero caso, cosderado que a varâca da população é =4 o desvo padrão é: 4 No segudo caso, a varâca a amostra é s =3, logo: s 3 1,731 1,7 Avalado ambos os casos o segudo obteve meor varação logo, melhor resultado. Coclu-se que é melhor trabalhar este caso com a amostra ode os dados foram trabalhados e o valor obtdo para a méda esta mas próxmo do valor verdadero Desvo padrão a méda de amostrages. [ ] É mportate eteder também o coceto de desvo padrão que aqu, ecessaramete, será o desvo padrão da méda. Apredemos em capítulos aterores a determar este para a população e para a amostra, em uma úca observação, que mostram o erro em relação a uma medda. O que sgfca etão calcular sso para a méda? Se realzarmos determações de um determado valor, o valor mas adequado e próxmo do valor verdadero será a méda. Se fzermos uma tomada de váras amostrages teremos váras médas, sedo que, todas elas seram referetes e aproxmadas ao valor verdadero. Fazedo etão a méda das médas observadas, o erro assocado a esta aproxmação, dfere do ateror, pos os valores trabalhados são valores próxmos do valor real logo o erro tede a dmur coforme aumeta a amostragem (cojuto de amostras) e o tamaho da amostra. Com sso em mete, temos; s 1 s ( 1) ( 1) Como a seguda parte do termo multplcatvo é o desvo padrão a amostra, vem que: Ode é o desvo padrão para a méda de amostrages. Prof. M. Sc Aquo 88

7 Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa Exemplo 4: Um cojuto de amostrages sobre a altura obteve como méda 1,50m e desvo padrão de 0,15m. Determe o desvo padrão a méda para um cojuto de amostra que cosdere 100 dvíduos e outro cojuto que cosdere um cojuto de meddas de 50 dvíduos. Qual obterá a melhor estatístca em relação à méda? Determe o percetual relatvo etre o meor desvo em relação ao maor. Qual a redução o percetual? Solução: O desvo padrão é de =0,15m, e a méda de 1,50m (população de pgmeus?). Para o prmero caso, cosderado que = 100 dvíduos: Para o segudo caso, cosderado que = 50 dvíduos: É otável que a amostra com maor quatdade de dvíduos, mostrou um valor. Determado o percetual relatvo etre ambos; , , ,015 0,01 0,015 0, ,43% 0,01 Redução=100%-71,43%=8,57% A amostra com maor úmero de dvíduos mostrou uma redução de aproxmadamete 8,57% em relação à amostra com meor úmero. 9.5 Coefcete de varação de Pearso Represeta o desvo padrão que sera obtdo se a méda fosse gual a 100. É uma quatdade admesoal expressa em forma de percetagem. Pode ser determada para a amostra pela expressão: E para a população CV A formação determada por estes coefcete é cosderado como baxa dspersão quado o coefcete de varação CV for 10%, cosderado como méda dspersão quado 10% CV 0% e alta dspersão quado CV 0% CV s X Prof. M. Sc Aquo 89

8 Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa Exemplo 4: Avale coforme o crtéro do coefcete de Pearso se ambos os resultados do exercíco ateror são acetáves. Solução: Prmero caso, cosderado que o desvo padrão é =: CV 17,67 0,113 11,3% o segudo caso, o desvo padrão é s=1,7 logo: 1,7 CV 0,0968 9,68% 17,57 Avalado ambos os resultados, o segudo caso está abaxo dos 10% logo pode ser cosderado de baxa dspersão em relação ao valor verdadero ao passo que o prmero caso é cosderado méda dspersão(acma 10% abaxo 0%). Como crtéro de escolha defe-se trabalhar com a amostra e ão com a população por coduzr a melhores resultados para este caso. Exemplo 5: Supodo uma dstrbução da estatura de 40 aluos em que fo obtdo: s= 6,009cm e méda artmétca = 160,50cm. Determe o coefcete de varação das alturas. Solução : CV 6, , ,16% Prof. M. Sc Aquo 90

9 Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa Apêdce A Exercícos resolvdos 1) Para um grupo de 40 aluos, realzou-se um estudo de peso e fo ecotrado s =16,016004kg e méda artmétca=59,850 kg. Calcule o coefcete de varação de massa: Solução: Para calcular sso basta aplca o coefcete de varação de Pearso. Mas cudado o problema ão foreceu o desvo padrão e sm a varâca sedo ecessáro calcular o desvo padrão que ada mas é que a raz da varâca. Logo: 16,016004kg 4,00 CV 0, ,69% 59,850 kg 59,850 O coefcete de varação de massa determado é de 6,67% ) Qual é a méda geométrca e a méda smples dos úmeros, 4, 8, 16 e 3? Cosderado o coefcete de varação de Pearso, qual é mas aproprada para determar a méda para estes úmeros? Solução: Para a méda smples dos úmeros; M 1,4 5 X (X-M) 1 108, , , , ,16 M= 1,4 = 119,04 = 10,91055 Para a méda geométrca dos úmeros; 5 Mg X (x-mg) Mg= 8 = 138,4 = 11,76435 No caso a méda smples mostrou um valor para a o desvo padrão meor que a méda geométrca o que sgfca que fo mas efcaz para este caso. Prof. M. Sc Aquo 91

10 Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa 3) O IMC (Ídce de Massa Corpórea) é uma quatdade adotada pela OMS (Orgazação Mudal de Saúde) para avalar o grau de obesdade determado a partr do quocete da massa em kg corpórea pelo quadrado da altura em metros. A tabela 1 mostra as faxas de valores relacoados com os ídces determados, Resultado Stuação TABELA 1 ídces de referêca. Em uma pesqusa fo elaborado o segute cojuto de dados cosderado massa corpórea e altura, em um grupo de pessoas coforme a Tab., TABELA Valores referetes a amostragem de aluos de uma uversdade. a) Cosderado as categoras a Tab.1 e a pesqusa expressa a Tab., elabore uma tabela cosderado o IMC e o percetual relacoado ao úmero de ocorrêcas para cada um dos tes e o percetual que este valor represeta em relação às amostras realzadas. Explcte o resultado em um gráfco. b) Avale a moda e a dstrbução de dados, verfcado se os valores são aproxmadamete guas, ou se aproxmam de um valor cetral. c) É possível cosderar uma tedêca a obesdade em relação à altura méda? d) É possível tomar uma decsão de vestmeto em tratameto com base os resultados obtdos? Em suma, as varáves são sufcetes para a tomada de decsão? e) Calcule o coefcete de varação para a massa e para a altura, qual a varação relatva etre ambos os coefcetes? f) Verfque se esta relação é observada os dados da dstrbução: Solução: Exste váras forma de dar solução a este problema. Resolvere de acordo com o que é solctado. a) Icalmete será determado o IMC para a Tabela 1, coforme dto pelo problema, Massa( kg) IMC. Com sso; Altura ( m) Massa Altura IMC 17,5 3, 16,7 3,8 8,0 5,4 5,9 1,8 7,7 6,5 30,1 7,3 4,5 88,6 45,8 15,0 16,9 6,9 35, 38,6 Prof. M. Sc Aquo 9

11 IMC Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa Com o IMC calculado, coforme solctado motaremos uma tabela ode as classes serão exatamete os ídces defdos a tabela e reorgazaremos a frequêca absoluta para os ídces determados acma; Fazedo o ROL 15,0 16,7 16,9 17,5 1,8 3, 3,8 5,4 5,9 6,5 6,9 7,3 7,7 8,0 30,1 35, 38,6 4,5 45,8 88,6 E do ROL a tabela para as frequêcas, Classfcação Clase x f fr F Fr Muto abaxo do peso 0,00-17,00 8,5 3 15% 3 15% Abaxo do peso 17,00-18,50 17,75 1 5% 4 0% Peso ormal 18,50-5,00 1, % 7 35% Acma do peso 5,00-30,00 7,5 7 35% 14 70% Obesdade I 30,00-35,00 3,5 1 5% 15 75% Obesdade II (severa) 35,00-40,00 37,5 10% 17 85% Obesdade III (mórbda) 40, % 0 100% = 0 100% 5% 10% 15% Muto abaxo do peso Abaxo do peso Peso ormal Acma do peso Obsdade I Obsdade II (severa) Obsdade III (mórbda) 15% 35% 5% 15% b) os valores para o IMC mostram uma dstrbução amodal, O gráfco mostra uma tedêca cetral, destacada represetado 35% da população avalada que pela classfcação pode ser cosderada acma do peso esta é a tedêca cetral. c) Observado o gráfco de dspersão ao lado que relacoa a atura e o IMC, observa-se uma maor cocetração de dvíduos abaxo do fator de IMC 30 que pode ser cosderado etre peso ormal e acma do peso cosderado a altura. Uma pequea fração compreedda etre 1,50m e 1,70m mostrado-se a faxa acma da obesdade I. 90,0 70,0 50,0 30,0 10, Altura [cm] Prof. M. Sc Aquo 93

12 Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa d) As varáves são sufcetes para tomada de decsão pos levam a coclusões a respeto da população examada, para um resultado melhor sera ecessáro uma quatdade maor de dados pos ão fora observados fatores como moda por exemplo. Com base as observações é sabdo que Pessoas com Ídce de Massa Corporal (IMC) até 35 podem ser tratadas apeas pelos métodos tradcoas (deta, exercícos, medcametos e mudaça de hábtos), desde que ão teham desevolvdo ehuma co-morbdade, sto é, ão possuam ehuma doeça que teha sdo provocada pela obesdade. Com base esta formação, sera efcaz assocar ao acompahameto médco e de um utrcosta, campahas de cetvo ao esporte e reeducação almetar. e) Determado a Méda poderada, a varâca e o desvo padrão, tem-se: Massa f Massa*f f*(massa-mp) Altura f Altura*f f*(altura-mp) ,9387 1,51 1 1,51 0, , ,5 1 1,5 0, , ,55 1 1,55 0, , ,58 1 1,58 0, , ,6 1 1,6 0, , ,66 1 1,66 0, , ,67 1 1,67 0, , ,68 3 5,04 0, , ,69 3 5,07 0, , ,71 1 1,71 0, , ,73 1 1,73 0, , ,74 1 1,74 0, , ,76 1 1,76 0, , ,81 1 1,81 0, , ,8 3,64 0, , ,83 1 1,83 0, Mp= 90,1 181, ,9 1 1,9 0, ,7 Mp= 1,8 0, ,1 4,7 O Coefcete de varação para a Massa é CV massa 0,474 47,4% 90,1 0,1 O coefcete de varação para a altura é CV altura 0,073 7,3% 1,8 Fazedo a varação relatva etre ambos, temos que: Massa 47,4 6,51 Altura 7,3 correspodedo a uma dfereça de 6,367 potos etre ambos. Altura 7,3 0,153 Massa 45,1 f) O desvo padrão e a varâca mostram que para a altura há uma regulardade maor que o peso. A varação a massa chega a 47,4% (alta dspersão) em relação a méda equato que a altura esta varação é de apeas 7,3% (baxa dspersão) em relação a méda. Prof. M. Sc Aquo 94

13 Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa 4) A fgura mostra o gráfco de mortaldade por tuberculose da Orgazação Mudal de Saúde OMS ou WHO, mostra uma varação sazoal dos casos de Tuberculose o mudo. I) Cosderado a fgura o gráfco de cdêca como sedo a frequêca relatva, mote uma tabela cotedo as frequêcas, frequêca acumulada e acumulada relatva. II) A dstrbução pode ser cosderada smétrca leptocúrtca? III) Determe a méda, varâca e desvo padrão IV) Avale o coefcete de Pearso verfcado se a dstrbução de dados mostra baxa dspersão em relação a méda V) O que é possível ferr a respeto das respostas aterores? VI) Na fgura, cosderado o gráfco da prevalêca, se a tedêca for matda o que é esperado para o ao de 015? O que pode ser prevsto? VII) Cosderado a fgura o gráfco da mortaldade, qual o possível úmero de casos para o ao de 003? Estme o valor. Solução ) Para restabelecer uma tabela a partr do gráfco, faremos sso a partr da estmatva de valores. Icaremos a suposção por um valor que cocda próxmo de um valor bem estabelecdo este caso, supodo a faxa méda etre 100 e 150 o gráfco seja exatamete 15 O meo etre 15 e 150 é (150-15)/= 137,5 Cosderado um arredodameto pra mas do valor de 000, pos houve uma elevação de 1 a potos coforme o gráfco. O meo etre 137,5 e 150 é (137,5+150)/ = 143,75 Com os resultados acma já podemos prever a tabela que fcará como: II) Nem em soho!!! Por quê? Veja a apostla. Prof. M. Sc Aquo 95

14 Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa III) IV) O coefcete CV dz que o valor para ser de baxa dspersão deve estar abaxo de 10%, etretato devdo à proxmdade e faxa de erro a estmatva, cosdero como sedo de baxa dspersão. Logo a estmatva dos valores pode ser cosderada satsfatóra. V) Em 1995 a taxa era de 1,0% reduzdo para cerca de 0% e matedo assm até o ao de 005 com uma margem de erro de cerca de+ 0,5% percetuas de 005 a 010 sofreu uma queda cosderável de cerca de 1,83% potos percetuas até o ao de 010. O resultado mostra que calmete os valores mas elevados foram reduzdos, mostrado uma establdade o que pode mostrar efeto de campahas realzadas o período. O período, etretato demasadamete logo, cerca de 10 aos, mostra que a campaha realzada ão favoreceu o aumeto da doeça, mas ão promoveu sua redução a íves sgfcatvos. Alguma mudaça o reforço a campaha a partr de 005 causou uma queda que ão fo observada em 10 aos aterores com tedêca a redução. A postura atual deve ser matda e observada em frações meores de tempo para que ão se repta a estagação observada o período ateror. O Coefcete de varação mostrou que para a méda geral ao logo dos 0 aos observados, houve baxa varação os resultados o que mostra a efcáca da campaha ou a estagação ao logo do tempo. Esperava-se para este caso que a varação fosse maor e pra meos. Em méda regstrou-se o mudo cerca de (137+14)x10 5 casos da doeça, se comparado com a população do mudo( [fote: Baco mudal; 010]) sso equvale ao percetual relatvo de 0,0% em relação à população mudal. NOTA:Tete repetr agora para o caso de tuberculose o Brasl e compare com o valor mudal. Estamos percetualmete melhores ou pores que a méda mudal? VI) Do gráfco é prevsto se a tedêca se matver em toro de 150x10 5 Casos. VII) Em toro de 1x10 5 casos estmados. Prof. M. Sc Aquo 96

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL ESTATÍSTICA MÓDULO 3 MEDIDAS DE TEDÊCIA CETRAL Ídce. Meddas de Tedêca Cetral...3 2. A Méda Artmétca Smles ( μ, )...3 3. A Méda Artmétca Poderada...6 Estatístca Módulo 3: Meddas de Tedêca Cetral 2 . MEDIDAS

Leia mais

Métodos iterativos. Capítulo O Método de Jacobi

Métodos iterativos. Capítulo O Método de Jacobi Capítulo 4 Métodos teratvos 41 O Método de Jacob O Método de Jacob é um procedmeto teratvo para a resolução de sstemas leares Tem a vatagem de ser mas smples de se mplemetar o computador do que o Método

Leia mais

Determine a média de velocidade, em km/h, dos veículos que trafegaram no local nesse período.

Determine a média de velocidade, em km/h, dos veículos que trafegaram no local nesse período. ESTATÍSTICA - 01 1. (UERJ 01) Téccos do órgão de trâsto recomedaram velocdade máxma de 80 km h o trecho de uma rodova ode ocorrem mutos acdetes. Para saber se os motorstas estavam cumprdo as recomedações,

Leia mais

( k) Tema 02 Risco e Retorno 1. Conceitos Básicos

( k) Tema 02 Risco e Retorno 1. Conceitos Básicos FEA -USP Graduação Cêcas Cotábes EAC05 04_0 Profa. Joaíla Ca. Rsco e Retoro. Cocetos Báscos Rotero BE-cap.6 Tema 0 Rsco e Retoro. Cocetos Báscos I. O que é Retoro? II. Qual é o Rsco de um Atvo Idvdual

Leia mais

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA Aula 7 Prof. Dr. Marco Atoo Leoel Caetao Dstrbuções de Probabldade DISCRETAS CONTÍNUAS (Números teros) Bomal Posso Geométrca Hper-Geométrca Pascal (Números reas) Normal t-studet F-Sedecor Gama

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@ufrgs.br http://www.ufrgs.br/~val/ Estatístca: uma defção Coleção de úmeros estatístcas O úmero de carros veddos o país aumetou em 30%. A taa de desemprego atge, este mês, 7,5%.

Leia mais

Escola Secundária de Jácome Ratton

Escola Secundária de Jácome Ratton Ecola Secudára de Jácome Ratto Ao Lectvo / Matemátca Aplcada à Cêca Soca Na Ecola Secudára do Suceo aualmete é premado o aluo que tver melhor méda a ua clafcaçõe a dferete dcpla. No ao lectvo 9/, o do

Leia mais

Unidade II ESTATÍSTICA

Unidade II ESTATÍSTICA ESTATÍSTICA Udade II 3 MEDIDAS OU PARÂMETROS ESTATÍSTICOS 1 O estudo que fzemos aterormete dz respeto ao agrupameto de dados coletados e à represetação gráfca de algus deles. Cumpre agora estudarmos as

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

Estatística Básica - Continuação

Estatística Básica - Continuação Professora Adraa Borsso http://www.cp.utfpr.edu.br/borsso adraaborsso@utfpr.edu.br COEME - Grupo de Matemátca Meddas de Varabldade ou Dspersão Estatístca Básca - Cotuação As meddas de tedêca cetral, descrtas

Leia mais

Exercícios - Sequências de Números Reais (Solução) Prof Carlos Alberto S Soares

Exercícios - Sequências de Números Reais (Solução) Prof Carlos Alberto S Soares Exercícos - Sequêcas de Números Reas (Solução Prof Carlos Alberto S Soares 1 Dscuta a covergêca da sequẽca se(2. Calcule, se exstr, lm se(2. Solução 1 Observe que se( 2 é lmtada e 1/ 0, portato lm se(2

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

Estatística: uma definição

Estatística: uma definição Coleção de úmeros estatístcas Estatístca: uma defção O úmero de carros veddos o país aumetou em 30%. A taa de desemprego atge, este mês, 7,5%. As ações da Telebrás subram R$,5, hoje. Resultados do Caraval

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

( x) Método Implícito. No método implícito as diferenças são tomadas no tempo n+1 ao invés de tomá-las no tempo n, como no método explícito.

( x) Método Implícito. No método implícito as diferenças são tomadas no tempo n+1 ao invés de tomá-las no tempo n, como no método explícito. PMR 40 Mecâca Computacoal Método Implícto No método mplícto as dfereças são tomadas o tempo ao vés de tomá-las o tempo, como o método explícto. O método mplícto ão apreseta restrção em relação ao valor

Leia mais

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores.

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores. Prova de Estatístca Epermetal Istruções geras. Esta prova é composta de 0 questões de múltpla escolha a respeto dos cocetos báscos de estatístca epermetal, baseada os lvros BANZATTO, A.D. e KRONKA, S.N.

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

Análise da Informação Económica e Empresarial

Análise da Informação Económica e Empresarial Aálse da Iformação Ecoómca e Empresaral Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração Aálse da Iformação Ecoómca e Empresaral Guão Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@pucrs.br http://.pucrs.br/faat/val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos auetou e 30%. o país A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Coleção de úeros estatístcas stcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações a da Telebrás

Leia mais

Do que trata a Estatística. Estatística Básica (Anova, TH, Regressão) Séries Temporais Data Mining Six Sigma Redes Neurais Controle de Qualidade

Do que trata a Estatística. Estatística Básica (Anova, TH, Regressão) Séries Temporais Data Mining Six Sigma Redes Neurais Controle de Qualidade Do que trata a Estatístca A essêca da cêca é a observação. Estatístca: A cêca que se preocupa com a orgazação, descrção, aálse e terpretação dos dados epermetas. Ramo da Matemátca Aplcada. A palavra estatístca

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

CAPITULO 1 CONCEITOS BÁSICOS

CAPITULO 1 CONCEITOS BÁSICOS DISCIPLIA: ESTATÍSTICA PROFESSOR: JOSELIAS SATOS DA SILVA - joselas@uol.com.br ÍDICE CAPITULO 1 COCEITOS BÁSICOS... 3 1.1 ESTATÍSTICA... 3 1. ESTATÍSTICA DESCRITIVA... 3 1.3 ESTATÍSTICA IFERECIAL... 3

Leia mais

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL 3 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL Como vto em amotragem o prmero bmetre, etem fatore que fazem com que a obervação de toda uma população em uma pequa eja mpratcável, muta veze em vrtude

Leia mais

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição:

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição: 6// IV. Juros: taxa efetva, equvalete e proporcoal Matemátca Facera Aplcada ao Mercado Facero e de Captas Professor Roaldo Távora IV. Taxa efetva Defção: É a taxa de juros em que a udade referecal de seu

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC)

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC) Isttuto Nacoal de Estudos e Pesqusas Educacoas Aíso exera INEP stéro da Educação EC Ídce Geral de Cursos (IGC) O Ídce Geral de Cursos (IGC) é ua éda poderada dos cocetos dos cursos de graduação e pós-graduação

Leia mais

Apêndice 1-Tratamento de dados

Apêndice 1-Tratamento de dados Apêdce 1-Tratameto de dados A faldade deste apêdce é formar algus procedmetos que serão adotados ao logo do curso o que dz respeto ao tratameto de dados epermetas. erão abordados suctamete a propagação

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Cetífca Matemátca Udade Curso Egehara do Ambete Ao º Semestre º Folha Nº 8: Aálse de Regressão e de Correlação Probabldades e Estatístca Ao 00/0. Pretede-se testar um strumeto que mede a cocetração

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

ÍNDICE DE THEIL Referência Obrigatória: Hoffman cap 4 pags 99 a 116 e cap 3 pgs (seção 3.4).

ÍNDICE DE THEIL Referência Obrigatória: Hoffman cap 4 pags 99 a 116 e cap 3 pgs (seção 3.4). Cetro de Polítcas Socas - Marcelo Ner ÍNDICE DE HEIL Referêca Obrgatóra: Hoffma cap 4 pags 99 a 6 e cap 3 pgs 42-44 (seção 3.4).. Coteúdo Iformatvo de uma mesagem Baseado a teora da formação, que aalsa

Leia mais

Estatística Descritiva

Estatística Descritiva Estatístca Descrtva Capítulo "O estatístco, está casado em méda com 1,75 esposas, que procuram fazê-lo sar de casa,5 otes com 0,5 de sucesso apeas. Possu frote com 0,0 de clação (deotado poder metal),

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações Itrodução.1 Juros Smples Juro: recompesa pelo sacrfíco de poupar o presete, postergado o cosumo para o futuro Maora das taxas de uros aplcadas o mercado facero são referecadas pelo crtéro smples Determa

Leia mais

Matemática C Semiextensivo V. 2

Matemática C Semiextensivo V. 2 Matemátca C Semetesvo V. Eercícos 0) Através da observação dreta do gráfco, podemos coclur que: a) País. b) País. c) 00 habtates. d) 00 habtates. e) 00 0 0 habtates. 0) C Através do gráfco, podemos costrur

Leia mais

3. ANPEC Questão 15 Ainda em relação à questão anterior pode-se concluir que, exceto por erro de arredondamento:

3. ANPEC Questão 15 Ainda em relação à questão anterior pode-se concluir que, exceto por erro de arredondamento: Lsta de Exercícos #9 Ass uto: Aáls e de Re gres s ão Mé todo de Mímos Quadrados. ANPEC 99 - Questão 8 A capacdade de produção stalada (Y), em toeladas, de uma frma, pode ser fução da potêca stalada (X),

Leia mais

Parte 3 - Regressão linear simples

Parte 3 - Regressão linear simples Parte 3 - Regressão lear smples Defção do modelo Modelo de regressão empregado para eplcar a relação lear etre duas varáves (ajuste de uma reta). O modelo de regressão lear smples pode ser epresso a forma:

Leia mais

Apostila de Estatística. Volume 1 Edição Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística. Volume 1 Edição Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Volume 1 Edção 007 Curso: Pscologa Amostragem, Séres Estatístcas, Dstrbução de Freqüêca, Méda, Medaa, Quartl, Percetl e Desvo Padrão Prof. Dr. Celso Eduardo Tua 1 Capítulo 1 - Itrodução

Leia mais

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( )

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( ) NÚMEROS COMPLEXOS Forma algébrca e geométrca Um úmero complexo é um úmero da forma a + b, com a e b reas e = 1 (ou, = -1), chamaremos: a parte real; b parte magára; e udade magára. Fxado um sstema de coordeadas

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola Cetro de Cêcas Agráras e Ambetas da UFBA Departameto de Egehara Agrícola Dscpla: AGR116 Boestatístca Proessor: Celso Luz Borges de Olvera Assuto: Estatístca Descrtva Tema: Meddas de Posção e Meddas de

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves A aálse de regressão e correlação compreedem

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO A expressão dados, será ctada dversas vezes esta dscpla, em lguagem ormal, dados são ormações (úmeros ou ão) sobre um dvíduo (pessoa,

Leia mais

Perguntas Freqüentes - Bandeiras

Perguntas Freqüentes - Bandeiras Pergutas Freqüetes - Baderas Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte por lqudar a obrgação de forma parcelada

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler UNEMAT Uversdade do Estado de Mato Grosso Matemátca Facera http://www2.uemat.br/eugeo SÉRIE DE PAGAMENTOS 1. NOÇÕES SOBRE FLUXO DE CAIXA Prof. Eugêo Carlos Steler Estudar sem racocar é trabalho perddo

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

Caracterização de Partículas. Prof. Gerônimo

Caracterização de Partículas. Prof. Gerônimo Caracterzação de Partículas Prof. Gerômo Aálse Graulométrca de partículas Tabela: Sére Padrão Tyler Mesh Abertura Lvre (cm) âmetro do fo () 2 ½ 0,7925 0,088 0,6680 0,070 ½ 0,56 0,065 4 0,4699 0,065

Leia mais

CAPÍTULO 1 PROBABILIDADE

CAPÍTULO 1 PROBABILIDADE CAPÍTULO PROBABILIDADE. Coceto O coceto de probabldade está sempre presete em osso da a da: qual é a probabldade de que o meu tme seja campeão? Qual é a probabldade de que eu passe aquela dscpla? Qual

Leia mais

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM -

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM - CURSO SOBRE MEDIDAS DESCRITIVA Adrao Medoça Souza Departameto de Estatístca - UFSM - O telecto faz pouco a estrada que leva à descoberta. Acotece um salto a coscêca, chame-o você de tução ou do que quser;

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Matemática. Resolução das atividades complementares. M18 Noções de Estatística

Matemática. Resolução das atividades complementares. M18 Noções de Estatística Resolução das atvdades complemetares Matemátca M8 Noções de Estatístca p. 3 (UFRJ) Dos estados do país, um certo ao, produzem os mesmos tpos de grãos. Os grácos de setores lustram a relação etre a produção

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

( ) Editora Ferreira - Toque de Mestre. Olá Amigos!

( ) Editora Ferreira - Toque de Mestre. Olá Amigos! Olá Amgos! Hoje coloco à dsposção de vocês aqu a seção Toque de Mestre da Edtora Ferrera (www.edtoraferrera.com.br) as questões de Matemátca Facera cobradas o últmo cocurso da axa Ecoômca Federal (EF),

Leia mais

Forma padrão do modelo de Programação Linear

Forma padrão do modelo de Programação Linear POGAMAÇÃO LINEA. Forma Padrão do Modelo de Programação Lear 2. elações de Equvalêca 3. Suposções da Programação Lear 4. Eemplos de Modelos de PPL 5. Suposções da Programação Lear 6. Solução Gráfca e Iterpretação

Leia mais

Como CD = DC CD + DC = 0

Como CD = DC CD + DC = 0 (9-0 www.eltecampas.com.br O ELITE RESOLVE IME 008 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO Determe o cojuto-solução da equação se +cos = -se.cos se + cos = se cos ( se cos ( se se.cos cos + + = = (

Leia mais

3. TESTES DE QUALIDADE DE AJUSTAMENTO

3. TESTES DE QUALIDADE DE AJUSTAMENTO Testes da qualdade de ajustameto 3 TESTES DE QULIDDE DE JUSTMENTO 3 Itrodução formação sobre o modelo da população dode se extra uma amostra costtu, frequetemete, um problema estatístco forma da dstrbução

Leia mais

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria Avalação da seguraça dâmca de sstemas de eerga elétrca: Teora. Itrodução A avalação da seguraça dâmca é realzada através de estudos de establdade trastóra. Nesses estudos, aalsa-se o comportameto dos geradores

Leia mais

ESTATÍSTICA 2º. SEMESTRE DE 2016

ESTATÍSTICA 2º. SEMESTRE DE 2016 ESTATÍSTICA O presete materal fo elaborado com o objetvo de facltar as atvdades em sala de aula, segudo a bblografa apresetada o fal do texto. Esclarece-se que o materal, ão substtu a bblografa apresetada,

Leia mais

Pós-Graduação latu sensu em Engenharia de Produção

Pós-Graduação latu sensu em Engenharia de Produção CENTRO UNIVERSITÁRIO UNA PRÓ-REITORIA DE PÓS-GRADUAÇÃO Pós-Graduação latu sesu em Egehara de Produção ESTATÍSTICA APLICADA (0 hs) Belo Horzote - 011 Dscpla: Estatístca Aplcada Prof.: Kerley Alberto Perera

Leia mais

É o quociente da divisão da soma dos valores das variáveis pelos números deles:

É o quociente da divisão da soma dos valores das variáveis pelos números deles: Meddas de Posção. Itrodução Proª Ms. Mara Cytha O estudo das dstrbuções de requêcas, os permte localzar a maor cocetração de valores de uma dstrbução. Porém, para ressaltar as tedêcas característcas de

Leia mais

Qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

Qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq Qwertyuopasdghjklzcvbmqwerty uopasdghjklzcvbmqwertyuopasd ghjklzcvbmqwertyuopasdghjklz cvbmqwertyuopasdghjklzcvbmq wertyuopasdghjklzcv bmqwertyuopasdghjklzcvbmqw ertyuopasdghjklzcvbmqwertyuo pasdghjklzcvbmqwertyuopasdgh

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

Uso de covariáveis em modelos biométricos para estimação de altura total em árvores de Eucalyptus dunnii

Uso de covariáveis em modelos biométricos para estimação de altura total em árvores de Eucalyptus dunnii Uso de covaráves em modelos bométrcos para estmação de altura total em árvores de Eucalyptus du Oar Medes de Olvera Adrao Rbero de Medoça Fábo Mareto Glso Ferades da Slva Samuel de Pádua Chaves e Carvalho

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avalação de Empresas MODELO DE DIVIDENDOS Dvdedos em um estáo DDM Dscouted Dvded Model Muto utlzados a precfcação de uma ação em que o poto de vsta do vestdor é extero à empresa e eralmete esse vestdor

Leia mais

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES Itrodução Em dversos camos da Egehara é comum a ecessdade da determação de raízes de equações ão leares. Em algus casos artculares, como o caso de olômo, que

Leia mais

Capitulo 1 Resolução de Exercícios

Capitulo 1 Resolução de Exercícios S C J S C J J C FORMULÁRIO Regme de Juros Smples 1 1 S C 1 C S 1 1.8 Exercícos Propostos 1 1) Qual o motate de uma aplcação de R$ 0.000,00 aplcados por um prazo de meses, à uma taxa de 2% a.m, os regmes

Leia mais

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc.

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc. Estatístca Notas de Aulas ESTATÍSTICA Notas de Aulas Professor Iáco Adrus Gumarães, DSc. Professor Iáco Adrus Gumarães, DSc. Estatístca Notas de Aulas SUMÁRIO CONCEITOS BÁSICOS 5. Estatístca. Estatístca

Leia mais

Estatística Agosto 2009 Campus do Pontal Prof. MSc. Quintiliano Siqueira Schroden Nomelini

Estatística Agosto 2009 Campus do Pontal Prof. MSc. Quintiliano Siqueira Schroden Nomelini Estatístca Agosto 009 Campus do Potal Prof. MSc. Qutlao Squera Schrode Nomel - ESTATÍSTICA DESCRITIVA. - A NATUREZA DA ESTATÍSTICA COMO SURGIU A ESTATÍSTICA????? A Matemátca surge do covívo socal, da cotagem,

Leia mais

TEORIA DE ERROS MEDIDAS E GRÁFICOS

TEORIA DE ERROS MEDIDAS E GRÁFICOS Uversdade Federal de Juz de Fora Isttuto de Cêcas Eatas Departameto de Físca TEORIA DE ERROS MEDIDAS E GRÁFICOS Prof. Carlos R. A. Lma Edção Março de 010 ÌNDICE CAPÍTULO 1 - PRINCÍPIOS BÁSICOS DA ESTATÍSTICA

Leia mais

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade Celso Albo FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhaguee, Av. de Moçambque, km, Tel: +258 240078, Fax: +258 240082, Maputo Cursos de Lcecatura em Eso de Matemátca

Leia mais

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES POLINOMIAIS4 Gl da Costa Marques Fudametos de Matemátca I 4.1 Potecação de epoete atural 4. Fuções polomas de grau 4. Fução polomal do segudo grau ou fução quadrátca 4.4 Aálse do gráfco de uma

Leia mais

Universidade Federal de Alfenas - Unifal-MG Departamento de Ciências Exatas

Universidade Federal de Alfenas - Unifal-MG Departamento de Ciências Exatas Uversdade Federal de Alfeas - Ufal-MG Departameto de Cêcas Exatas Apostla Laboratóro de Físca I Prof. Dr. Célo Wsewsk Alfeas 05. oções geras sobre meddas de gradezas e avalação de certezas.. Medção (measuremet).....

Leia mais

Medidas de Localização

Medidas de Localização 07/08/013 Udade : Estatístca Descrtva Meddas de Localzação João Garbald Almeda Vaa Cojuto de dados utlzação de alguma medda de represetação resumo dos dados. E: Um cojuto com 400 observações como aalsar

Leia mais