n. 2 MATRIZ INVERSA (I = matriz unidade ou matriz identidade de ordem n / matriz canônica do R n ).

Tamanho: px
Começar a partir da página:

Download "n. 2 MATRIZ INVERSA (I = matriz unidade ou matriz identidade de ordem n / matriz canônica do R n )."

Transcrição

1 n. 2 MATRIZ INVERSA Modo : utilizando a matriz identidade Seja A uma matriz quadrada de ordem n. Dizemos que A é matriz invertível se existir uma matriz B tal que A. B = B. A = I. (I = matriz unidade ou matriz identidade de ordem n / matriz canônica do R n ). I = 0 0 ] Se esta matriz B existir, A será chamada de matriz invertível. Para a existência da matriz inversa o determinante deve ser diferente de zero: det A 0 Relembrando: A toda matriz quadrada está associado um número ao qual damos o nome de determinante. é uma função matricial que associa a cada matriz quadrada um escalar, e transforma essa matriz em um número real. Esta função permite saber se a matriz tem ou não inversa, pois as que não têm, são precisamente aquelas cujo determinante é igual a 0. Normalmente a matriz inversa de A é indicada por A, logo: A. A = A. A = I Se A não é invertível dizemos que A é singular.

2 Exemplo Sejam as matrizes: A = a 2 a 22 ], B = a 2 a 22 ], I n = 0 A. B = I n a 2 ]. a 22 a 2 a 22 ] = 0 a. a + a 2. a 2 a. a 2 + a 2. a 22 a 2. a + a 22. a 2 a 2. a 2 + a 22. a 22 Logo, ) a. a + a 2. a 2 = 2) a. a 2 + a 2. a 22 = 0 3) a 2. a + a 22. a 2 = 0 4) a 2. a 2 + a 22. a 22 = ] = 0 Exemplo: ) Seja A = ] encontre A-. A. B = I n Seja B = a c b d ] e B = A- (B é a matriz inversa de A), logo,

3 3 4 c ]. a 2 3 b d ] = 0 3a + 4b 3c + 4d 2a + 3b 2c + 3d ] = 0 3 a + 4b = { 3c + 4d = 0 2a + 3b = 0 2c + 3d = Logo, a = 3 b = - 2 c = - 4 d = 3 Portanto, B = A = ] 2. Ache a inversa da matriz A = ]. 2 3 b ]. a 4 c d ] = 0 + 3b 2b + 3d ] 2a 0 a + 4c b + 4d ] = 0 { 2a + 3c = a + 4c = 0 2b + 3d = 0 b + 4d = 2a + 3c = { a + 4c = 0 a = 4 e c = 2b + 3d = 0 { b + 4d = b = 3 e d = 2

4 Logo, A = ] Obs: O mesmo resultado seria obtido fazendo: a b c d ] ] = 0 Modo 2: Inversão de matrizes 2 2 No caso particular das matrizes invertíveis de ordem 2: Apenas para matrizes quadradas de ordem 2 x 2 podemos calcular a inversa da seguinte forma:. Primeiro calculamos o determinante: A = 2 3 ] det A = 8 3 det A = 4 2. Invertemos a ordem dos elementos da diagonal principal: = ] 3. Trocamos o sinal dos elementos da diagonal secundária: = ]

5 4. Dividimos cada um dos elementos da matriz pelo determinante e a matriz resultante será a matriz inversa. A = ] Teorema: Se A é uma matriz invertível, então a sua inversa é única. Modo 3: Eliminação de Gauss-Jordan (escalonamento) Escrevem-se lado a lado a matriz que queremos inverter e a matriz identidade. Após a aplicação sucessiva de operações elementares sobre as linhas da matriz a inverter, de modo a transformá-la na matriz identidade, lembrando que as mesmas operações devem ser aplicadas à matriz identidade, ao término, quando a matriz inicial tiver sido transformada na matriz identidade, a outra matriz será a matriz inversa procurada. Exemplo: A última matriz é a inversa procurada:

6 Observações i) Se A e B são matrizes quadradas invertíveis, então A. B é também invertível e (A. B) = B. A ii) Uma matriz quadrada A admite inversa, se e somente se, det A 0. iii) Se A é uma matriz quadrada e det A 0, então iv) (A ) = A det A = det A v) (A ) T = (A T ) Modo 3: calculando a matriz inversa pela matriz adjunta M M = det M. M Matriz Adjunta: M É a matriz transposta da matriz dos cofatores. Cofator é um número associado a um elemento qualquer de uma matriz quadrada. Matriz transposta: trocamos as linhas pelas colunas.

7 Encontrando a matriz cofator: M Seja M a matriz original, tal que: M = a 3 a 2 a 22 a 23 a 3 a 32 a 33 ] E, seja M a matriz dos cofatores, tal que: M = Para encontrar a matriz cofator fazemos: A A 2 A 3 A 2 A 22 A 23 ] A 3 A 32 A 33 a 22 a 23 a 2 a 23 a 2 a 22 A = ( ) i+j A 2 = ( ) i+j A 3 = ( ) i+j a 32 a 33 a 3 a 33 a 3 a 32 a 2 a 3 a a 3 A 2 = ( ) i+j A 22 = ( ) i+j A 23 = ( ) i+j a 32 a 33 a 3 a 33 a 3 a 32 a 2 a 3 a a 3 A 3 = ( ) i+j A 32 = ( ) i+j A 33 = ( ) i+j a 22 a 23 a 2 a 23 a 2 a 22 Logo, a 22 a 23 a 2 a 23 a 2 a 22 A = ( ) + A 2 = ( ) +2 A 3 = ( ) +3 a 32 a 33 a 3 a 33 a 3 a 32 a 2 a 3 a a 3 A 2 = ( ) 2+ A 22 = ( ) 2+2 A 23 = ( ) 2+3 a 32 a 33 a 3 a 33 a 3 a 32 a 2 a 3 a a 3 A 3 = ( ) 3+ A 32 = ( ) 3+2 A 33 = ( ) 3+3 a 22 a 23 a 2 a 23 a 2 a 22

8 Assim, a 22 a 23 a 2 a 23 a 2 a 22 A = ( ) 2 A 2 = ( ) 3 A 3 = ( ) 4 a 32 a 33 a 3 a 33 a 3 a 32 a 2 a 3 a a 3 A 2 = ( ) 3 A 22 = ( ) 4 A 23 = ( ) a 32 a 33 a 3 a 33 a 3 a 32 a 2 a 3 a a 3 A 3 = ( ) 4 A 32 = ( ) A 33 = ( ) 6 a 22 a 23 a 2 a 23 a 2 a 22 A A 2 A 3 Sobre a matriz cofator: M = A 2 A 22 A 23 ] A 3 A 32 A 33 Aplicamos à transposta e obtemos a matriz adjunta: M Para encontrarmos a inversa fazemos: M = det M. M Exemplos:. Se M = ], encontre M pela matriz adjunta. º verificar se det M 0: det M = 4 6 = - 2 2º encontrando a matriz cofator: A = (-) 2. 4 =. 4 = 4 A 2 = (-) 3. 3 = -. 3 = - 3 A 2 = (-) 3. 2 = -. 2 = - 2 A 22 = (-) 4. =. =

9 Matriz cofator: M = ] Matriz adjunta: M = (M ) t = ] Encontrando a matriz inversa: M = det M. M M = ]. 4. ( 2) 2 M 2 2 = ] M =. ( 3) ] Se M = 2 3], encontre M de duas maneiras diferentes. 3 0 º modo: Encontrando a inversa pela matriz adjunta: º verificar se det M 0: det M = 2º encontrando a matriz cofator: A = (-) =. ( 3) = 3 A 2 = (-) =. ( 9) = 9 A 3 = (-) 4 2 =. ( ) = 3

10 A 2 = (-) =. ( 2) = 2 A 22 = (-) =. ( 6) = 6 A 23 = (-) 0 =. () = 3 A 3 = (-) =. ( 2) = 2 A 32 = (-) =. ( ) = A 33 = (-) 6 0 =. () = 2 Matriz cofator: M = Matriz adjunta: M = ] Encontrando a matriz inversa: M = det M. M M =. 9 6 ] M =. 9 6 ] ] M = ( 3) (2) ( 2) (9) ( 6) () ( ) ( ) () ] = ] 2º modo: Encontrando a inversa pela matriz identidade. M. M = I

11 0 2 a b c ]. d e f] = 0 0] 3 0 g h i 0 0 a + 0d + 2g b + 0e + 2h c + 0f + 2i 0 0 2a + d + 3g 2b + e + 3h 2c + f + 3i] = 0 0] 3a + d + 0g 3b + e + 0h 3c + f + 0i a + 2g b + 2h c + 2i a + d + 3g 2b + e + 3h 2c + f + 3i] = 0 0] 3a + d 3b + e 3c + f 0 0 a + 2g = () { 2a + d + 3g = 0 (2) 3a + d = 0 (3) De (): a + 2g = a = 2g (4) De (2): 2a + d + 3g = 0 d = 3g 2a () De (3): 3a + d = 0 d = 3a (6) Logo, de () e (6): 3g 2a = 3a a = 3 g (7) De (4) e (7): 3g = 2g g = (8) Portanto, de (8) em (4): a = 2 ( ) a = 3 (9) Portanto, de (9) em (6): d = 3 ( 3 ) d = 9 (0) a = 3, d = 9 e g =

12 b + 2h = 0 { 2b + e + 3h = 3b + e = 0 c + 2i = 0 { 2c + f + 3i = 0 3c + f = b = e = h = c = f = i = M = 9 6 ] Exercícios:. Dadas as matrizes, encontre as inversas: 4 7 a. A = 2 8] encontre A b. B = 2 2] encontre B Verifique se a matriz C = 2 ] é a inversa da matriz 3 8 G = ].

13 Exercícios resolvidos. Dadas as matrizes, encontre as inversas: 4 7 a. A = 2 8] encontre A Encontrando a inversa pela matriz adjunta: º verificar se det M 0: - repetir as duas primeiras linhas ou as duas primeiras colunas: ] Multiplicar os números e adicionar os resultados de: ().().(9) + (4).(8).(3) + (7).(2).(6) = 22 Multiplicar os números e subtrair os resultados de: (7).().(3) ().(8).(6) (4).(2).(9) = - 22 Logo, det M = 0 Portanto, M não é invertível. 2 3 b. B = 2 2] encontre B

14 L2 = 2L2 L ] { L3 = 2L3 3L 0 2 0] L = L + 3L2 ] { L3 = L3 7L ] ] {L = L L ] ] {L2 = 40L2 + L ] ] { L = 0 L L2 = 440 L L3 = 40 L ] ] Portanto, 8 B = ]

15 2. Verifique se a matriz C = 2 ] é a inversa da matriz 3 8 A = ]. Para ser a inversa, preciso que: C. A = I ou A. C = I Logo, para C. A = I ] ] = 0 2(8) + ( )3 2() + ( )2 ( 3)8 + 8(3) 3() + 8(2) ] = 0 6 = { 0 0 = = = Da mesma forma para A. C = I ] ] = 0 8(2) + ( 3) 8( ) + (8) 3(2) + 2( 3) 3( ) + 2(8) ] = 0 6 = { = = = Como C. A = I ou A. C = I então a matriz C é a inversa da matriz A.

16 Referências Bibliográficas BOLDRINI, J. L. et al. Álgebra linear. São Paulo: Harper & Row, 980. CALLIOLI, C. A. et al. Álgebra linear e aplicações. São Paulo: Atual, 990. ANTON, H.; BUSBY, R. C. Álgebra linear contemporânea. São Paulo: Bookman, KOLMAN, B.; HILL, R. Introdução à álgebra linear com aplicações. 6ª ed. Rio de Janeiro: Prentice-Hall, 998. LIPSCHUTZ, S. Álgebra linear. São Paulo: McGraw-Hill do Brasil, 972. STEINBRUCH, A.; WINTERLE, P. Álgebra linear. São Paulo: Pearson-Makron Books, 200.

RELEMBRANDO... CÁLCULO DA MATRIZ INVERSA:

RELEMBRANDO... CÁLCULO DA MATRIZ INVERSA: RELEMBRANDO... CÁLCULO DA MATRIZ INVERSA: determinantes Se o determinante da matriz é diferente de zero existe a inversa, logo: det M 0 M -1 1 =. M det M Quem é M? É a matriz adjunta, que é a matriz transposta

Leia mais

n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS

n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS Aplicações: estudo de vibrações, dinâmica populacional, estudos referentes à Genética,

Leia mais

n. 5 Determinantes: Regra de Cramer e Triangulação Podemos classificar um sistema linear de três maneiras:

n. 5 Determinantes: Regra de Cramer e Triangulação Podemos classificar um sistema linear de três maneiras: n. 5 Determinantes: Regra de Cramer e Triangulação Podemos classificar um sistema linear de três maneiras: SPD Sistema possível determinado: existe apenas um conjunto solução; SPI Sistema possível indeterminado:

Leia mais

n. 33 Núcleo de uma transformação linear

n. 33 Núcleo de uma transformação linear n. 33 Núcleo de uma transformação linear Chama-se núcleo de uma transformação linear f: V W ao conjunto de todos os vetores v V que são transformados em 0 W. Indica-se esse conjunto por N(f) ou Ker (f).

Leia mais

Álgebra Linear. Aula 02

Álgebra Linear. Aula 02 Álgebra Linear Aula Determinante Para aproveitar 1% dessa aula vocês precisam saber: ü Matrizes ü Equação do 1º grau ü Equação do º grau Como representamos o determinante de uma matriz? Colocando os elementos

Leia mais

n. 4 DETERMINANTES: SARRUS E LAPLACE

n. 4 DETERMINANTES: SARRUS E LAPLACE n. 4 DETERMINANTES: SARRUS E LAPLACE A toda matriz quadrada está associado um número ao qual damos o nome de determinante. Determinante é uma função matricial que associa a cada matriz quadrada um escalar,

Leia mais

n. 32 Regras para achar a transformação linear correspondente

n. 32 Regras para achar a transformação linear correspondente n. 3 Regras para achar a transformação linear correspondente Lembrete: matriz da transformação linear [T] B A F(u 1 ) = a v 1 + b v F(u ) = c v 1 + d v [T] A B = [ a c b d ] Dadas às bases e a matriz da

Leia mais

n. 30 TRANSFORMAÇÕES LINEARES Definição: Sejam V e W espaços vetoriais, uma transformação linear T: V W é uma função de V em W se:

n. 30 TRANSFORMAÇÕES LINEARES Definição: Sejam V e W espaços vetoriais, uma transformação linear T: V W é uma função de V em W se: n. 30 TRANSFORMAÇÕES LINEARES Uma transformação linear é um tipo particular de função entre dois espaços vetoriais que preserva as operações de adição vetorial e multiplicação por escalar. Uma transformação

Leia mais

2 Sistemas de Equações Lineares

2 Sistemas de Equações Lineares 2 Sistemas de Equações Lineares 2.1 Introdução Definição (Equação linear): Equação linear é uma equação da forma: a 1 x 1 +a 2 x 2 + +a n x n = b (1) na qual x 1,x 2,...,x n são as incógnitas; a 1,a 2,...,a

Leia mais

1 5 = = = = = = = = 5

1 5 = = = = = = = = 5 MATRIZES PARTE II. Matriz dos Cofatores Dada uma matriz A, a cada elemento aij de A está associado um cofator Cij. Definição: Chama-se matriz dos cofatores de A, e denota-se por A,a matriz A = [C ij ].

Leia mais

Análise multivariada

Análise multivariada UNIFAL-MG, campus Varginha 6 de Setembro de 2018 Matriz inversa Já discutimos adição, subtração e multiplicação de matrizes A divisão, da forma como conhecemos em aritmética escalar, não é definida para

Leia mais

n. 1 Matrizes Cayley (1858) As matrizes surgiram para Cayley ligadas às transformações lineares do tipo:

n. 1 Matrizes Cayley (1858) As matrizes surgiram para Cayley ligadas às transformações lineares do tipo: n. Matrizes Foi um dos primeiros matemáticos a estudar matrizes, definindo a ideia de operarmos as matrizes como na Álgebra. Historicamente o estudo das Matrizes era apenas uma sombra dos Determinantes.

Leia mais

PLANO DE ENSINO E APRENDIZAGEM

PLANO DE ENSINO E APRENDIZAGEM SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A) DA DISCIPLINA:

Leia mais

Álgebra Linear. Professor Fabrício Oliveira. 25 de agosto de Universidade Federal Rural do Semiárido

Álgebra Linear. Professor Fabrício Oliveira. 25 de agosto de Universidade Federal Rural do Semiárido Álgebra Linear Professor Fabrício Oliveira Universidade Federal Rural do Semiárido 25 de agosto de 2010 Determinantes De maneira não formal Não daremos aqui a definição matematicamente correta. Determinantes

Leia mais

Determinantes e Matrizes Inversas

Determinantes e Matrizes Inversas Determinante e Matrizes Inversas FFCLRP - USP Departamento de Computação e Matemática 10 de março de 2019 e Matrizes Inversas 1 Propriedades dos determinantes Propriedades dos determinantes Propriedades

Leia mais

ÁLGEBRA LINEAR AULA 4

ÁLGEBRA LINEAR AULA 4 ÁLGEBRA LINEAR AULA 4 Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 1 Introdução 2 Desenvolvimento de Laplace 3 Matriz Adjunta 4 Matriz Inversa 5 Regra de Cramer 6 Posto da

Leia mais

Uma matriz m x n é um quadro de elementos dispostos em m linhas e n colunas. Os valores de m e n são sempre positivos e inteiros.

Uma matriz m x n é um quadro de elementos dispostos em m linhas e n colunas. Os valores de m e n são sempre positivos e inteiros. MATRIZES DEFINIÇÃO Uma matriz m x n é um quadro de elementos dispostos em m linhas e n colunas. Os valores de m e n são sempre positivos e inteiros. M = à M é uma matriz 2 x 3. Cada elemento da matriz

Leia mais

1 Determinante. det(a) = ρ. ( 1) J a 1j1 a 2j2... a njn. Exemplo 1.6. Determinante de 3a. ordem: a 11 a 12 a 13. a 21 a 22 a 23.

1 Determinante. det(a) = ρ. ( 1) J a 1j1 a 2j2... a njn. Exemplo 1.6. Determinante de 3a. ordem: a 11 a 12 a 13. a 21 a 22 a 23. 1 Determinante Determinante é uma função que associa a cada matriz quadradada A n n um número real Mais especificamente, é um número que obtemos através de produtos e somas dos elementos da matriz obedecendo

Leia mais

Câmpus de Bauru Plano de Ensino Curso Ênfase Identificação Disciplina Docente(s) Unidade Departamento Créditos Carga Horária Seriação ideal

Câmpus de Bauru Plano de Ensino Curso Ênfase Identificação Disciplina Docente(s) Unidade Departamento Créditos Carga Horária Seriação ideal Curso 1503 1504 1505 - Licenciatura em Matemática 2802 - Bacharelado em Sistemas de Informação Ênfase Identificação Disciplina 0005003A - Matrizes e Cálculo Vetorial Docente(s) Nair Cristina Margarido

Leia mais

INTRODUÇÃO À ÁLGEBRA LINEAR. Prof.ª Chiara Maria S. L. Dias 3ª fase Licenciatura em Matemática

INTRODUÇÃO À ÁLGEBRA LINEAR. Prof.ª Chiara Maria S. L. Dias 3ª fase Licenciatura em Matemática INTRODUÇÃO À ÁLGEBRA LINEAR Prof.ª Chiara Maria S. L. Dias 3ª fase Licenciatura em Matemática PLANO DE ENSINO: 1. EMENTA: Matrizes. Sistemas de Equações Lineares. Espaços Vetoriais 2. CARGA HORÁRIA: 60

Leia mais

Parte 1 - Matrizes e Sistemas Lineares

Parte 1 - Matrizes e Sistemas Lineares Parte 1 - Matrizes e Sistemas Lineares Matrizes: Uma matriz de tipo m n é uma tabela com mn elementos, denominados entradas, e formada por m linhas e n colunas. A matriz identidade de ordem 2, por exemplo,

Leia mais

Geometria anaĺıtica e álgebra linear

Geometria anaĺıtica e álgebra linear Geometria anaĺıtica e álgebra linear Francisco Dutenhefner Departamento de Matematica ICEx UFMG 22/08/13 1 / 24 Determinante: teorema principal Teorema: Se A é uma matriz quadrada, então o sistema linear

Leia mais

1 Matrizes e Determinantes

1 Matrizes e Determinantes 1 Matrizes e Determinantes 11 Introdução Definição (Matriz): Uma matriz A m n é um arranjo retangular de mn elementos distribuídos em m linhas horizontais e n colunas verticais: a 11 a 12 a 1j a 1n a 21

Leia mais

Determinante de uma matriz quadrada

Determinante de uma matriz quadrada Determinante de uma matriz quadrada A toda matriz quadrada A está associado um número real, chamado determinante de A. Ele é obtido por meio de certas operações com os elementos da matriz. O determinante

Leia mais

Álgebra Linear Semana 04

Álgebra Linear Semana 04 Álgebra Linear Semana 04 Diego Marcon 17 de Abril de 2017 Conteúdo 1 Produto de matrizes 1 11 Exemplos 2 12 Uma interpretação para resolução de sistemas lineares 3 2 Matriz transposta 4 3 Matriz inversa

Leia mais

PLANO DE ENSINO CURSO Bacharelados e licenciaturas do Campus Curitiba da UTFPR. MATRIZ (SA) FUNDAMENTAÇÃO LEGAL

PLANO DE ENSINO CURSO Bacharelados e licenciaturas do Campus Curitiba da UTFPR. MATRIZ (SA) FUNDAMENTAÇÃO LEGAL Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba PLANO DE ENSINO CURSO Bacharelados e licenciaturas do Campus Curitiba da UTFPR. MATRIZ (SA) FUNDAMENTAÇÃO LEGAL Resolução

Leia mais

Determinantes - Parte 02

Determinantes - Parte 02 Determinantes - Parte 02 Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.2 07

Leia mais

MATRIZES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

MATRIZES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga MATRIZES Álgebra Linear e Geometria Analítica Prof. Aline Paliga INTRODUÇÃO Definição: chama-se matriz de ordem m por n a um quadro de m xn elementos dispostos em m linhas e n colunas. a a a a a a a a

Leia mais

n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Como o versor é um vetor unitário, temos que v = 1

n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Como o versor é um vetor unitário, temos que v = 1 n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Definição Dado um vetor u 0, chama-se versor do vetor u, um vetor unitário, paralelo e de mesmo sentido que u. Logo, se considerarmos

Leia mais

1, , ,

1, , , Ministério da Educação Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão Licenciatura em Informática Fundamentos de Geometria Analítica e Álgebra Linear Profª Sheila R. Oro Este texto

Leia mais

Vetores e Geometria Analítica

Vetores e Geometria Analítica Vetores e Geometria Analítica ECT2102 Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2016 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser

Leia mais

Determinantes - Parte 02

Determinantes - Parte 02 Determinantes - Parte 02 Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 23

Leia mais

Matrizes material teórico

Matrizes material teórico M A T R I Z E S A Matemática é a mais simples, a mais perfeita e a mais antiga de todas as ciências. (Jacques Hadarmard) "Aqueles que estudam seriamente a matemática acabam tomados de uma espécie de paixão

Leia mais

Métodos Matemáticos II

Métodos Matemáticos II Sumário Métodos Matemáticos II Nuno Bastos Licenciatura em Tecnologias e Design Multimédia Escola Superior de Tecnologia de Viseu Gabinete 4 nbastos@mat.estv.ipv.pt http://www.estv.ipv.pt/paginaspessoais/nbastos.

Leia mais

Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares

Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares FATEC Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares Prof Dr Ânderson Da Silva Vieira 2017 Sumário Introdução 2 1 Matrizes 3 11 Introdução 3 12 Tipos especiais de Matrizes 3 13 Operações

Leia mais

Determinantes. ALGA 2007/2008 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17

Determinantes. ALGA 2007/2008 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17 Capítulo 2 Determinantes ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 1 / 17 Definições ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 2 / 17 Definições Seja A = [a kl ] uma matriz

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 18 de

Leia mais

O TEOREMA DE CAYLEY-HAMILTON E AS MATRIZES INVERSAS

O TEOREMA DE CAYLEY-HAMILTON E AS MATRIZES INVERSAS O TEOREMA DE CAYLEY-HAMILTON E AS MATRIZES INVERSAS Jessé Geraldo de Resende* Resumo: Este artigo tem por finalidade apresentar uma maneira diferente de se obter a matriz inversa através do Teorema de

Leia mais

1 NOTAS DE AULA FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA. Professor Doutor: Jair Silvério dos Santos

1 NOTAS DE AULA FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA. Professor Doutor: Jair Silvério dos Santos FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA 1 NOTAS DE AULA Professor Doutor: Jair Silvério dos Santos (i) Matrizes Reais Uma matriz real é o seguinte arranjo de números reais : a 11 a 12 a 13 a 1m a 21

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Física. Ênfase. Disciplina A - Elementos da Álgebra Linear

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Física. Ênfase. Disciplina A - Elementos da Álgebra Linear Curso 1605 - Física Ênfase Identificação Disciplina 0004223A - Elementos da Álgebra Linear Docente(s) Alexys Bruno Alfonso Unidade Faculdade de Ciências Departamento Departamento de Matemática Créditos

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Curso 2103 - Bacharelado em Ciência da Computação 1605 - Física 1505 - Licenciatura em Matemática 1701 - Bacharelado em Meteorologia 2803 - Bacharelado em Sistemas de Informação Ênfase Identificação Disciplina

Leia mais

Notas em Álgebra Linear

Notas em Álgebra Linear Notas em Álgebra Linear 1 Pedro Rafael Lopes Fernandes Definições básicas Uma equação linear, nas variáveis é uma equação que pode ser escrita na forma: onde e os coeficientes são números reais ou complexos,

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO CURSOS Bacharelados e Licenciaturas MATRIZ SA (Informação do Sistema Acadêmico) FUNDAMENTAÇÃO LEGAL Resolução

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Aula 03 Inversão de matrizes

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Aula 03 Inversão de matrizes UNIVERSIDDE FEDERL DO RIO GRNDE DO NORTE Prof. Hector Carrion S. Álgebra Linear ula Inversão de matrizes Resumo Matriz inversa Inversa de matriz elementar Matriz adjunta Inversão de matrizes Uma matriz

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Engenharia de Produção. Ênfase

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Engenharia de Produção. Ênfase Curso 4402 - Engenharia de Produção Ênfase Identificação Disciplina 0002001EP2 - Geometria Analítica e Álgebra Linear Docente(s) Tatiana Miguel Rodrigues de Souza Unidade Faculdade de Ciências Departamento

Leia mais

Aula 5 - Produto Vetorial

Aula 5 - Produto Vetorial Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.2 21 de

Leia mais

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em VETORES Um vetor é uma lista ordenada de números

Leia mais

é encontrado no cruzamento da linha i com a coluna j, ou seja, o primeiro índice se refere à linha e o segundo à coluna.

é encontrado no cruzamento da linha i com a coluna j, ou seja, o primeiro índice se refere à linha e o segundo à coluna. Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal De Santa Catarina Campus São José Professora: ELENIRA OLIVEIRA VILELA COMPONENTE CURRICULAR: ALG ÁLG. LINEAR MATRIZES

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES PET-FÍSICA MATRIZES E DETERMINANTES Aula 7 TATIANA MIRANDA DE SOUZA ANA CAROLINA DOS SANTOS LUCENA VANESSA CRISTINA DA SILVA FERREIRA FREDERICO ALAN DE OLIVEIRA CRUZ AGRADECIMENTOS Esse material foi produzido

Leia mais

Recados. Listas 1 e 2 - disponíveis no site. Procurar Monitoria GAAL 2013/1 UFMG no Facebook. Primeira Prova: sábado, 06 de abril

Recados. Listas 1 e 2 - disponíveis no site. Procurar Monitoria GAAL 2013/1 UFMG no Facebook. Primeira Prova: sábado, 06 de abril Recados Listas 1 e 2 - disponíveis no site Procurar Monitoria GAAL 2013/1 UFMG no Facebook Primeira Prova: sábado, 06 de abril Horário: 10:00-12:00 no ICEx Da aula anterior: Da aula anterior: Teorema:

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru

Plano de Ensino. Identificação. Câmpus de Bauru Curso 2902 / 2903B - Bacharelado em Química Ambiental Tecnológica 2802 - Bacharelado em Sistemas de Informação Ênfase Identificação Disciplina 0007101A - Geometria Analítica e Álgebra Linear Docente(s)

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP Álgebra Linear AL Luiza Amalia Pinto Cantão Depto de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocabaunespbr Matrizes Inversas 1 Matriz Inversa e Propriedades 2 Cálculo da matriz

Leia mais

Capítulo 6. Operadores Ortogonais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo

Capítulo 6. Operadores Ortogonais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Capítulo 6 Operadores Ortogonais Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 6: Operadores Ortogonais

Leia mais

Determinantes - Parte 02

Determinantes - Parte 02 Determinantes - Parte 02 Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.1 10

Leia mais

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para 5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008 1. Encontre os autovalores, os autovetores e a exponencial e At para [ ] 1 1 1 1 2. Uma matriz diagonal Λ satisfaz a regra usual

Leia mais

MATEMÁTICA A ÁLGEBRA LINEAR

MATEMÁTICA A ÁLGEBRA LINEAR MTEMÁTIC ÁLGEBR LINER Lilian de Souza Vismara Mestre Eng. Elétrica ESSC / USP Licenciada em Matemática UFSCar MTRIZES Motivação de estudo Contexto histórico-científico Testes seus conhecimentos! Definição

Leia mais

Sumário. Capítulo 1 - Conhecendo os Vários Tipos de Problema... 1

Sumário. Capítulo 1 - Conhecendo os Vários Tipos de Problema... 1 Sumário Capítulo 1 - Conhecendo os Vários Tipos de Problema... 1 Capítulo 2 - Problemas sobre Correlacionamento... 7 2.1. Problemas Envolvendo Correlação entre Elementos...7 2.2. Considerações Finais sobre

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Álgebra Linear e Geometria Analítica Prof. Aline Paliga EMENTA Vetores Dependência Linear Bases Produto Escalar Produto Vetorial Produto Misto Coordenadas Cartesianas

Leia mais

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA Exercícios vários. Considere o conjunto C =, e a operação binária definida por a b = min(a, b). O conjunto C é, relativamente

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÀS Pro Reitoria de Graduação PLANO DE ENSINO

UNIVERSIDADE CATÓLICA DE GOIÀS Pro Reitoria de Graduação PLANO DE ENSINO UNIVERSIDADE CATÓLICA DE GOIÀS Pro Reitoria de Graduação PLANO DE ENSINO DISCIPLINA Introdução à Álgebra Linear CÓDIGO MAF-4122-C01 PROFESSOR CRISTIAN PATRICIO NOVOA BUSTOS CURSO Engenharia PERÍODO CRÉDITO

Leia mais

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A MATEMÁTICA PARA ADMINISTRADORES AULA 03: ÁLGEBRA LINEAR E SISTEMAS DE EQUAÇÕES LINEARES TÓPICO 02: SISTEMA DE EQUAÇÕES LINEARES Considere o sistema linear de m equações e n incógnitas: O sistema S pode

Leia mais

ficha 1 matrizes e sistemas de equações lineares

ficha 1 matrizes e sistemas de equações lineares Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2

Leia mais

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROF.: MARCELO SILVA.

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROF.: MARCELO SILVA. UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROF.: MARCELO SILVA Determinantes Introdução Como já vimos, matriz quadrada é a que tem o mesmo número

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz

Leia mais

Lista de exercícios 5 Determinantes

Lista de exercícios 5 Determinantes Universidade Federal do Paraná semestre 015. Algebra Linear, CM 005 Olivier Brahic Lista de exercícios 5 Determinantes Exercício 1: Seja A := 3 1 3 3 Encontre os valores dos menores det(m,1 ), det(m, )

Leia mais

MATEMÁTICA MÓDULO 11 DETERMINANTES. Professor Matheus Secco

MATEMÁTICA MÓDULO 11 DETERMINANTES. Professor Matheus Secco MATEMÁTICA Professor Matheus Secco MÓDULO 11 DETERMINANTES INTRODUÇÃO Neste módulo, não daremos a definição padrão de determinantes via somatório envolvendo sinais de permutações, pois não há necessidade

Leia mais

AUTOVALORES E AUTOVETORES

AUTOVALORES E AUTOVETORES AUTOVALORES E AUTOVETORES Prof a Simone Aparecida Miloca Definição 1 Uma tranformação linear T : V V é chamada de operador linear. Definição Seja T : V V um operador linear. existirem vetores não-nulos

Leia mais

Álgebra Linear e Geometria Anaĺıtica

Álgebra Linear e Geometria Anaĺıtica Álgebra Linear e Geometria Anaĺıtica 2016/17 MIEI+MIEB+MIEMN Slides da 4 a Semana de aulas Cláudio Fernandes (FCT/UNL) Departamento de Matemática 1 / 27 Programa 1 Matrizes 2 Sistemas de Equações Lineares

Leia mais

Plano de Ensino. Identificação. Câmpus de Ilha Solteira. Curso Zootecnia. Ênfase. Disciplina 159-ST1-A - MATEMÁTICA II

Plano de Ensino. Identificação. Câmpus de Ilha Solteira. Curso Zootecnia. Ênfase. Disciplina 159-ST1-A - MATEMÁTICA II Curso 881 - Zootecnia Ênfase Identificação Disciplina 159-ST1-A - MATEMÁTICA II Docente(s) Deise Aparecida Peralta Unidade Faculdade de Engenharia Departamento Departamento de Matemática Créditos 4 T:60

Leia mais

CENTRO DE ENSINO SUPERIOR. Avenida João Batista de Souza Soares, Colônia Paraíso - São José dos Campos SP CEP:

CENTRO DE ENSINO SUPERIOR. Avenida João Batista de Souza Soares, Colônia Paraíso - São José dos Campos SP CEP: CENTRO DE ENSINO SUPERIOR Avenida João Batista de Souza Soares, 4121 - Colônia Paraíso - São José dos Campos SP CEP: 12236-660 www.unianhanguera.edu.br ALGEBRA LINEAR ATPS de matrizes Disciplina: Álgebra

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO CURSOS Bacharelados e Licenciaturas MATRIZ SA (Informação do Sistema Acadêmico) FUNDAMENTAÇÃO LEGAL Resolução

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO. CURSO Engenharia Elétrica MATRIZ 548

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO. CURSO Engenharia Elétrica MATRIZ 548 Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO CURSO Engenharia Elétrica MATRIZ 548 FUNDAMENTAÇÃO LEGAL Processo N 00/11, aprovado pela Resolução n.

Leia mais

Determinantes. det A = a 11. Se A = a11 a 12 a 21 a 22. é uma matriz 2 2, então. det A = a 11 a 22 a 12 a 21. Exemplo 1. det 3 4. = 1; det 3 4 = 0.

Determinantes. det A = a 11. Se A = a11 a 12 a 21 a 22. é uma matriz 2 2, então. det A = a 11 a 22 a 12 a 21. Exemplo 1. det 3 4. = 1; det 3 4 = 0. Determinantes Definição Definição Se A = [a 11 é uma matriz 1 1, então Se é uma matriz, então Exemplo 1 [ 1 3 4 A = A = a 11 [ a11 a 1 a 1 a A = a 11 a a 1 a 1 [ 1 0 = ; 0 1 [ 6 8 = 1; 3 4 = 0 Para definir

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha Matrizes e sistemas de equações lineares Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores o semestre 6/7 Jorge Almeida e Lina Oliveira Departamento

Leia mais

Avaliação e programa de Álgebra Linear

Avaliação e programa de Álgebra Linear Avaliação e programa de Álgebra Linear o Teste ( de Março): Sistemas de equações lineares e matrizes. Espaços lineares. o Teste ( de Maio): Matriz de mudança de base. Transformações lineares. o Teste (

Leia mais

PET-FÍSICA SISTEMAS LINEARES BRUNO RANDAL DE OLIVEIRA VANESSA CRISTINA DA SILVA FERREIRA FREDERICO ALAN DE OLIVEIRA CRUZ

PET-FÍSICA SISTEMAS LINEARES BRUNO RANDAL DE OLIVEIRA VANESSA CRISTINA DA SILVA FERREIRA FREDERICO ALAN DE OLIVEIRA CRUZ PET-FÍSICA SISTEMAS LINEARES Aula 8 BRUNO RANDAL DE OLIVEIRA VANESSA CRISTINA DA SILVA FERREIRA FREDERICO ALAN DE OLIVEIRA CRUZ AGRADECIMENTOS Esse material foi produzido com apoio do Fundo Nacional de

Leia mais

Escalonamento. Sumário. 1 Pré-requisitos. 2 Sistema Linear e forma matricial. Sadao Massago a Pré-requisitos 1

Escalonamento. Sumário. 1 Pré-requisitos. 2 Sistema Linear e forma matricial. Sadao Massago a Pré-requisitos 1 Escalonamento Sadao Massago 2011-05-05 a 2014-03-14 Sumário 1 Pré-requisitos 1 2 Sistema Linear e forma matricial 1 3 Forma escalonada 3 4 Método de eliminação de Gauss (escalonamento) 5 5 A matriz inversa

Leia mais

Hewlett-Packard DETERMINANTE. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard DETERMINANTE. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard DETERMINANTE Aulas 0 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário DETERMINANTE... Exemplo... Exemplo...... Exemplo...... TEOREMA DE LAPLACE... I) COFATOR... Exemplo... II)

Leia mais

O TEOREMA ESPECTRAL E AS FORMAS QUADRÁTICAS NO PLANO: CLASSIFICAÇÃO DAS CÔNICAS

O TEOREMA ESPECTRAL E AS FORMAS QUADRÁTICAS NO PLANO: CLASSIFICAÇÃO DAS CÔNICAS O TEOREMA ESPECTRAL E AS FORMAS QUADRÁTICAS NO PLANO: CLASSIFICAÇÃO DAS CÔNICAS Eduardo Corrêa Pedrosa (monitor) Profª. Drª. Ana Maria Luz Fassarella do Amaral (orientadora) GANP001 Motivação Este projeto

Leia mais

Sistemas Lineares. ( Aula 3 )

Sistemas Lineares. ( Aula 3 ) Sistemas Lineares ( Aula 3 ) Determinante Definição: Determinante Matriz quadrada é a que tem o mesmo número de linhas e de colunas (ou seja, é do tipo n x n). A toda matriz quadrada está associado um

Leia mais

Referências principais (nas quais a lista foi baseada): 1. G. Strang, Álgebra linear e aplicações, 4o Edição, Cengage Learning.

Referências principais (nas quais a lista foi baseada): 1. G. Strang, Álgebra linear e aplicações, 4o Edição, Cengage Learning. 1 0 Lista de Exercício de Mat 116- Álgebra Linear para Química Turma: 01410 ( 0 semestre 014) Referências principais (nas quais a lista foi baseada): 1. G. Strang, Álgebra linear e aplicações, 4o Edição,

Leia mais

São tabelas de elementos dispostos ordenadamente em linhas e colunas.

São tabelas de elementos dispostos ordenadamente em linhas e colunas. EMENTA (RESUMO) Matrizes Matrizes, determinantes e suas propriedades, Multiplicação de matrizes, Operações com matrizes, Matrizes inversíveis. Sistemas de Equações Lineares Sistemas equações lineares,

Leia mais

Hewlett-Packard DETERMINANTE. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard DETERMINANTE. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard DETERMINANTE Aulas 0 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário DETERMINANTE... Exemplo... Exemplo...... Exemplo...... TEOREMA DE LAPLACE... I) COFATOR... Exemplo... II)

Leia mais

Matriz, Sistema Linear e Determinante

Matriz, Sistema Linear e Determinante Matriz, Sistema Linear e Determinante 1.0 Sistema de Equações Lineares Equação linear de n variáveis x 1, x 2,..., x n é uma equação que pode ser expressa na forma a1x1 + a 2 x 2 +... + a n x n = b, onde

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Introdução Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares,

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Licenciatura em Matemática. Ênfase

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Licenciatura em Matemática. Ênfase Curso 1503 - Licenciatura em Matemática Ênfase Identificação Disciplina 0006311A - Álgebra Linear e Geometria Analítica Docente(s) Julio Ricardo Sambrano, Nair Cristina Margarido Brondino Unidade Faculdade

Leia mais

Lista 1: sistemas de equações lineares; matrizes.

Lista 1: sistemas de equações lineares; matrizes. Lista : sistemas de equações lineares; matrizes. Obs. As observações que surgem no fim desta lista de exercícios devem ser lidas antes de resolvê-los. ) Identifique as equações que são lineares nas respectivas

Leia mais

1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0

1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0 1.3 Matrizes inversas Definição: Seja A uma matriz de ordem k n, a matriz B de ordem n k é uma inversa à direita de A, se AB = I. A Matriz C de ordem n k é uma inversa à esquerda de A, se CA = I. Exemplo

Leia mais

PLANO DE ENSINO CURSO ENGENHARIA AMBIENTAL MATRIZ 519

PLANO DE ENSINO CURSO ENGENHARIA AMBIENTAL MATRIZ 519 Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Medianeira PLANO DE ENSINO CURSO ENGENHARIA AMBIENTAL MATRIZ 519 FUNDAMENTAÇÃO LEGAL Resolução 075/09 COEPP, de 21 de agosto de

Leia mais

Profs. Alexandre Lima e Moraes Junior 1

Profs. Alexandre Lima e Moraes Junior  1 Raciocínio Lógico-Quantitativo para Traumatizados Aula 07 Matrizes, Determinantes e Solução de Sistemas Lineares. Conteúdo 7. Matrizes, Determinantes e Solução de Sistemas Lineares...2 7.1. Matrizes...2

Leia mais

Revisão: Matrizes e Sistemas lineares. Parte 01

Revisão: Matrizes e Sistemas lineares. Parte 01 Revisão: Matrizes e Sistemas lineares Parte 01 Definição de matrizes; Tipos de matrizes; Operações com matrizes; Propriedades; Exemplos e exercícios. 1 Matrizes Definição: 2 Matrizes 3 Tipos de matrizes

Leia mais

n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta

n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta Equação geral de uma reta Para determinar a equação geral de uma reta utilizamos os conceitos relacionados

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Licenciatura em Matemática. Ênfase

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Licenciatura em Matemática. Ênfase Curso 1503 - Licenciatura em Matemática Ênfase Identificação Disciplina 0006311A - Álgebra Linear e Geometria Analítica Docente(s) Julio Ricardo Sambrano, Nair Cristina Margarido Brondino Unidade Faculdade

Leia mais

Sistema de Equaçõs Lineares

Sistema de Equaçõs Lineares Summary Sistema de Equaçõs Lineares Hector L. Carrion ECT-UFRN Agosto, 2010 Summary Equações Lineares 1 Sistema de Eq. Lineares 2 Eliminação Gaussiana-Jordan 3 retangular 4 5 Regra de Cramer Summary Equações

Leia mais

3. Calcule o determinante das matrizes abaixo.

3. Calcule o determinante das matrizes abaixo. Gabarito - Lista de Exercícios # Professor Pedro Hemsley Calcule o determinante das matrizes x abaixo deta = det = ( ) = detb = det = = 9 detc = det = 9 8 ( ) = 8 detd = det = = 0 0 dete = det = 0 ( 9)

Leia mais

Polinômio Mínimo e Operadores Nilpotentes

Polinômio Mínimo e Operadores Nilpotentes Capítulo 9 Polinômio Mínimo e Operadores Nilpotentes Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula

Leia mais

Matemática /09 - Determinantes 37. Determinantes. det A = a 11 a 22 a 12 a 21 = = 2

Matemática /09 - Determinantes 37. Determinantes. det A = a 11 a 22 a 12 a 21 = = 2 Matemática - 008/09 - Determinantes Determinantes de ordem e. Determinantes O erminante de uma matriz quadrada é um número real obtido a partir da soma de erminados produtos de elementos da matriz. Vamos

Leia mais

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru 1 Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru Neste capítulo vamos considerar espaços vetoriais sobre K, onde K = R ou K = C, ou seja, os espaços vetoriais podem ser reais

Leia mais