Arquitetura do MEV [7]

Tamanho: px
Começar a partir da página:

Download "Arquitetura do MEV [7]"

Transcrição

1 [7] 1>

2 interação feixe de elétrons-amostra Volume de interação: 2>

3 interação feixe de elétrons-amostra Raios-X característicos: K α K β também ocorrem emissão de raios-x característicos das camadas L, M,... 3>

4 Espectroscopia por dispersão de energia (EDS) O espectrômetro EDS trabalha sobre o princípio de que a energia de um foton E está relacionada com a frequência da onda eletromagnética ν, pela relação E=hν, onde h é a constante de Planck. A equação de Moseley, ν (Z-C) pode ser formulada em termos de energia (E/h) = (Z-C) e portanto a medida da energia de um foton de raio-x identifica o elemento que o emitiu. Fotons com energias correspondentes a todo o espectro de raios-x atingem o detetor do EDS quase que simultaneamente e o processo de medida deve ser rápido, possibilitando analisar todos os comprimentos de onda também de modo simultâneo. Os pulsos de voltagens são transferidos a um analisador multicanal, que possui da ordem de 1000 canais, cada um correspondendo a uma faixa de voltagem. Quando um pulso de voltagem atinge o detetor, ele é alocado ao canal apropriado ao seu valor e o analisador armazena todo o espectro, que pode ser obtido em segundos ou minutos. O detetor consiste de um cristal de silício dopado com lítio, que é polarizado por eletrodos em ambas as superfícies. O espalhamento fotoeletrônico no silício cria pares livres eletron-buracos na Arquitetura de banda do semicondutor que são separados pela polarização aplicada através do detetor, sendo a carga coletada na superfície dos eletrodos. A coleta de raios-x é muito eficiente neste tipo de detetor, que pode ser colocado muito próximo a amostra para coletar radiação em grandes ângulos. O detetor é mantido a nitrogênio líquido para que o cristal não se deteriore, e no detetores convencionais é isolado da coluna por uma janela. A janela de berílio (8μm) absorve todo raio-x abaixo de 0,75keV, o que impossibilita a análise de elementos leves (Z<11). Detetores sem janela (windowless detector) ou com janelas ultra-finas (0,1μm) de polímeros aluminizado podem ser utilizados para análise de elementos leves (Z>6). 4>

5 Espectroscopia por dispersão de energia (EDS) 5>

6 EDS colimador: Um espectrômetro de energia dispersiva é sensível a raios-x que entram na janela sobre uma grande faixa de ângulos. Sinais de raios-x espúrios podem ser gerados por elétrons retroespalhados que incidem na peça polar da lente final e outros objetos da câmara do microscópio. Para evitar a detecção detes raios-x, o ângulo de aceitação é limitado ajustando um colimador externo ao detector. Colimadores têm uma abertura circular ou em forma de ferradura. O tipo de ferradura, aberta embaixo, oferece maior flexibilidade sobre uma faixa de distâncias de trabalho que podem ser usadas. O tamanho e forma do colimador, e a distância do detector até a amostra, também afeta a área na amostra que pode ser vista ' pelo detector. 6>

7 EDS armadilha para elétrons (trap): Detectores que incorporam janelas, tais como como os que suportam atmosfera: janela fina (ATW) e super ATW (transparente aos raios-x abaixo de 1 kev), geralmente é montado com um dispositivo chamado de armadilha de elétrons. O propósito deste dispositivo é prevenir que elétrons entrem no cristal e contribuam com o ruído de fundo do espectro. EDS com janela de Be não necessita de armadilha para elétrons. A armadilha contém pequenos ímãs que estão montados em frente à janela mas atrás do colimador. Estes produzem um forte campo magnético que deflete o caminho dos elétrons incidentes para os lados da armadilha. Deste modo previne-se a entrada de elétrons no cristal. 7>

8 EDS efeito da armadilha para elétrons: Se elétrons espalhados entrassem no detector, eles produziriam uma grande corcova espúria no ruído de fundo no espectro e poderiam causar um alto tempo de morto, quando o processador de pulsos desperdiça tempo processando eventos aleatórios de energia de elétrons. armadilha ligada armadilha desligada 8>

9 EDS janela (window): A janela geralmente é incorporada no final da ponta da montagem do detector pela qual os raios-x passam antes de atingir o cristal. O papel principal da janela é selar o vácuo entre a câmara de amostras e o vácuo do criostato/dedo frio. Adicionalmente, a janela deveria permitir uma boa transmissão de raios-x. No entanto, fótons de raios-x com baixa energia podem ser absorvidos. Para tanto foram desenvolvidas janelas com vários materiais suficientemente transparentes aos raios-x mas com boa resistência mecânica. Historicamente o berílio (Be) tem sido o material mais amplamente usado por causa de sua resistência e seu baixo número atômico. As janelas de Be são capazes de suportar 1 atmosfera de pressão em uma área de 30 mm 2, mas absorvem fótons com energia menor que 1 kev. Acima de 1 Kev, ocorre transmissão suficiente de raios-x. Assim, os elementos com peso atômico acima do sódio (Na) são detectados. Esta limitação pode ser superada removendo a janela ou usando outra tecnologia de janelas finas. 9>

10 EDS janela fina (thin window): Janelas finas e ultrafinas tem sido desenvolvidas para resistir à pressão atmosférica e serem transparentes aos raios-x de baixa energia. Um suporte de silício ou metal resiste à pressão e sobre esta peça é um filme polimérico fino. Os fótons de raios-x atravessam as regiões do filme entre as grades. Diferentes filmes e grades de suporte são usados e aqueles comumente usados como filmes finos incluem nitreto de boro, formvar, collodium e nitreto de silício. Outra exigência da janela é minimizar o grau de luz transmitida através do detector. Luz é produzida de amostras que catodoluminescem como ZnS e diamante ou daquelas superfícies que são tão polidos que elas refletem a luz do um filamento de tungstênio. O alargamento de pico, deslocamento de pico e distorção de pico no espectro final pode surgir como resultado da luz que entra no cristal do detector. Geralmente é aplicada uma camada refletiva de alumínio para fornecer uma barreira para a luz, a espessura que é crítica uma vez que o grau de absorção de raios-x aumentará com o aumento de espessura. SATW - Super Atmosphere supporting Thin Window: Z > Be [4] ATW - Atmosphere Thin Window: Z > B [5] 10>

11 EDS cristal detector: Arquitetura do MEV A conversão de raios-x em carga elétrica é feita com o registro dos pulsos de tensão gerados pelo cristal do detector, localizado atrás do colimador, armadilha de elétrons e da janela. O material mais comumente usado é uma pastilha de silício puro dopado com lítio. Uma tensão da ordem de 500V é aplicada para estabelecer um campo elétrico uniforme. Fótons de raios-x que entram no cristal perdem energia e criam um número proporcional de pares de elétron-buraco que são varridos para os contatos pelo campo, a uma alta velocidade. Um pulso é induzido na porta do transistor de efeito de campo (FET) que forma o estágio de entrada amplificador, cuja amplitude é proporcional à energia do raio-x incidente. O resfriamento reduz a corrente de fuga do detector, tornando-o mais eficiente. Tal efeito normalmente é conseguido montando o cristal no término do dedo frio de cobre esfriado por nitrogênio líquido. 11>

12 EDS geração de pulsos no cristal detector: Um fóton de raios-x incidente é primeiro absorvido por um evento fotoelétrico que produz um fotoelétron e um átomo de Si ionizado que então emite um elétron Auger, ou mais raramente, um fóton Si Kα. São estes fotons ou elétrons de Auger que perdem energia e geram os pares de elétron-lacuna. Uma tensão de polarização aplicada através do cristal impulsiona os portadores de carga (elétrons e lacunas) para eletrodos opostos, produzindo um sinal de carga cumulativo, o tamanho do qual é diretamente proporcional à energia do foton de raios-x. geração de pares elétron-lacuna 12>

13 EDS FET + pré-amplificador: O transistor de efeito de campo (FET) é posicionado logo atrás do cristal detector. Seu papel é medir a carga liberada no cristal pelos raios-x incidentes e convertê-los em saída de tensão. Também é a primeira fase do processo de amplificação. O propósito do pré-amplificador é amplificar o sinal para um nível satisfatório para conseguir um nível aceitável para o processador de pulso, que recebe um sinal filtrado e com boa intensidade. FET Pré-amplificador 13>

14 EDS processador de pulsos: A função primordial do processador de pulsos é determinar com precisão a energia dos fótons de raios-x que são coletados, cuja ocorrência é contada sistematicamente para cada faixa de energia (canal) por um computador analisador multi-canal (MCA). Porém, o trabalho do processador de pulsos é mais complexo que um simples conversor analógico-digital (ADC), além de otimizar a remoção de ruído presente no sinal do espectro de raios-x original. 14>

15 EDS tempos com processamento: O processador de pulsos pode ter os tempos de processamento selecionáveis pelo usuário. Selecionando tempos de processo diferentes, é possível remover diferentes quantias de sinal de ruído de raios-x vindo do detector. Se ruído é removido, a resolução do pico exibida no espectro é melhorada, em outras palavras, o pico será mais fino, e ficará mais fácil separar, ou resolver, de um outro pico que pode estar próximo em energia. A largura do pico é um critério usado para expressar o desempenho do sistema de EDS. Se o sistema tem picos finos, ele tem boa resolução. Há um compromisso entre o tempo de processamento e a velocidade de aquisição de dados. Com tempos mais longos de processamento, mais demorada podem ser a aquisição dos dados, isto é, mais alto será o tempo morto de sistema (tempo onde o detector não coleta pulsos). Para cada fóton de raio-x o processador gasta uma quantia finita de tempo, processando ou medindo o sinal. Dependendo da taxa de eventos que entram no processador de pulsos e o tempo de processo selecionado, um certo número de pulsos que entram não será processado e serão ignorados. Tempo vivo (live time) tempo durante o qual o detector colhe fótons de raios-x. Tempo morto (dead time) tempo no qual o pulso é processado e o detector não atua. Tempo do relógio = live time (normalmente 100s) + dead time (ajustado entre 20 a 40%) 15>

16 EDS tempos com processamento: 16>

17 EDS resolução: Um pico de raio-x tem uma largura natural de cerca de 2 ev. Quando este pico for medido por um espectrômetro de energia dispersiva, a largura do pico é degradada a aproximadamente 133 ev, para um raio-x Mn Kα, medido com um detector de Si(Li). Processos estatísticos contribuem com esta degradação e uma expressão pode ser derivada que relaciona a largura de um pico a sua energia. Os picos são alargados devido a dois processos: 1) flutuações estatísticas no número de pares elétron-buraco gerados pelo raio-x incidente 2) flutuações aleatórias na medida de cada sinal de raio-x devido a ruído no cristal e na montagem do FET. FWHM full-width at half-maximum 17>

18 EDS elementos leves: 18>

19 EDS artifatos importantes: Raios-X emitidos por elementos pesados (alta energia) podem ionizar o sílicio usado no detector EDS formação de picos de escape (escape peaks). baixa intensidade ( 1-2%) Ilustração esquemática dos Si escape peaks para Ti Kα, Ti Kβ e Cu Ti Kα. 19>

20 EDS artifatos importantes: Sobreposição de picos de raios-x (peak overlapping), causada pela proximidade entre as energias dos fótons característicos observados durante a microanálise. 20>

21 EDS elementos leves: O efeito de absorção de raios-x de elementos leves é muito significativo e certamente é a limitação mais importante associada a microanálise quantitativa destes elementos. Duas variáveis de análise devem ser consideradas para a redução deste efeito. A primeira delas está associada ao ângulo da amostra em relação ao detetor, (take-off angle). Quanto maior este ângulo, menor será o comprimento a ser percorrido pelos raios-x na amostra, e portanto menor será a absorção. A segunda variável está associada a energia do feixe de eletrons. A penetração do feixe de eletrons diminui com a diminuição da voltagem, e portanto, com baixas voltagens a produção de raios-x irá ocorrer mais próximo a superfície, diminuindo também o efeito de absorção. É claro que a diminuição da voltagem acarreta também menor emissão de raios-x, o que também é crítico no caso de elementos leves. Portanto, é importante considerar a combinação de dois efeitos, ou seja, aumento de intensidade de raios-x emitido devido a aumento da voltagem e o correspondente aumento da penetração, que aumenta a absorção. Deste modo a variação da voltagem acarreta um máximo de intensidade em uma faixa intermediária de voltagem, em geral na faixa de 8 a 15 kev para o caso de elementos leves. A limitação física mais importante para a microanálise de elementos leves está associada a diminuição da emissão de fluorescência de raios-x com o decréscimo do número atômico do elemento analisado, gerando poucos raios-x por ionização. Para o carbono por exemplo, apenas uma de cada 400 ionizações da camada K produz raios-x característico do carbono; já no caso do sódio, cada 40 ionizações produz um fóton de raio-x característico. As interações remanescentes produzem eletrons Auger, cuja emissão é portanto, mais eficiente que a emissão de raios-x no caso de elementos leves. 21>

22 EDS elementos leves: Além da baixa emissividade de raios-x para elementos leves a eficiência de coleta destes raios também é relativamente ruim. A maioria dos detetores de raios-x detectam apenas uma fração dos raios que incidem sobre eles. Por exemplo, de todos os raios-x de carbono correspondendo a camada Kα que atingem um detetor EDS sem janelas, apenas 67% são transmitidos através da camada inicial de 100nm do silício. O resultado é que apenas uma pequena fração dos eventos de ionização que produzem raios-x que são efetivamente computados para a análise. Problemas de sobreposição de picos ocorrem com a presença de metais de transição, por exemplo, a linha Lα do Ti que sobrepõe a linha K do N em 0,39keV e as linhas Lα tanto do V como do Cr que sobrepõe a linha K do O em 0,52keV. Os procedimentos para quantificação de elementos leves, a princípio poderiam seguir os procedimentos normais de correção ZAF, (lembrando-se dos cuidados de otimização da energia do feixe e ângulo de análise para minimizar os efeitos de absorção). Entretanto, devido aos valores extremamente elevados de absorção, os coeficientes de absorção de massa precisam ser muito bem conhecidos, e os valores apresentados na literatura frequentemente apresentam enormes discrepâncias (algumas vezes da ordem de 100%). Em geral, para elementos leves, uma variação de 1% dos coeficientes de absorção de massa causam variações de 1% nos valores ZAF calculados, independente do programa de correção utilizado para o cálculo dos fatores ZAF. 22>

23 EDS elementos leves: No caso do EDS, o efeito de absorção mais importante, ocorre na janela do detetor, quando esta é de Be, e que efetivamente não permite que raios-x de elementos com número atômico menor que 10, atinja o detetor. Este efeito, pode ser evitado pela remoção da janela; entretanto, como o detetor trabalha na temperatura de nitrogênio líquido, ele atua efetivamente como uma ponta fria, atraindo contaminação, a não ser que o ambiente seja de ultra-alto vácuo. Portanto esta é uma condição experimental necessária para a utilização dos detetores sem janela (windowless detector). Outra alternativa é o uso de janelas ultra-finas (0,1um de espessura) de polímero aluminizado, que podem evitar a contaminação do cristal, porém não tem resistência mecânica para suportar pressão atmosférica e portanto os detetores neste caso, devem ser retráteis para uma câmara sob vácuo durante troca de amostra. Estas janelas permitem a passagem de raios-x de energia correspondente à do carbono. O problema de sobreposição de picos mencionado anteriormente é particularmente importante para o EDS, que apresenta resolução espectral na faixa de 100eV. Neste caso, pode ocorrer tanto a sobreposição de picos de elementos leves entre si, como a sobreposição com picos das camadas L ou M de metais componentes da amostra, e são necessários sofisticados programas para a correção destas sobreposições. Obviamente, com estas limitações, a eletrônica do detetor deve também ser projetada para minimizar ruidos em baixas energias. Apesar destas limitações, o espectrômetro EDS torna-se particularmente útil na microanálise de materiais sensíveis ao feixe de eletrons. Nestes casos, é necessário o uso de baixas intensidades de corrente para não danificar a amostra o que limita, o uso de um espectrômetro WDS. 23>

24 Resultados EDS microanálise em ponto ponto P1 ponto P2 Elmt - P1 mass (%) Atomic (%) Ti K 0,68 1,27 Cr K 0,74 1,27 Fe K 3,46 5,57 Nb L 95,12 91,90 Total Elmt - P1 mass (%) Atomic (%) Ti K 0,68 1,27 Cr K 0,74 1,27 Fe K 3,46 5,57 Nb L 95,12 91,90 Total Elmt - P2 Mass (%) Atomic (%) Cr K 10,60 12,39 Mn K 0,48 0,53 Fe K 66,42 72,34 Nb L 22,51 14,74 Total revestimento duro com carbonetos de nióbio 24>

25 Resultados EDS microanálise em linha revestimento duro com carbonetos de nióbio 25>

26 Resultados EDS microanálise em área Elmt Mass (%) Atomic (%) Cr K 2,28 3,73 Fe K 11,00 16,71 Ni K 0,61 0,88 Nb L 86,11 78,68 Total revestimento duro com carbonetos de nióbio 26>

27 Microanálise EDS: mapeamento de elementos 27>

28 Bibliografia: Jorge Jr, A. M.; Botta, W. J. Notas de classe Escola de Microscopia. Laboratório de Caracterização Estrutural, DEMa/UFSCar. Johnson, R. Environmental Scanning Electron Microscopy: An Introduction to ESEM. Philips Electron Optics, Eindhoven, 1996, pp Egerton, R. F. Physical Principles of Electron Microscopy: An Introduction to TEM, SEM and AEM. Springer Science+Business Media, Inc., New York, 2005, pp Goldstein, J. I. et al. Scanning Electron Microscopy and X-ray Microanalysis, third edition. Kluwer Academic/Plenum Publishers, New York, 2003, pp Goodhew, P. J.; Humphreys, J.; Beanland, R. Electron Microscopy and Analysis. Taylor & Francis Inc.,New York, 2001, pp Reed, S. J. B. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge University Press, Cambridge, 2005, pp Notas de aula preparadas pelo Prof. Juno Gallego para a disciplina Microscopia Eletrônica de Varredura Permitida a impressão e divulgação. 28

interação feixe de elétrons-amostra [3] Propriedades do elétron:

interação feixe de elétrons-amostra [3] Propriedades do elétron: [3] Propriedades do elétron: 1> Comprimento de onda do feixe de elétrons (λ): V [kv] λ [pm] 1 38,7 5 17,3 10 12,2 15 9,9 20 8,6 25 30 120 200 7,6 6,9 3,3 2,5 λ = λ = 2 e V m 1,5 h e 2 + ( ) 6 2 V + 10

Leia mais

Introdução [1] MICROSCOPIA ELETRÔNICA DE VARREDURA

Introdução [1] MICROSCOPIA ELETRÔNICA DE VARREDURA [1] Universidade Estadual Paulista UNESP Faculdade de Engenharia de Ilha Solteira Departamento de Engenharia Mecânica MICROSCOPIA ELETRÔNICA DE VARREDURA Carga didática: 4 horas/semana (teóricas/práticas)

Leia mais

TÉCNICAS DE MICROSCOPIA ELETRONICA PARA CARCATERIZAÇÃO DE MATERIAIS PMT-5858

TÉCNICAS DE MICROSCOPIA ELETRONICA PARA CARCATERIZAÇÃO DE MATERIAIS PMT-5858 TÉCNICAS DE MICROSCOPIA ELETRONICA PARA CARCATERIZAÇÃO DE MATERIAIS PMT-5858 5ª AULA Detectores de Raios-X Prof. Dr. Antonio Ramirez Londoño (LNLS) Prof. Dr. André Paulo Tschiptschin (PMT) 1. REVISÃO --

Leia mais

MICROANÁLISE DE RAIOS X

MICROANÁLISE DE RAIOS X I ESCOLA DE MICROSCOPIA ELETRÔNICA DE TRANSMISSÃO CBPF/LabNano CENTRO BRASILEIRO DE PESQUISAS FÍSICASF MICROANÁLISE DE RAIOS X ALEXANDRE MELLO 24 JUNHO 2008 1 INTERAÇÃO ELÉTRON-AMOSTRA: RAIOS X 2 INTERAÇÃO

Leia mais

Arquitetura do MEV [5] http://www4.nau.edu/microanalysis/microprobe-sem/instrumentation.html

Arquitetura do MEV [5] http://www4.nau.edu/microanalysis/microprobe-sem/instrumentation.html [5] http://www4.nau.edu/microanalysis/microprobe-sem/instrumentation.html 1> Lentes magnéticas: F = e ( E + v B) ação do campo magnético B gerada pelas lentes sobre o feixe de elétrons faz com que o sua

Leia mais

ESPESTROSCOPIA POR ENERGIA DISPERSIVA (EDS) E ESPECTROSCOPIA POR COMPRIMENTO DE ONDA DISPERSIVO (WDS)

ESPESTROSCOPIA POR ENERGIA DISPERSIVA (EDS) E ESPECTROSCOPIA POR COMPRIMENTO DE ONDA DISPERSIVO (WDS) ESPESTROSCOPIA POR ENERGIA DISPERSIVA (EDS) E ESPECTROSCOPIA POR COMPRIMENTO DE ONDA DISPERSIVO (WDS) INTRODUÇÃO 1895 Wilhelm Röngten observou os efeitos de uma radiação invisível vel Raios-X Altos graus

Leia mais

1º ETAPA PROVA DE MÚLTIPLA ESCOLHA (ELIMINATÓRIA)

1º ETAPA PROVA DE MÚLTIPLA ESCOLHA (ELIMINATÓRIA) CONCURSO PÚBLICO DE ESPECIALISTA EM LABORATÓRIO EDITAL EP - 006/2012 1º ETAPA PROVA DE MÚLTIPLA ESCOLHA (ELIMINATÓRIA) NOME: Assinatura DATA: 11/04/2012 INSTRUÇÕES: 1. Somente iniciar a prova quando for

Leia mais

ANDRÉ LUIZ PINTO CBPF

ANDRÉ LUIZ PINTO CBPF 1 MICROSCOPIA ELETRÔNICA ANDRÉ LUIZ PINTO CBPF Roteiro Introdução Fundamentos Fontes de elétrons Lentes de elétrons Interação elétron-matéria Microscópio Eletrônico de Varredura Microscópio Eletrônico

Leia mais

Técnicas de Caracterização de Materiais

Técnicas de Caracterização de Materiais Técnicas de Caracterização de Materiais 4302504 2º Semestre de 2016 Instituto de Física Universidade de São Paulo Professores: Antonio Domingues dos Santos Manfredo H. Tabacniks 23 e 25 de agosto Energia

Leia mais

Física Experimental C. Coeficiente de Atenuação dos Raios Gama

Física Experimental C. Coeficiente de Atenuação dos Raios Gama Carlos Ramos (Poli USP)-2016/Andrius Poškus (Vilnius University) - 2012 4323301 Física Experimental C Coeficiente de Atenuação dos Raios Gama Grupo: Nome No. USP No. Turma OBJETIVOS - Medir curvas de atenuação

Leia mais

Microscopia e o Espectro Eletromagnético

Microscopia e o Espectro Eletromagnético Microscopia e o Espectro Eletromagnético O limite de resolução inferior de um microscópio é determinado pelo fato de que, nestes instrumentos, se utiliza ondas eletromagnéticas para a visualização Não

Leia mais

conceitos básicos em microscopia [2]

conceitos básicos em microscopia [2] [2] Olho humano: o pioneiro instrumento de análise Defeitos visuais: miopia formação da imagem anterior à retina. hipermetropia formação da imagem posterior à retina. astigmatismo falta de simetria radial

Leia mais

TÉCNICAS DE MICROSCOPIA ELETRÔNICA DE VARREDURA PARA CARACTERIZAÇÃO DE MATERIAIS PMT-5858

TÉCNICAS DE MICROSCOPIA ELETRÔNICA DE VARREDURA PARA CARACTERIZAÇÃO DE MATERIAIS PMT-5858 TÉCNICAS DE MICROSCOPIA ELETRÔNICA DE VARREDURA PARA CARACTERIZAÇÃO PMT-5858 3ª AULA Interação entre elétrons e amostra Prof. Dr. André Paulo Tschiptschin (PMT-EPUSP) 1. INTERAÇÃO ELÉTRONS AMOSTRA O QUE

Leia mais

Estudo da Fluorescência de Raios-X em um aparelho de raios X ( ) com detector semicondutor ( ) da LD-Didactic.

Estudo da Fluorescência de Raios-X em um aparelho de raios X ( ) com detector semicondutor ( ) da LD-Didactic. Estudo da Fluorescência de Raios-X em um aparelho de raios X (554 811) com detector semicondutor (559 938) da LD-Didactic. Gabriel Frones, Rafael R. de Campos Instituto de Física - Universidade de São

Leia mais

O espectro eletromagnético: ref.:

O espectro eletromagnético: ref.: Microscopia Eletrônica de Varredura [4] O espectro eletromagnético: ν = λ f E = h f ref.: http://micro.magnet.fsu.edu/primer/lightandcolor/electromaghome.html 1> interação feixe de elétrons-amostra Comprimento

Leia mais

5 Crescimento de filmes de Ti-B-N

5 Crescimento de filmes de Ti-B-N 5 Crescimento de filmes de Ti-B-N 5.1. Introdução O sistema Ti-B-N tem sido estudado há pouco mais de uma década [79-81] devido principalmente a suas boas propriedades mecânicas e tribológicas. Estes compostos

Leia mais

Aplicações da Mecânica Quântica

Aplicações da Mecânica Quântica Aplicações da Mecânica Quântica LASER I Amplificação da luz por emissão estimulada da radiação As bases teóricas para o laser foram estabelecidas por Einstein em 1917. O primeiro laser foi construído em

Leia mais

Nome: Jeremias Christian Honorato Costa Disciplina: Materiais para Engenharia

Nome: Jeremias Christian Honorato Costa Disciplina: Materiais para Engenharia Nome: Jeremias Christian Honorato Costa Disciplina: Materiais para Engenharia Por propriedade ótica subentende-se a reposta do material à exposição à radiação eletromagnética e, em particular, à luz visível.

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO Edição de novembro de 2011 CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO ÍNDICE 3.1- Efeito

Leia mais

que tipo de detalhe interessa? eletricamente condutora ou não?

que tipo de detalhe interessa? eletricamente condutora ou não? Preparação de amostras - MEV [9] Configurações MEV: Algumas perguntas sobre a natureza das amostras: orgânica ou inorgânica? se orgânica, tem vida? maciça ou porosa? dura ou macia? frágil ou dúctil? grande

Leia mais

O Elétron como Onda. Difração de Bragg

O Elétron como Onda. Difração de Bragg O Elétron como Onda Em 1924, de Broglie sugeriu a hipótese de que os elétrons poderiam apresentar propriedades ondulatórias além das suas propriedades corpusculares já bem conhecidas. Esta hipótese se

Leia mais

1318 Raios X / Espectro contínuo e característico Medida da razão h/e.

1318 Raios X / Espectro contínuo e característico Medida da razão h/e. 1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Máximo F. Silveira Instituto de Física UFRJ Tópicos Relacionados Raios-X, equação de Bragg, radiação contínua (bremstrahlung),

Leia mais

FÍSICA MODERNA I AULA 06

FÍSICA MODERNA I AULA 06 Universidade de São Paulo Instituto de Física FÍSICA MODERNA I AULA 06 Profa. Márcia de Almeida Rizzutto Pelletron sala 220 rizzutto@if.usp.br 1o. Semestre de 2015 Monitor: Gabriel M. de Souza Santos Página

Leia mais

Espectroscopia de Fotoelétrons Excitados por Raios X. Prof.Dr. Ubirajara Pereira Rodrigues Filho

Espectroscopia de Fotoelétrons Excitados por Raios X. Prof.Dr. Ubirajara Pereira Rodrigues Filho Espectroscopia de Fotoelétrons Excitados por Raios X Prof.Dr. Espectrômetro de Fotoemissão Esquema Simplificado 2 Fontes de Raios X Fonte de Raios X 3 Fontes Tradicionais de raios-x Tubos de Raios X Emissão

Leia mais

SEL PRINCÍPIOS FÍSICOS DE FORMAÇÃO DE IMAGENS MÉDICAS. Prof. Homero Schiabel

SEL PRINCÍPIOS FÍSICOS DE FORMAÇÃO DE IMAGENS MÉDICAS. Prof. Homero Schiabel SEL 397 - PRINCÍPIOS FÍSICOS DE FORMAÇÃO DE IMAGENS MÉDICAS Prof. Homero Schiabel Max Planck (1901): teoria dos quanta E depende da freqüência de radiação (ou de λ): E = h ν ν = c / λ E = h c / λ 4. PRODUÇÃO

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO Primeira Edição junho de 2005 CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO ÍNDICE 3.1- Efeito

Leia mais

2. Propriedades Corpusculares das Ondas

2. Propriedades Corpusculares das Ondas 2. Propriedades Corpusculares das Ondas Sumário Revisão sobre ondas eletromagnéticas Radiação térmica Hipótese dos quanta de Planck Efeito Fotoelétrico Geração de raios-x Absorção de raios-x Ondas eletromagnéticas

Leia mais

ESPECTROMETRIA DE RAIOS X

ESPECTROMETRIA DE RAIOS X ESPECTROMETRIA DE RAIOS X 1. Resumo Neste trabalho pretende se estudar o espectro de baixa energia essencialmente constituído por raios X de vários isótopos recorrendo a um detector para baixas energias

Leia mais

Análise de alimentos II Introdução aos Métodos Espectrométricos

Análise de alimentos II Introdução aos Métodos Espectrométricos Análise de alimentos II Introdução aos Métodos Espectrométricos Profª Drª Rosemary Aparecida de Carvalho Pirassununga/SP 2018 Introdução Métodos espectrométricos Abrangem um grupo de métodos analíticos

Leia mais

CENTRO UNIVERSITÁRIO FEI FLAVIA REGINA PUCCI

CENTRO UNIVERSITÁRIO FEI FLAVIA REGINA PUCCI CENTRO UNIVERSITÁRIO FEI FLAVIA REGINA PUCCI DETERMINAÇÃO DA COMPOSIÇÃO QUÍMICA POR EDS DA FASE SIGMA EM AÇOS INOXIDÁVEIS DÚPLEX ENVELHECIDOS São Bernardo do Campo 2017 FLAVIA REGINA PUCCI DETERMINAÇÃO

Leia mais

Energia certa significa: quando a energia do fóton corresponde à diferença nos níveis de energia entre as duas órbitas permitidas do átomo de H.

Energia certa significa: quando a energia do fóton corresponde à diferença nos níveis de energia entre as duas órbitas permitidas do átomo de H. ESPECTROSCOPIA II A relação da luz com as linhas espectrais O que acontece se átomos de H forem bombardeados por fótons? R. Existem três possibilidades: 1) a maioria dos fótons passa sem nenhuma interação

Leia mais

Capítulo 9 Produção de Raios X e Qualidade

Capítulo 9 Produção de Raios X e Qualidade Física das Radiações e Dosimetria Capítulo 9 Produção de Raios X e Qualidade Dra. Luciana Tourinho Campos Programa Nacional de Formação em Radioterapia Introdução Qualidade = penetrabilidade Qualidade

Leia mais

QUESTÕES DE FÍSICA MODERNA

QUESTÕES DE FÍSICA MODERNA QUESTÕES DE FÍSICA MODERNA 1) Em diodos emissores de luz, conhecidos como LEDs, a emissão de luz ocorre quando elétrons passam de um nível de maior energia para um outro de menor energia. Dois tipos comuns

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO Edição de janeiro de 2009 CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO ÍNDICE 3.1- Efeito

Leia mais

Cap. 41 -Condução de eletricidade em sólidos

Cap. 41 -Condução de eletricidade em sólidos Cap. 41 -Condução de eletricidade em sólidos Propriedades elétricas dos sólidos; Níveis de energia em um sólido cristalino: Átomo; Molécula; Sólido. Estrutura eletrônica e condução: Isolantes (T = 0);

Leia mais

AES/XPS ESPECTROSCOPIA DE ELECTRÕES AUGER ESPECTROSCOPIA DE FOTOELECTRÕES X. Doutora M. F. Montemor Instituto Superior Técnico Julho de 2002

AES/XPS ESPECTROSCOPIA DE ELECTRÕES AUGER ESPECTROSCOPIA DE FOTOELECTRÕES X. Doutora M. F. Montemor Instituto Superior Técnico Julho de 2002 ESPECTROSCOPIA DE ELECTRÕES AUGER ESPECTROSCOPIA DE FOTOELECTRÕES X Doutora M. F. Montemor Instituto Superior Técnico Julho de 2002 ESPECTROSCOPIA DE ELECTRÕES AUGER (AES) ESPECTROSCOPIA DE FOTOELECTRÕES

Leia mais

Aplicações de Semicondutores em Medicina

Aplicações de Semicondutores em Medicina Aplicações de Semicondutores em Medicina Conceitos da Instrumentação Nuclear Luiz Antonio Pereira dos Santos CNEN-CRCN PRÓ-ENGENHARIAS UFS-IPEN-CRCN Aracaju Março - 2010 Aplicações da instrumentação Tomografia

Leia mais

EVFITA. Óptica Quântica. Nicolau A.S. Rodrigues Instituto de Estudos Avançados IEAv

EVFITA. Óptica Quântica. Nicolau A.S. Rodrigues Instituto de Estudos Avançados IEAv EVFITA Óptica Quântica Nicolau A.S. Rodrigues Instituto de Estudos Avançados IEAv Primórdios da Quântica Radiação de Corpo Negro Fenômenos Efeito Fotoelétrico Ópticos Espectro Solar Para descrever o espectro

Leia mais

7 Identificação de Regiões de Tensão ao Redor das Indentações por Catodoluminescência

7 Identificação de Regiões de Tensão ao Redor das Indentações por Catodoluminescência 7 Identificação de Regiões de Tensão ao Redor das Indentações por Catodoluminescência Neste capítulo será apresentado o estudo sobre a identificação de regiões de tensão ao redor de nanoindentações realizadas

Leia mais

Cap. 38 Fótons e ondas de matéria

Cap. 38 Fótons e ondas de matéria Cap. 38 Fótons e ondas de matéria Problemas com a mecânica clássica: Radiação de corpo negro; Efeito fotoelétrico; O fóton; Efeito fotoelétrico explicado; Exemplo prático: fotoemissão de raios-x; Efeito

Leia mais

Pequenas diferenças de atenuação dos tecidos mamários requerem o uso de equipamentos e técnicas especiais para detecção do câncer de mama

Pequenas diferenças de atenuação dos tecidos mamários requerem o uso de equipamentos e técnicas especiais para detecção do câncer de mama Mamografia Pequenas diferenças de atenuação dos tecidos mamários requerem o uso de equipamentos e técnicas especiais para detecção do câncer de mama São essenciais técnicas que minimizem as doses e otimizem

Leia mais

Arquitetura do MEV [8]

Arquitetura do MEV [8] Arquitetura do MEV [8] http://www4.nau.edu/microanalysis/microprobe-sem/instrumentation.html 1> Materiais anisotrópicos e textura Os materiais de engenharia não são perfeitamente isotrópicos. As propriedades

Leia mais

Capítulo 3 Atenuação Exponencial

Capítulo 3 Atenuação Exponencial Física das Radiações e Dosimetria Capítulo 3 Atenuação Exponencial Dra. uciana Tourinho Campos Programa Nacional de Formação em Radioterapia Atenuação Exponencial Introdução Atenuação exponencial simples

Leia mais

FÍSICA MODERNA I AULA 07

FÍSICA MODERNA I AULA 07 Universidade de São Paulo Instituto de Física FÍSICA MODERNA I AULA 07 Profa. Márcia de Almeida Rizzutto Pelletron sala 114 rizzutto@if.usp.br 1o. Semestre de 014 Monitor: Gabriel M. de Souza Santos Página

Leia mais

Uma breve história do mundo dos quanta. Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso

Uma breve história do mundo dos quanta. Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso Uma breve história do mundo dos Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso Tópicos da Segunda Aula Abordagem histórica Radiação de corpo negro Efeito fotoelétrico Espalhamento Compton

Leia mais

Introdução às interações de partículas carregadas Parte 1. FÍSICA DAS RADIAÇÕES I Paulo R. Costa

Introdução às interações de partículas carregadas Parte 1. FÍSICA DAS RADIAÇÕES I Paulo R. Costa Introdução às interações de partículas carregadas Parte 1 FÍSICA DAS RADIAÇÕES I Paulo R. Costa Sumário Introdução Radiação diretamente ionizante Partículas carregadas rápidas pesadas Partículas carregadas

Leia mais

INSTRUMENTAÇÃO NUCLEAR INTERAÇÃO DA RADIAÇÃO COM A MATÉRIA. Claudio C. Conti

INSTRUMENTAÇÃO NUCLEAR INTERAÇÃO DA RADIAÇÃO COM A MATÉRIA. Claudio C. Conti INSTRUMENTAÇÃO NUCLEAR INTERAÇÃO DA RADIAÇÃO COM A MATÉRIA Claudio C. Conti 1 Interação da Radiação com a Matéria A operação de qualquer tipo de detector é baseada no tipo da interação da radiação com

Leia mais

Introd. Física Médica

Introd. Física Médica Introd. Física Médica O Efeito Foto Elétrico (EFE) Introdução a Física Médica O Efeito Foto Elétrico (EFE) Introdução a Fís sica Médica Heinrich HERTZ descobriu o Efeito FotoElétrico (1887): Quando a luz

Leia mais

Interação da radiação com a matéria

Interação da radiação com a matéria Interação da radiação com a matéria 8 a aula/9 ª aula i - INTRODUÇÃO ii - IONIZAÇÃO, EXCITAÇÃO, ATIVAÇÃO E RADIAÇÃO DE FRENAGEM iii RADIAÇÕES DIRETAMENTE IONIZANTES iv RADIAÇOES INDIRETAMENTE IONIZANTES

Leia mais

AULA 01 TEORIA ATÔMICA COMPLETA

AULA 01 TEORIA ATÔMICA COMPLETA AULA 01 TEORIA ATÔMICA COMPLETA - ESTRUTURA ATÔMICA; - MODELOS ATÔMICOS; - ESPECTROSCOPIA ATÔMICA; - PROPRIEDADES ONDULATÓRIAS DOS ELÉTRONS; - NÚMEROS QUÂNTICOS E DISTRIBUIÇÃO ELETRÔNICA. Estrutura Eletrônica

Leia mais

PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS

PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS UNIVERSIDADE FEDERAL DO ABC Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) BC-1105: MATERIAIS E SUAS PROPRIEDADES PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS Introdução Propriedades

Leia mais

Universidade Federal do Rio Grande do Sul. Instituto de Física Departamento de Física. FIS01184 Física IV-C Área 1 Lista 1

Universidade Federal do Rio Grande do Sul. Instituto de Física Departamento de Física. FIS01184 Física IV-C Área 1 Lista 1 Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01184 Física IV-C Área 1 Lista 1 1.A luz do Sol no limite superior da atmosfera terrestre tem uma intensidade de

Leia mais

Programa de Pós-graduação em Ciência e Tecnologia de Materiais 1º semestre de Informações e instruções para a resolução da prova

Programa de Pós-graduação em Ciência e Tecnologia de Materiais 1º semestre de Informações e instruções para a resolução da prova Programa de Pós-graduação em Ciência e Tecnologia de Materiais 1º semestre de 2015 Informações e instruções para a resolução da prova 1. A prova deve ser realizada sem consulta; 2. A duração da prova é

Leia mais

Tecnicas analiticas para Joias

Tecnicas analiticas para Joias Tecnicas analiticas para Joias Técnicas avançadas de analise A caracterização de gemas e metais da área de gemologia exige a utilização de técnicas analíticas sofisticadas. Estas técnicas devem ser capazes

Leia mais

SUGESTÕES DE EXERCÍCIOS PARA A SEGUNDA AVALIAÇÃO

SUGESTÕES DE EXERCÍCIOS PARA A SEGUNDA AVALIAÇÃO FÍSICA IV PROF. DR. DURVAL RODRIGUES JUNIOR SUGESTÕES DE EXERCÍCIOS PARA A SEGUNDA AVALIAÇÃO Como na Biblioteca do Campus I e do Campus II temos bom número de cópias do Halliday e poucas do Serway, os

Leia mais

Tópicos em Métodos Espectroquímicos. Aula 2 Revisão Conceitos Fundamentais

Tópicos em Métodos Espectroquímicos. Aula 2 Revisão Conceitos Fundamentais Universidade Federal de Juiz de Fora (UFJF) Instituto de Ciências Exatas Depto. de Química Tópicos em Métodos Espectroquímicos Aula 2 Revisão Conceitos Fundamentais Julio C. J. Silva Juiz de For a, 2013

Leia mais

SEL FUNDAMENTOS FÍSICOS DOS PROCESSOS DE FORMAÇÃO DE IMAGENS MÉDICAS. Prof. Homero Schiabel (Sub-área de Imagens Médicas)

SEL FUNDAMENTOS FÍSICOS DOS PROCESSOS DE FORMAÇÃO DE IMAGENS MÉDICAS. Prof. Homero Schiabel (Sub-área de Imagens Médicas) SEL 5705 - FUNDAMENTOS FÍSICOS DOS PROCESSOS DE FORMAÇÃO DE IMAGENS MÉDICAS Prof. Homero Schiabel (Sub-área de Imagens Médicas) 5. INTERAÇÃO DOS RAIOS X COM A MATÉRIA 5.1. Atenuação e Absorção ATENUAÇÃO:

Leia mais

Tópicos em Métodos Espectroquímicos. Aula 2 Revisão Conceitos Fundamentais

Tópicos em Métodos Espectroquímicos. Aula 2 Revisão Conceitos Fundamentais Universidade Federal de Juiz de Fora (UFJF) Instituto de Ciências Exatas Depto. de Química Tópicos em Métodos Espectroquímicos Aula 2 Revisão Conceitos Fundamentais Julio C. J. Silva Juiz de For a, 2015

Leia mais

Interação feixe - material

Interação feixe - material Interação feixe - material Quando se fala em microscopia eletrônica é fundamental entender o efeito de espalhamento dos elétros quando interagindo com o material. - Microscopia ótica so forma imagem se

Leia mais

Espectrofotometria UV-Vis. Química Analítica V Mestranda: Joseane Maria de Almeida Prof. Dr. Júlio César José da Silva

Espectrofotometria UV-Vis. Química Analítica V Mestranda: Joseane Maria de Almeida Prof. Dr. Júlio César José da Silva Espectrofotometria UV-Vis Química Analítica V Mestranda: Joseane Maria de Almeida Prof. Dr. Júlio César José da Silva Juiz de Fora, 1/2018 1 Terminologia Espectroscopia: Parte da ciência que estuda o fenômeno

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Lucas Barboza Sarno da Silva O Efeito Compton Einstein, em 1919, concluiu que um fóton de energia E se desloca em uma única direção (diferentemente de uma onda esférica) e é portador de um momento

Leia mais

Difração de raios X. Ciência dos Materiais

Difração de raios X. Ciência dos Materiais Difração de raios X Ciência dos Materiais A descoberta dos raios X Roentgen 1895 Mão da Sra. Roentgen Mão do Von Kolliker 1ª radiografia da história Tubo de Crookes 3-99 DIFRAÇÃO DE RAIOS X Difração de

Leia mais

FÍSICA DAS RADIAÇÕES 2

FÍSICA DAS RADIAÇÕES 2 FÍSICA DAS RADIAÇÕES 2 Diagnóstico por imagens Radiologia convencional/digital II Geradores de raios X 1 Transformadores de alta tensão Rede elétrica do hospital 420 V Tensão de aceleração para imagens

Leia mais

Lei do inverso do quadrado da distância

Lei do inverso do quadrado da distância Lei do inverso do quadrado da distância 1. Resumo O objectivo deste trabalho consiste no estudo da variação da intensidade da radiação X e gama com a distância fonte radioactiva detector. 2. Tópicos Teóricos

Leia mais

Capítulo 38 Fótons e Ondas de Matéria Questões Múltipla escolha cap. 38 Fundamentos de Física Halliday Resnick Walker

Capítulo 38 Fótons e Ondas de Matéria Questões Múltipla escolha cap. 38 Fundamentos de Física Halliday Resnick Walker Capítulo 38 Fótons e Ondas de Matéria Questões Múltipla escolha cap. 38 Fundamentos de Física Halliday Resnick Walker 1) Qual é o nome das partículas associadas ao campo eletromagnético? a) Fônons. b)

Leia mais

PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS

PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS PMT 2100 - Introdução à Ciência dos Materiais para Engenharia

Leia mais

Raios-x. Proteção e higiene das Radiações Profª: Marina de Carvalho CETEA

Raios-x. Proteção e higiene das Radiações Profª: Marina de Carvalho CETEA Raios-x Proteção e higiene das Radiações Profª: Marina de Carvalho CETEA Materiais Radioativos 1896 o físico Francês Becquerel descobriu que sais de Urânio emitia radiação capaz de produzir sombras de

Leia mais

Introdução 1.1. Motivação

Introdução 1.1. Motivação 1 Introdução 1.1. Motivação À medida que a demanda de energia aumenta, a necessidade de gerar eletricidade por um processo que não afete o meio ambiente se torna imprescindível. A conversão de luz solar

Leia mais

Análise comparativa do efeito Compton com raios-γ e raios-x. Cristine Kores e Jessica Niide Professora Elisabeth Yoshimura

Análise comparativa do efeito Compton com raios-γ e raios-x. Cristine Kores e Jessica Niide Professora Elisabeth Yoshimura Análise comparativa do efeito Compton com raios-γ e raios-x Cristine Kores e Jessica Niide Professora Elisabeth Yoshimura Estrutura da apresentação Introdução ao Efeito Compton Objetivos Experimento com

Leia mais

Distribuição da radiação* ESPECTRO

Distribuição da radiação* ESPECTRO ESPECTROSCOPIA intensidade INFORMAÇÃO Distribuição da radiação* ESPECTRO Através do espectro de um objeto astronômico pode-se conhecer informações sobre temperatura, pressão, densidade, composição química,

Leia mais

Análise de Alimentos II Espectroscopia de Absorção Molecular

Análise de Alimentos II Espectroscopia de Absorção Molecular Análise de Alimentos II Espectroscopia de Absorção Molecular Profª Drª Rosemary Aparecida de Carvalho Pirassununga/SP 2018 2 Introdução A absorção de radiação no UV/Vis por uma espécie química (M) pode

Leia mais

DESENVOLVIMENTO DE UM ESPECTRÔMETRO INFRAVERMELHO PARA MEDIÇÃO DE PROPRIEDADES ÓPTICAS DE ÓXIDOS E SEMICONDUTORES

DESENVOLVIMENTO DE UM ESPECTRÔMETRO INFRAVERMELHO PARA MEDIÇÃO DE PROPRIEDADES ÓPTICAS DE ÓXIDOS E SEMICONDUTORES DESENVOLVIMENTO DE UM ESPECTRÔMETRO INFRAVERMELHO PARA MEDIÇÃO DE PROPRIEDADES ÓPTICAS DE ÓXIDOS E SEMICONDUTORES MARCUS V.S. DA SILVA, DENIS. F.G. DAVID, I. M. PEPE, Laboratório de Propriedades Ópticas-

Leia mais

Microscopia de transmissão de elétrons - TEM TEM. NP de Magnetita. Microscópio de Alta-resolução - HRTEM. Nanocristais Ni 03/04/2014

Microscopia de transmissão de elétrons - TEM TEM. NP de Magnetita. Microscópio de Alta-resolução - HRTEM. Nanocristais Ni 03/04/2014 CQ135 FUNDAMENTOS DE QUÍMICA INORGÂNICA IV Microscopia de transmissão de elétrons - TEM Prof. Dr. Herbert Winnischofer hwin@ufpr.br Técnicas de caracterização Microscopia e difração de raio X TEM NP de

Leia mais

Introdução a cristalografia de Raios-X

Introdução a cristalografia de Raios-X UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE QUÍMICA - DQMC Introdução a cristalografia de Raios-X Prof Karine P. Naidek Introdução a cristalografia de Raios-X

Leia mais

Espectroscopia: WDS, MLA, EDS quantitativo no MET. Karla Balzuweit Dep. De Física ICEx UFMG Centro de Microscopia da UFMG

Espectroscopia: WDS, MLA, EDS quantitativo no MET. Karla Balzuweit Dep. De Física ICEx UFMG Centro de Microscopia da UFMG Espectroscopia: WDS, MLA, EDS quantitativo no MET Karla Balzuweit Dep. De Física ICEx UFMG Centro de Microscopia da UFMG 1 Microscopia Eletrônica Analítica (AEM) EDS (Energy Dispersive Spectrometer) Espectrômetro

Leia mais

Absorção de Radiação por Gases na Atmosfera. Radiação I Primeiro semestre 2016

Absorção de Radiação por Gases na Atmosfera. Radiação I Primeiro semestre 2016 Absorção de Radiação por Gases na Atmosfera Radiação I Primeiro semestre 2016 Constituintes gasosos da atmosfera N 2 ~ 78% O 2 ~ 21% ~ 99% da atmosfera seca vapor d água (0 a 4%) Argônio, CO 2, O 3, CH

Leia mais

ELÉTRONS EM ÁTOMOS. Depois do modelo de Rutherford: Como é o comportamento dos elétrons nos átomos? Rutherford: estrutura planetária, com o

ELÉTRONS EM ÁTOMOS. Depois do modelo de Rutherford: Como é o comportamento dos elétrons nos átomos? Rutherford: estrutura planetária, com o ELÉTRONS EM ÁTOMOS Depois do modelo de Rutherford: Como é o comportamento dos elétrons nos átomos? Rutherford: estrutura planetária, com o núcleo correspondendo ao sol no nosso sistema solar e os elétrons

Leia mais

Agronomia Química Analítica Prof. Dr. Gustavo Rocha de Castro. As medidas baseadas na luz (radiação eletromagnética) são muito empregadas

Agronomia Química Analítica Prof. Dr. Gustavo Rocha de Castro. As medidas baseadas na luz (radiação eletromagnética) são muito empregadas ESPECTROMETRIA DE ABSORÇÃO ATÔMICA Introdução As medidas baseadas na luz (radiação eletromagnética) são muito empregadas na química analítica. Estes métodos são baseados na quantidade de radiação emitida

Leia mais

Fluorescênciaderaios-X

Fluorescênciaderaios-X 4 Fluorescênciaderaios-X XRF, TXRF http://en.wikipedia.org/wiki/x-ray_fluorescence Possível analisar materiais sólidos directamente sem preparação Existe equipamento portátil Permite analisar componentes

Leia mais

pesados em esgoto doméstico com uso de leito cultivado Pesquisador: Profº Dr. Ariston da Silva Melo Júnior

pesados em esgoto doméstico com uso de leito cultivado Pesquisador: Profº Dr. Ariston da Silva Melo Júnior FACULDADE DE ENGENHARIA CIVIL ARQUITETURA E URBANISMO Avaliação da remoção de metais pesados em esgoto doméstico com uso de leito cultivado Pesquisador: Profº Dr. Ariston da Silva Melo Júnior INTRODUÇÃO

Leia mais

CENTRO BRASILEIRO DE PESQUISAS FÍSICASF. 1

CENTRO BRASILEIRO DE PESQUISAS FÍSICASF. 1 CENTRO BRASILEIRO DE PESQUISAS FÍSICASF 1 http://www.cbpf.br MICROSCOPIA ELETRÔNICA DE VARREDURA ANDRÉ LUIZ PINTO CBPF Roteiro Aplicações da Microscopia à Nanotecnologia Introdução O que é Nanotecnologia?

Leia mais

CAPÍTULO 38 HALLIDAY, RESNICK. 8ª EDIÇÃO

CAPÍTULO 38 HALLIDAY, RESNICK. 8ª EDIÇÃO FÍSICA QUÂNTICA: FÓTONS E ONDAS DE MATÉRIA - II Prof. André L. C. Conceição DAFIS CAPÍTULO 38 HALLIDAY, RESNICK. 8ª EDIÇÃO Fótons e ondas de matéria Revisão O) Fóton: 1905 Einstein: luz quantizada fóton

Leia mais

Microscopia Eletrônica de Transmissão [5]

Microscopia Eletrônica de Transmissão [5] Microscopia Eletrônica de Transmissão [5] from: Williams & Carter (2009) Electron Beam Wavelength as Function of Accelerating Voltage Low energy interaction: - Auger electrons (AE) - Secondary electrons

Leia mais

5 Fundamentos teóricos da técnica de análise espectrométrica por fluorescência de raios-x

5 Fundamentos teóricos da técnica de análise espectrométrica por fluorescência de raios-x 5 Fundamentos teóricos da técnica de análise espectrométrica por fluorescência de raios-x 5.1. Introdução A espectrometria de fluorescência de raios-x é uma técnica não destrutiva que permite identificar

Leia mais

Espectroscopia por Dispersão de raios X Marcelo da Cruz Costa de Souza (CM-UFMG)

Espectroscopia por Dispersão de raios X Marcelo da Cruz Costa de Souza (CM-UFMG) Espectroscopia por Dispersão de raios X Marcelo da Cruz Costa de Souza (CM-UFMG) Agosto de 2018 1 - Introdução 1.1 - Descrição da Técnica Técnica de caracterização que consiste na detecção dos raios-x

Leia mais

Trabalho 2º Bimestre Ciências dos Materiais

Trabalho 2º Bimestre Ciências dos Materiais Trabalho 2º Bimestre Ciências dos Materiais DIFUSÃO 1) Defina difusão. Como a difusão pode ocorrer em materiais sólidos? 2) Compare os mecanismos atômicos de difusão intersticial e por lacunas. Explique

Leia mais

O espectro eletromagnético

O espectro eletromagnético Difração de Raios X O espectro eletromagnético luz visível raios-x microondas raios gama UV infravermelho ondas de rádio Comprimento de onda (nm) Raios Absorção, um fóton de energia é absorvido promovendo

Leia mais

Introdução à Astrofísica. Espectroscopia. Rogemar A. Riffel

Introdução à Astrofísica. Espectroscopia. Rogemar A. Riffel Introdução à Astrofísica Espectroscopia Rogemar A. Riffel Radiação de Corpo Negro Corpo negro: corpo que absorve toda a radiação que incide sobre ele, sem refletir nada; - Toda a radiação emitida pelo

Leia mais

Luz & Radiação. Roberto Ortiz EACH USP

Luz & Radiação. Roberto Ortiz EACH USP Luz & Radiação Roberto Ortiz EACH USP A luz é uma onda eletromagnética A figura acima ilustra os campos elétrico (E) e magnético (B) que compõem a luz Eles são perpendiculares entre si e perpendiculares

Leia mais

Espectro Eletromagnético. Professor Leonardo

Espectro Eletromagnético. Professor Leonardo Espectro Eletromagnético VÉSPERA- VERÃO 2010 EFEITO FOTO ELÉTRICO VÉSPERA- VERÃO 2010 VÉSPERA- VERÃO 2010 Efeito Fotoelétrico Problemas com a Física Clássica 1) O aumento da intensidade da radiação incidente

Leia mais

Departamento de Zoologia da Universidade de Coimbra

Departamento de Zoologia da Universidade de Coimbra Departamento de Zoologia da Universidade de Coimbra Armando Cristóvão Adaptado de "The Tools of Biochemistry" de Terrance G. Cooper Espectrofotometria de Absorção Uma das primeiras características químicas

Leia mais

Efeito Fotoelétrico. Dosimetria e Proteção Radiológica. Efeito Fotoelétrico

Efeito Fotoelétrico. Dosimetria e Proteção Radiológica. Efeito Fotoelétrico Dosimetria e Proteção Radiológica Prof. Dr. André L. C. Conceição Departamento Acadêmico de Física (DAFIS) Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial (CPGEI) Universidade

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 4 MODELOS ATÔMICOS Primeira Edição junho de 2005 CAPÍTULO 4 MODELOS ATÔMICOS ÍNDICE 4.1- Modelo de Thomson 4.2- Modelo de Rutherford 4.2.1-

Leia mais

Instrumentação Espacial. Parte I

Instrumentação Espacial. Parte I Instrumentação Espacial Parte I Introdução Magnetômetros (ok) Giroscópios (ok) Acelerômetros (ok) Radar (ok) Telescópios Sensor solar Espectrômetros Atuadores magnéticos (magnetorquer) Rodas de reação

Leia mais

Física D Extensivo V. 8

Física D Extensivo V. 8 Física D Extensivo V. 8 Exercícios 0) C f R X > f WZ 0) B 03) E 04) E raios X > luz Raios X são radiações eletromagnéticas com um comprimento de onda muito curto, aproximadamente de 0,06 até 0 Å. Formam-se

Leia mais

Programa de Pós-graduação em Ciência e Tecnologia de Materiais 1º semestre de Informações e instruções para a resolução da prova

Programa de Pós-graduação em Ciência e Tecnologia de Materiais 1º semestre de Informações e instruções para a resolução da prova Programa de Pós-graduação em Ciência e Tecnologia de Materiais 1º semestre de 2014 Informações e instruções para a resolução da prova 1. A prova deve ser realizada sem consulta; 2. A duração da prova é

Leia mais

CURSO SUPERIOR DE TECNOLOGIA EM MECATRÔNICA INDUSTRIAL. Prof.: Cristiano Luiz Chostak Disciplina: Química Tecnológica (QMT12)

CURSO SUPERIOR DE TECNOLOGIA EM MECATRÔNICA INDUSTRIAL. Prof.: Cristiano Luiz Chostak Disciplina: Química Tecnológica (QMT12) CURSO SUPERIOR DE TECNOLOGIA EM MECATRÔNICA INDUSTRIAL Prof.: Cristiano Luiz Chostak Disciplina: Química Tecnológica (QMT12) Atomística: Estrutura atômica básica O modelo atômico de Dalton O modelo atômico

Leia mais

AULA 01 TEORIA ATÔMICA COMPLETA

AULA 01 TEORIA ATÔMICA COMPLETA AULA 01 TEORIA ATÔMICA COMPLETA - ESTRUTURA ATÔMICA; - MODELOS ATÔMICOS; - ESPECTROSCOPIA ATÔMICA; - PROPRIEDADES ONDULATÓRIAS DOS ELÉTRONS; - NÚMEROS QUÂNTICOS E DISTRIBUIÇÃO ELETRÔNICA. QUÍMICA estudo

Leia mais

Interação da Radiação Eletromagnética com a Matéria Parte 1. FÍSICA DAS RADIAÇÕES I Paulo R. Costa

Interação da Radiação Eletromagnética com a Matéria Parte 1. FÍSICA DAS RADIAÇÕES I Paulo R. Costa Interação da Radiação Eletromagnética com a Matéria Parte 1 FÍSICA DAS RADIAÇÕES I Paulo R. Costa RADIAÇÃO ELETROMAGNÉTICA E < 1,4 ev - UV A, B e C - Visível - Infra-vermelho - Microondas - Ondas de

Leia mais