A. Funções trigonométricas directas

Tamanho: px
Começar a partir da página:

Download "A. Funções trigonométricas directas"

Transcrição

1 A. Funções trigonométricas directas As funções seno, cosseno, tangente e cotangente são contínuas e periódicas nos respectivos domínios. Todas elas são funções não injectivas e, portanto, não possuem inversa. Seno Cosseno y = sen x y = cos x D sen = R D cos = R D sen = [ 1, 1] D cos = [ 1, 1] Π Π Π Π Π Π Π Π

2 Tangente y = tg x = sen x cos x Cotangente y = cotg x = cos x sen x D tg = R\ { π + kπ, k Z} D cotg = R\{kπ, k Z} D tg = R D cotg = R Π Π Π Π Π Π Π Π

3 B. Funções trigonométricas inversas Considerando restrições adequada das funções trigonométricas, obtemos funções contínuas e bijectivas definidas em intervalos. A injectividade será conseguida excluindo do domínio todos os pontos onde a função se repete. A sobrejectividade será obtida eliminando do conjunto de chegada todos os pontos que a função não assume. As inversas das restrições assim definidas serão também contínuas. B.1 Arco-seno Relativamente à função seno, convencionamos considerar a restrição bijectiva [ sen: π, π ] [ 1, 1] x sen x.

4 A sua inversa, que se designa por arco-seno lê-se arco (cujo) seno é a função [ arcsen : [ 1, 1] π, π ] y arcsen y, [ onde arcsen y indica o único arco do intervalo π, π ] cujo seno é igual a y. Assim, [ x = arcsen y, y [ 1, 1] y = sen x, x π, π ]. 1 1 y = arcsen x, x [ 1, 1], D arcsen = [ π, π ]

5 Pelo facto de sen e arcsen serem inversas uma da outra, tem-se [ arcsen (sen x) = x, x π, π ], sen (arcsen y) = y, y [ 1, 1]. No entanto, apesar de fazer sentido calcular arcsen (sen z), para z R\ [ π, π ], tem-se arcsen (sen z) z, z uma vez que D arcsen = [ π, π ]. [ π, π ],

6 Exemplo (a) arcsen 1 = π, arcsen = π 4, ( ) 3 arcsen = π 3. π De facto,, π 4 e π [ 3 são os únicos arcos do intervalo π, π ] onde o 3 seno é, respectivamente, igual a 1, e. (b) Tem-se, por exemplo, sen (3π) = 0 e sen (8π) = 0, mas arcsen 0 = 0. [ Porque 0 é o único arco do intervalo π, π ] onde o seno é igual a 0.

7 B. Arco-cosseno Relativamente à função cosseno, convencionou-se considerar a restrição bijectiva cos : [0, π] [ 1, 1] x cos x. A sua inversa, que se designa por arco-cosseno lê-se arco (cujo) cosseno é a função arccos : [ 1, 1] [0, π] y arccos, onde arccos y indica o único arco do intervalo [0, π] cujo cosseno é igual a y.

8 Assim, x = arccos y, y [ 1, 1] y = cos x, x [0, π]. 1 y = arccos x, x [ 1, 1], D arccos = [0, π]

9 Atendendo a que as funções cos e arccos são inversas uma da outra, tem-se arccos (cos x) = x, x [0, π], cos (arccos y) = y, y [ 1, 1]. Por outro lado, uma vez que D arccos = [0, π], tem-se arccos (cos z) z, z [0, π]. Exemplo ( ) (a) arccos 1 = 0, arccos( 1) = π, arccos = 3π 4. (b) arccos (cos 5π) = arccos( 1) = π, ( arccos cos 5π ) ( ) = arccos = π 4 4.

10 B.3 Arco-tangente Relativamente à função tangente, consideramos a restrição bijectiva ] tg : π, π [ R x tg x. A sua inversa, designada por arco-tangente lê-se arco (cuja) tangente é a função ] arctg : R π, π [ y arctg y, ] onde arctg y indica o único arco do intervalo π, π [ cuja tangente é igual a y.

11 Assim, se e só se x = arctg y, com y R y = tg x, x ] π, π [. y = arctg x, x R, D arctg = ] π, π [

12 B.4 Arco-cotangente Relativamente à função co-tangente, consideramos a restrição bijectiva cotg : ]0, π[ R x cotg x, cuja inversa é a função arco-cotangente lê-se arco (cuja) cotangente definida por arccotg : R ]0, π[ y arccotg y, onde arccotg y indica o único arco do intervalo ]0, π[ cuja cotangente é igual a y.

13 Assim, se e só se x = arccotg y, com y R y = cotg x, x ]0, π[. Π y = arccotg x, x R, D arccotg = ]0, π[

14 C. Funções hiperbólicas directas directas Vamos agora introduzir as funções hiperbólicas, apresentar algumas das suas propriedades e esboçar os seus gráficos. São funções que resultam de combinações de exponenciais e possuem propriedades semelhantes, do ponto de vista formal, às das funções trigonométricas. e x e x 1 e x 1

15 C.1 Seno hiperbólico O seno hiperbólico é a função sh : R R x ex e x. Trata-se de uma função contínua, ímpar e estritamente crescente, logo injectiva. Possui um único zero, a origem. Além disso, sh x = +, lim sh x =. lim x + x y = sh x, x R, D sh = R

16 C. Cosseno hiperbólico O cosseno hiperbólico é a função ch : R R x ex + e x. Trata-se de uma função contínua e par. Logo, não é injectiva. Não possui zeros e atinge um mínimo na origem, com valor ch 0 = 1. Além disso, lim ch x = lim ch x = +. x + x 1 y = sh x, x R, D sh = R

17 C.3 Tangente hiperbólica A tangente hiperbólica é a função definida por ou seja, por th : R R x sh x ch x, th x = ex e x e x, x R. + e x Trata-se de uma função contínua, ímpar e estritamente crescente, logo injectiva. Possui um único zero, em 0. Além disso, lim th x = x + lim e x e x x + e x + e x = lim e x 1 x + e x + 1 = lim x e x e x = 1.

18 O gráfico da th possui, portanto, uma assímptota horizontal de equação y = 1, para x +. Da imparidade da th, existe outra assímptota horizontal de equação y = 1, para x. Tem-se ainda D th = ] 1, 1[. y 1 1 x y = th x, x R, D th = ] 1, 1[

19 C.4 Cotangente hiperbólica A cotangente hiperbólica é a função definida por ou seja, por coth : R\{0} R x ch x sh x, coth x = ex + e x e x e x, x R\{0}. Trata-se de uma função contínua, ímpar e sem zeros. Apesar de não ser monótona, é estritamente decrescente para x > 0, onde toma valores positivos, e para x < 0, onde toma valores negativos. Logo é injectiva. Da definição sai que lim coth x = +, lim coth x = 1. x 0 + x +

20 O gráfico da coth possui, portanto, uma assímptota horizontal de equação y =1, para x +, e uma assímptota vertical de equação x = 0. Da imparidade da coth, existe outra assímptota horizontal de equação y = 1, para x. Tem-se ainda D coth = R\[ 1, 1]. y 1 x 1 y = coth x, x R\{0}, D coth = R\[ 1, 1]

21 C.5 Algumas propriedades Com manipulações algébricas simples, é fácil verificar que estas funções hiperbólicas verificam as seguintes propriedades: (i) ch x sh x = 1, x R; (ii) ch x + sh x = e x, x R; (iii) sh( x) = sh x, x R; (iv) ch( x) = ch x, x R; (v) th x + 1 ch x = 1, x R; (vi) coth x 1 sh x = 1, x R\{0}; (vii) sh(x + y) = sh x ch y + ch x sh y, x, y R; (viii) ch(x + y) = ch x ch y + sh x sh y, x, y R;

22 Demonstração (i) Seja x R, qualquer. Então ( e ch x sh x + e x ) ( e x e x x = ) = 1 ( e x + + e x e x + e x) = 1. 4 (viii) Sejam x, y R, quaisquer. Então ch x ch y + sh x sh y = ex +e x ey +e y + ex e x ey e y = ex+y +e x y +e x+y +e x y 4 + ex+y e x y e x+y +e x y 4 = ex+y +e x y = ch(x + y). As restantes aĺıneas demonstram-se de maneira semelhante.

23 D. Funções hiperbólicas inversas Vamos agora definir as funções hiperbólicas inversas. Como vimos na subsecção C, as funções sh, th e coth são injectivas, enquanto que a função ch não é injectiva e, portanto, não será invertível. Para esta última, iremos considerar uma restrição apropriada. D.1 Argumento do seno hiperbólico A função sh é contínua, bijectiva e possui inversa contínua. Trata-se da função argumento do seno hiperbólico, que se define por argsh : R R y argsh y, onde x = argsh y, y R y = sh x, x R.

24 Mas, para x R, tem-se y = sh x y = ex e x y = ex 1 e x e x ye x 1 = 0. (1) A última condição em (1) traduz uma equação do segundo grau na incógnita e x. Tratando-a com a fórmula resolvente, sai e x = y ± y + 1, sendo a solução com o sinal + a única admissível, uma vez que e x > 0, x R e y y + 1 < 0, y R. Mas donde e x = y + y + 1 x = log argsh y = log ( y + ) y + 1, ( y + ) y + 1, y R. Assim, a função argsh fica completamente definida.

25 D. Argumento do cosseno hiperbólico A função ch não é injectiva, logo, não é invertível. Como tal, definiremos a inversa da seguinte restrição bijectiva e contínua ch : [0, + [ [1, + [ x ch x, que se designa por argumento do cosseno hiperbólico e que é também uma função contínua. Representa-se por onde argch : [1, + [ [0, + [ y argch y, x = argch y, y [1, + [ y = ch x, x [0, + [.

26 Mas, para x 0, tem-se y = ch x y = ex + e x y = ex + 1 e x e x ye x + 1 = 0. () A última igualdade de traduz uma equação do segundo grau em e x, donde e x = y ± y 1. Como x 0 = e x 1, a solução com o sinal + é a única admissível (a solução com o sinal corresponderia à inversa da restrição do ch para x 0). Mas e x = y+ ( y 1, x 0, y 1 x = log y + ) y 1, x 0, y 1, donde argch y = log ( y + ) y 1, y [1, + [, ficando a função argumento do cosseno hiperbólico completamente definida.

27 D.3 Argumento da tangente hiperbólica A função tangente-hiperbólica é injectiva mas não é sobrejectiva. poder inverter, basta considerar Para th : R ] 1, 1[ x th, que é bijectiva e, portanto, é invertível. Sendo contínua num intervalo, a sua inversa é contínua. Trata-se da função argumento da tangente hiperbólica, que se define por argth : ] 1, 1[ R y argth y, onde x = argth y, y ] 1, 1[ y = th x, x R.

28 Para x R, y ] 1, 1[, tem-se y = th x y = ex e x e x + e x y = ex 1 e x + 1 ( ) e x 1 + y (1 y) = 1 + y x = log, 1 y donde argth y = log ( ) 1 + y, y ] 1, 1[, 1 y completando-se a definição do argumento da tangente hiperbólica.

29 D.4 Argumento da cotangente hiperbólica A função cotangente-hiperbólica é injectiva mas não é sobrejectiva. Consideremos então coth : R\{0} R\ [ 1, 1] x coth que é bijectiva e, portanto, é invertível. A sua inversa é contínua. Trata-se da funçãoargumento da cotangente hiperbólica, que se define por argcoth : R\ [ 1, 1] R\{0} y argcoth y onde x = argcoth y, y R\ [ 1, 1] y = coth x, x R\{0}.

30 Para x R\{0}, y R\ [ 1, 1], tem-se y = coth x x = log ( ) y + 1, y 1 pelo que argcoth y = log ( ) y + 1, y R \ [ 1, 1], y 1 ficando assim completa a definição da função argumento da cotangente hiperbólica.

Continuidade de uma função

Continuidade de uma função Continuidade de uma função Consideremos f : D f uma função real de variável real (f.r.v.r.) e a um ponto de acumulação de D f que pertence a D f. Diz-se que a função f é contínua em a se lim f x f a. x

Leia mais

Capítulo 1 Funções reais de uma variável 1.2 Funções trigonométricas inversas

Capítulo 1 Funções reais de uma variável 1.2 Funções trigonométricas inversas As funções trigonométricas seno, coseno, tangente e cotangente não são funções injetivas, não sendo portanto invertíveis nos respetivos domínios. Para definir as respetivas funções inversas tem de se considerar

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1 (Eercício IV1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log, e) sen cos tg, f) (1 + log ), g) cos(arcsen ) h) (log ), i) sen Derive: a) arctg

Leia mais

Trigonometria e funções trigonométricas. Funções trigonométricas O essencial

Trigonometria e funções trigonométricas. Funções trigonométricas O essencial Trigonometria e funções trigonométricas Funções trigonométricas O essencial Funções seno e cosseno Designa-se por função seno (respetivamente, função cosseno) e representa-se por sin ou sen (respetivamente,

Leia mais

Gr aficos de Fun c oes Elementares

Gr aficos de Fun c oes Elementares Gráficos de Funções Elementares O gráfico de uma f.r.v.r. é uma curva ou uma união de curvas. Para a sua determinação é necessário conhecer o comportamento da função. Entre os vários aspectos da teoria

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1. (Eercício IV.1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log2, e) sen cos tg, f) 2 (1 + log ), g) cos(arcsen ) h) (log ), i) sen 2. 2. Derive:

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

Jaime Carvalho e Silva. Princípios de Análise Matemática Aplicada. Suplemento

Jaime Carvalho e Silva. Princípios de Análise Matemática Aplicada. Suplemento Jaime Carvalho e Silva Princípios de Análise Matemática Aplicada Suplemento 2002/2003 2 Departamento de Matemática Universidade de Coimbra Contacto com o autor: jaimecs@mat.uc.pt Página de apoio: http://www.mat.uc.pt/~jaimecs/index_aulas.html

Leia mais

Complementos de Cálculo Diferencial

Complementos de Cálculo Diferencial Matemática - 009/0 - Comlementos de Cálculo Diferencial 47 Comlementos de Cálculo Diferencial A noção de derivada foi introduzida no ensino secundário. Neste teto retende-se relembrar algumas de nições

Leia mais

3 Limites e Continuidade(Soluções)

3 Limites e Continuidade(Soluções) 3 Limites e Continuidade(Soluções). a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ] e, + [, temos Logo, a inversa de f é f () = y e = y = log y = log y

Leia mais

1. Polinómios e funções racionais

1. Polinómios e funções racionais Um catálogo de funções. Polinómios e funções racionais Polinómios e funções racionais são funções que se podem construir usando apenas as operações algébricas elementares. Recordemos a definição: Definição

Leia mais

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto 1 Algumas definições sobre funções Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto A B = {(a, b) : a A, b B}. Dados dois conjuntos A, B, uma função de A em B é uma lei que associa

Leia mais

Limites e continuidade

Limites e continuidade Limites e continuidade Limite (finito) de uma função em a Salvo indicação em contrário, quando nos referimos a uma função estamos sempre a considerar funções reais de variável real (f.r.v.r.), ou seja,

Leia mais

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto 1 Algumas definições sobre funções Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto A B = {(a, b) : a A, b B}. Dados dois conjuntos A, B, uma função de A em B é uma lei que associa

Leia mais

MAT146 - Cálculo I - Derivada das Inversas Trigonométricas

MAT146 - Cálculo I - Derivada das Inversas Trigonométricas MAT46 - Cálculo I - Derivada das Inversas Trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos anteriormente que as funções trigonométricas não são inversíveis, mas

Leia mais

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04 Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 00/0 Ficha Prática nº Parte III Função Eponencial Função Logaritmo Funções trigonométricas directas e inversas

Leia mais

6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS

6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS 6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS Vamos agora estender a noção de seno, cosseno e tangente, já conhecidas no triângulo retângulo, e portanto, para ângulos agudos, para ângulos e arcos quaisquer.

Leia mais

Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André

Ana Carolina Boero.   Página:  Sala Bloco A - Campus Santo André Funções de uma variável real a valores reais E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores

Leia mais

Funções Trigonométricas. A função Seno. Função Seno. Função Seno: Propriedades. f : R R. = medida algébrica do. CD(f ) = R, Im(f ) = [ 1, 1].

Funções Trigonométricas. A função Seno. Função Seno. Função Seno: Propriedades. f : R R. = medida algébrica do. CD(f ) = R, Im(f ) = [ 1, 1]. Funções Trigonométricas função Seno Função Seno Função Seno: ropriedades (a) sen( + π) = sen() R R f () = sen() segmento (b) sen() = sen( ) Se está no primeiro ou segundo quadrante então sen() é positivo.

Leia mais

Capítulo II. Funções reais de variável real. 2.1 Conceitos Básicos sobre Funções. ( x)

Capítulo II. Funções reais de variável real. 2.1 Conceitos Básicos sobre Funções. ( x) Capítulo II Funções reais de variável real.1 Conceitos Básicos sobre Funções Sejam D e B dois conjuntos. Uma unção deinida em D e tomando valores em B é uma regra que a cada elemento de D az corresponder

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEA, LEM, LEAN, MEAer, MEMec o Semestre de 006/007 6 a Aula Prática Soluções e algumas resoluções abreviadas. a) Como e é crescente, com contradomínio ]0, + [, o contradomínio

Leia mais

Capítulo II. Funções reais de variável real. 2.1 Conceitos Básicos sobre Funções. ( x)

Capítulo II. Funções reais de variável real. 2.1 Conceitos Básicos sobre Funções. ( x) Capítulo II Funções reais de variável real. Conceitos Básicos sobre Funções Sejam D e B dois conjuntos. Uma unção deinida em D e tomando valores em B é uma regra que a cada elemento de D az corresponder

Leia mais

Preparação para o Cálculo

Preparação para o Cálculo Preparação para o Cálculo Referencial cartesiano Representação gráfica Um referencial cartesiano é constituído por duas rectas perpendiculares (fias), com ponto de intersecção O: O diz-se a origem do referencial;

Leia mais

3 Funções reais de variável real (Soluções)

3 Funções reais de variável real (Soluções) 3 Funções reais de variável real (Soluções). a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ] e, + [, temos Logo, a inversa de f é f () = y e = y = log y

Leia mais

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente.

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. Análise Matemática - 007/008.5.- Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. Teorema.31 Derivada da Função Composta

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula no 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula De nir as funções trigonométricas, trigonométricas

Leia mais

MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28

MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28 Cap. Funções Reais de variável Real MatemáticaI Gestão ESTG/IPB Departamento de Matemática 8. Conjuntos de Números,,3 Números Naturais,,, 0,,, Números Inteiros a : a, b, b 0 Números Racionais b Irracionais

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula no 04: Funções Trigonométricas, Logarítmica, Exponencial e Hiperbólicas. Objetivos

Leia mais

A derivada da função inversa

A derivada da função inversa A derivada da função inversa Sumário. Derivada da função inversa............... Funções trigonométricas inversas........... 0.3 Exercícios........................ 7.4 Textos Complementares................

Leia mais

Universidade de Trás-os-Montes e Alto Douro. Biomatemática/ Matemática I FOLHAS PRÁTICAS

Universidade de Trás-os-Montes e Alto Douro. Biomatemática/ Matemática I FOLHAS PRÁTICAS Universidade de Trás-os-Montes e Alto Douro Biomatemática/ Matemática I FOLHAS PRÁTICAS Licenciaturas em Arquitectura Paisagista, Biologia e Geologia (ensino) e Biologia (cientíco) Ano lectivo 004/005

Leia mais

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS 0. OUTRAS FUNÇÕES TRIGONOMÉTRICAS Consideremos um triângulo retângulo ABC e seja t um dos seus ângulos agudos. Figura Relembremos que, sendo 0 < t < π/, temos tg t = b c (= cateto oposto cateto adjacente)

Leia mais

Seno e cosseno de arcos em todos os. quadrantes

Seno e cosseno de arcos em todos os. quadrantes Trigonometria Seno e cosseno de arcos em todos os quadrantes Seno e cosseno de arcos em todos os quadrantes Exemplo: Vamos determinar X, com 0 x < 2π tal que sen x = - 1 2. Seno e cosseno de arcos em todos

Leia mais

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013 Cálculo 1 ECT1113 Slides de apoio sobre Derivadas Prof. Ronaldo Carlotto Batista 21 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados

Leia mais

Cálculo diferencial. Motivação - exemplos de aplicações à física

Cálculo diferencial. Motivação - exemplos de aplicações à física Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição

Leia mais

A inversa da função seno

A inversa da função seno UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 015-1 PARTE III FUNÇÕES TRIGONOMÉTRICAS INVERSAS Funções inversas. O que isso significa? A cada valor da imagem corresponde um e só um valor do domínio

Leia mais

2. Tipos de funções. Funções pares e ímpares Uma função f é par se é simétrica em relação ao eixo y, isto é, f( x) = f(x).

2. Tipos de funções. Funções pares e ímpares Uma função f é par se é simétrica em relação ao eixo y, isto é, f( x) = f(x). 1. Algumas funções básicas 2. Tipos de funções Funções pares e ímpares Uma função f é par se é simétrica em relação ao eio y, isto é, f( ) = f(). Eemplos: A função f() = n onde n inteiro positivo é par?

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 25 DE JUNHO 203 Grupo I Questões 2 3 4 5 6 7 8 Versão B D C A D B C A Versão 2 C A B D D C B B Grupo II...

Leia mais

MÓDULO 45 TRIGONOMETRIA II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. 1. Considere a equação. (3 2 cos 2 x) 1 + tg 2. 6 tg = 0.

MÓDULO 45 TRIGONOMETRIA II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. 1. Considere a equação. (3 2 cos 2 x) 1 + tg 2. 6 tg = 0. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Considere a equação TRIGONOMETRIA II ( cos ) + tg MÓDULO 5 tg = 0. a) Determine todas as soluções no intervalo [0, [. b) Para as soluções

Leia mais

2 - Generalidades sobre funções reais de variável real

2 - Generalidades sobre funções reais de variável real Análise Matemática I - 006/007 - Generalidades sobre unções reais de variável real.-deinição e Propriedades De.. Sejam A e B conjuntos, e uma correspondência de A para B, isto é um processo de associar

Leia mais

cotg ( α ) corresponde ao valor da abcissa do

cotg ( α ) corresponde ao valor da abcissa do Capítulo II: Funções Reais de Variável Real 59 Função co-tangente Seja α um ângulo representado no círculo trigonométrico. ( α ) corresponde ao valor da abcissa do ponto que resulta de projectar o lado

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2015/16 - LEAN, LEMat, MEQ FICHA 8

Cálculo Diferencial e Integral I 1 o Sem. 2015/16 - LEAN, LEMat, MEQ FICHA 8 Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem. 05/6 - LEAN, LEMat, MEQ FICHA 8 Regra de Cauchy. Estudo de funções. a. a) b 0 é uma indeterminação do tipo

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

Matemática Computacional I

Matemática Computacional I Universidade da Beira Interior Departamento de Matemática Matemática Computacional I CURSO: ENGENHARIA INFORMÁTICA Alberto Simões asimoes@ubi.pt 204/205 Conteúdo Funções Reais de Variável Real. O Conjunto

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

5 Cálculo Diferencial Primitivação

5 Cálculo Diferencial Primitivação 5 Cálculo Diferencial Primitivação. Determine uma primitiva de cada uma das funções: a) + 3 3, b) + +, c) +, d) 3 3 +, e) 3, f) 5, 3 e g) h) 3 + 4 + e, i) cos + sen, sen() j) sen(), k) + sen, l) cos, m)

Leia mais

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 2 a FICHA DE EXERCÍCIOS - PARTE 2

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 2 a FICHA DE EXERCÍCIOS - PARTE 2 Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 010/11 a FICHA DE EXERCÍCIOS - PARTE I. Representação gráfica

Leia mais

FUNÇÕES REAIS DE UMA VARIÁVEL REAL

FUNÇÕES REAIS DE UMA VARIÁVEL REAL FUNÇÕES REAIS DE UMA VARIÁVEL REAL Deinição inormal de unção Uma unção é uma regra que a cada elemento de um dado conjunto A associa um e um só elemento de um outro conjunto B. : A B ( ) Simbolicamente,

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I RESUMO DA AULA TEÓRICA 4 Livro do Stewart: Apêndice D e Seção 16 FUNÇÕES TRIGONOMÉTRICAS O círculo trigonométrico e arcos orientados Num plano cartesiano, considere

Leia mais

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy Ficha de Problemas n o 6: Cálculo Diferencial soluções).teoremas de Rolle, Lagrange e Cauchy. Seja f) = 3 e. Então f é contínua e diferenciável em R. Uma vez que f) = +, f0) = conclui-se do Teorema do

Leia mais

Trigonometria Funções Trigonométricas

Trigonometria Funções Trigonométricas Trigonometria Funções Trigonométricas imagem: [ -, ] Prof. FUNÇÕES TRIGONOMÉTRICAS f(x) = sen x y f(x) = R R Imagem: [-,] Período: 3 0 0 0 x - 3 - período imagem: [ -, ] Prof. FUNÇÕES TRIGONOMÉTRICAS f(x)

Leia mais

Instituto Superior Técnico - 1 o Semestre 2006/2007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec

Instituto Superior Técnico - 1 o Semestre 2006/2007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec Instituto Superior Técnico - o Semestre 006/007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec a Ficha de eercícios para as aulas práticas 3-4 Novembro de 006. Determine os

Leia mais

Pré-Cálculo ECT2101 Slides de apoio Funções II

Pré-Cálculo ECT2101 Slides de apoio Funções II Pré-Cálculo ECT2101 Slides de apoio Funções II Prof. Ronaldo Carlotto Batista 8 de abril de 2017 Funções Trigonométricas As funções trigonométricas são denidas no círculo unitário: sen (θ) = y r, cos (θ)

Leia mais

UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL UEMS SEGUNDA LICENCIATURA EM INFORMÁTICA. Função Composta e Função Inversa NOVA ANDRADINA MS

UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL UEMS SEGUNDA LICENCIATURA EM INFORMÁTICA. Função Composta e Função Inversa NOVA ANDRADINA MS UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL UEMS SEGUNDA LICENCIATURA EM INFORMÁTICA Função Composta e Função Inversa NOVA ANDRADINA MS UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL UEMS SEGUNDA LICENCIATURA

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

5 Cálculo Diferencial Primitivação (Soluções)

5 Cálculo Diferencial Primitivação (Soluções) 5 Cálculo Diferencial rimitivação Soluções. a + 4 4, b + log, > 0, + c = + = 5 5 + = 5 +, d 4, 5 4 + e = + = +, f 5 5 6 6, g 4 log + 4, h log + e, i log + sen, j sen sen cos cos, k = = log + sen, + sen

Leia mais

Trigonometria no Círculo - Funções Trigonométricas

Trigonometria no Círculo - Funções Trigonométricas Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em

Leia mais

FUNÇÕES TRIGONOMÉTRICAS E FUNÇÕES TRIGONOMÉTRICAS INVERSAS

FUNÇÕES TRIGONOMÉTRICAS E FUNÇÕES TRIGONOMÉTRICAS INVERSAS FUNÇÕES TRIGONOMÉTRICAS E FUNÇÕES TRIGONOMÉTRICAS INVERSAS 1. FUNÇÕES TRIGONOMÉTRICAS 1.1. FUNÇÃO SENO Seja P a imagem de um ângulo no ciclo trigonométrico. Já vimos que o seno do ângulo é definido como

Leia mais

Derivadas. Capítulo O problema da reta tangente

Derivadas. Capítulo O problema da reta tangente Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este conceito relaciona-se com o problema de determinar a reta tangente

Leia mais

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18 A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106

Leia mais

2 5 3 x 3 1. x 5 x 2

2 5 3 x 3 1. x 5 x 2 4 rimitivação Soluções. a 3 3 + 3 4 4, b + log, > 0, + c = 3 + = 5 5 3 3 + = 5 3 +, 5 3 d 3 3 3 + 4, e 4 3 = 3 + 3 3 = + 3, 3 f 5 6 5 6, g 4 log3 + 4, h log + e, i log + sen, j tg, k e tg, l sen +, m cose,

Leia mais

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57 2 o quadrimestre de 2017 2 o quadrimestre de 2017 1 / Visão Geral 1 Limites Finitos Limite para x ± 2 Limites infinitos Limite no ponto Limite para x ± 3 Continuidade Definição e exemplos Resultados importantes

Leia mais

Instituto Politécnico de Leiria

Instituto Politécnico de Leiria Instituto Politécnico de Leiria Escola Superior de Tecnologia e Gestão Matemática I - PCIM Engenharias Ano lectivo 005/006 Folha 1 - Funções Transcendentes 1 Calcule o valor eacto dado pela epressão: (a)

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

TEMA 1 TRIGONOMETRIA FICHA DE TRABALHO 11.º ANO COMPILAÇÃO TEMA 1 TRIGONOMETRIA. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 1 TRIGONOMETRIA FICHA DE TRABALHO 11.º ANO COMPILAÇÃO TEMA 1 TRIGONOMETRIA. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FIH DE TRLHO.º NO OMPILÇÃO TEM TRIGONOMETRI Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEM TRIGONOMETRI Matemática.º no Ficha de Trabalho ompilação Tema Trigonometria

Leia mais

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS Vamos mostrar como resolver equações trigonométricas básicas, onde temos uma linha trigonométrica aplicada sobre uma função e igual

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

Pre-calculo 2013/2014

Pre-calculo 2013/2014 . Números reais, regras básicas de cálculo com fracções, expoentes e radicais Sumário: Número reais, regras básicas de cálculo com fracções, expoentes e radicais. Ler secções. e. do livro adoptado.. Pre-calculo

Leia mais

Regras Básicas de Derivação

Regras Básicas de Derivação Regras Básicas e Derivação. regra a soma: (u + kv) = u + kv, k constante 2. regra a iferença: (u + v) = u + v 3. regra o prouto: (u v) = u v + u v u u v u v 4. regra o quociente: = v v 2 5. regra a caeia:

Leia mais

MAT Aula 12/ 23/04/2014. Sylvain Bonnot (IME-USP)

MAT Aula 12/ 23/04/2014. Sylvain Bonnot (IME-USP) MAT 0143 Aula 12/ 23/04/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo: 1 Site: http://www.ime.usp.br/~sylvain/courses.html 2 Hoje: correção da prova + derivadas. 3 Derivadas: definição de f (a) e equação

Leia mais

T. Rolle, Lagrange e Cauchy

T. Rolle, Lagrange e Cauchy T. Rolle, Lagrange e Cauchy EXERCÍCIOS RESOLVIDOS. Mostre que a equação 5 + 5 = 5 tem uma única solução em R. Seja f = 5 +5 5. Então f é contínua e diferenciável em R. Temos f = 5 4 + > 0, em R, logo f

Leia mais

Material Teórico - Círculo Trigonométrico. Secante, cossecante e cotangente. Primeiro Ano do Ensino Médio

Material Teórico - Círculo Trigonométrico. Secante, cossecante e cotangente. Primeiro Ano do Ensino Médio Material Teórico - Círculo Trigonométrico Secante, cossecante e cotangente Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 5 de dezembro de

Leia mais

MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I LIMITE Profa. Dra. Amanda L. P. M. Perticarrari amanda@fcav.unesp.br Parte 1 Limites Definição de vizinhança e ite Limites laterais Limite de função real com uma variável real Teorema da existência

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 5) 1 Etremos de Funções Escalares. Eemplos Nos eemplos seguintes

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 08 Condições Suficientes de Diferenciabilidade Teorema Seja f(z) = u(, y) + iv(, y). Se u e v têm derivadas parciais contínuas em torno

Leia mais

3 Cálculo Diferencial

3 Cálculo Diferencial Aula 6 26/0/206 (cont.) 3 Cálculo Diferencial Entramos agora num dos tópicos principais desta cadeira: o Cálculo Diferencial. usar derivadas como ferramentas no estudo de funções, em particular, cálculo

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Professora Renata Alcarde Sermarini Notas de aula do professor

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 500-236 Lisboa Tel.: +35 2 76 36 90 / 2 7 03 77 Fa: +35 2 76 64 24 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL

DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL Derivada de uma função num ponto. Sejam f uma função denida num intervalo A R e a um ponto de acumulação de A. Cama-se derivada de f no ponto a ao ite, caso

Leia mais

Resolução dos Exercícios Propostos no Livro

Resolução dos Exercícios Propostos no Livro Resolução dos Eercícios Propostos no Livro Eercício : Mostre que não é número racional Dica: escreva como um possível quociente de números inteiros e use o Teorema Fundamental da Aritmética Mostremos inicialmente

Leia mais

1. As funções tangente e secante As expressões para as funções tangente e secante são

1. As funções tangente e secante As expressões para as funções tangente e secante são CÁLCULO L1 NOTAS DA SETA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula definiremos as demais funções trigonométricas, que são obtidas a partir das funções seno e cosseno, e determinaremos

Leia mais

Equações e Funções Trigonométricas

Equações e Funções Trigonométricas CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2013.2 Equações e Funções Trigonométricas Isabelle da Silva Araujo - Engenharia de Produção Equações Trigonométricas Equações trigonométricas são aquelas

Leia mais

Complementos de Cálculo Diferencial

Complementos de Cálculo Diferencial MTDI I - 7/8 - Comlementos de Cálculo Diferencial 34 Comlementos de Cálculo Diferencial A noção de derivada foi introduzida no ensino secundário. Neste caítulo retende-se relembrar algumas de nições e

Leia mais

Resolução dos Exercícios Propostos no Livro

Resolução dos Exercícios Propostos no Livro Resolução dos Eercícios Propostos no Livro Eercício : Considere agora uma função f cujo gráfico é dado por y 0 O que ocorre com f() quando se aproima de por valores maiores que? E quando se aproima de

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

Funções - Terceira Lista de Exercícios

Funções - Terceira Lista de Exercícios Funções - Terceira Lista de Exercícios Módulo 1 - Trigonometria e Funções Trigonométricas 1. Converta de graus para radianos: (a) 0 (b) 10 (c) 45 (d) 15 (e) 170 (f) 70 (g) 15 (h) 700 (i) 1080 (j) 6. Converta

Leia mais

Capítulo 5 Derivadas

Capítulo 5 Derivadas Departamento de Matemática - ICE - UFJF Disciplina MAT54 - Cálculo Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este

Leia mais

Universidade Federal de Viçosa

Universidade Federal de Viçosa Universidade Federal de Viçosa Ciências Eatas e Tecnológicas Departamento de Matemática MAT 4 - Lista - 07/. Determine o domínio a imagem as raízes e o estudo de sinal das funções a seguir: (a) f() = 4

Leia mais

Trigonometria no Círculo - Funções Trigonométricas

Trigonometria no Círculo - Funções Trigonométricas Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho nº 3.

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho nº 3. Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 3 1. Resolver, da página 80 do seu manual, 1.1. as alíneas a), c) e e) dos

Leia mais

Capítulo 1 Como motivação para a construção dos números complexos aconselha-se o visionamento do quinto do capítulo do documentário Dimensions, disponível em http://www.dimensions-math.org/ Slides de apoio

Leia mais

Matemática 1. Conceitos Básicos 2007/2008

Matemática 1. Conceitos Básicos 2007/2008 Matemática 1 2007/2008 Objectivos Resolver rapidamente equações dos 1 o e 2 o graus Traduzir alguns problemas em equações Interiorizar os conceitos de equação possível e equação impossível Alguns conceitos

Leia mais

Apresente todos os cálculos e justificações relevantes. a) Escreva A e B como intervalos ou união de intervalos e mostre que C = { 1} [1, 3].

Apresente todos os cálculos e justificações relevantes. a) Escreva A e B como intervalos ou união de intervalos e mostre que C = { 1} [1, 3]. Instituto Superior Técnico Departamento de Matemática 1. o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A LEAN, LEMat, MEQ 1. o Sem. 2016/17 12/11/2016 Duração: 1h0m Apresente todos os cálculos e

Leia mais

TEMA 1 TRIGONOMETRIA FICHA DE TRABALHO 11.º ANO COMPILAÇÃO TEMA 1 TRIGONOMETRIA. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 1 TRIGONOMETRIA FICHA DE TRABALHO 11.º ANO COMPILAÇÃO TEMA 1 TRIGONOMETRIA. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FIH DE TRLHO.º NO OMPILÇÃO TEM TRIGONOMETRI Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEM TRIGONOMETRI Matemática.º no Ficha de Trabalho ompilação Tema Trigonometria

Leia mais

0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis.

0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis. Notas de Aula de Cálculo I do dia 07/06/03 - Matemática Profa. Dra. Thaís Fernanda Mendes Monis. 0. Função Inversa Definição. Uma função f : A C é injetiva se f(x) f(y) para todo x y, x, y A. Seja f :

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ FICHA 11 - SOLUÇÕES

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ FICHA 11 - SOLUÇÕES Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem 06/7 - LEAN, MEMat, MEQ FICHA - SOLUÇÕES Teorema Fundamental do Cálculo Regra de Barrow Integração por partes

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos CÁLCULO L NOTAS DA DÉCIMA OITAVA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos a primeira técnica de integração: mudança

Leia mais