Geometria Espacial Curso de Licenciatura em Matemática parte II. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Geometria Espacial Curso de Licenciatura em Matemática parte II. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR"

Transcrição

1 Geometria Espacial Curso de Licenciatura em Matemática parte II Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR

2 1. Paralelismo de Retas L20 Postulado das Paralelas ( de Euclides ) Por um ponto, existe uma única reta paralela a uma reta dada. L21 Transitividade do paralelismo de retas Se duas retas são paralelas a uma terceira, então elas são paralelas entre si. ( a // c e b // c ) ( a // b ) (ver dem)

3 2. Paralelismo entre retas e planos L22 Definição Uma reta é paralela a um plano se, e somente se, eles não têm ponto em comum. a // α a α = L23 Teorema da existência de retas e planos paralelos Condição suficiente: Se uma reta não está contida num plano e é paralela a uma reta desse plano então ela é paralela ao plano. (ver dem)

4 2. Paralelismo entre retas e planos L24 Teorema da existência de retas e planos paralelos (outro enunciado) Se duas retas são paralelas e distintas, todo plano que contém uma e não contém a outra é paralelo a essa outra. Condição suficiente: Para uma reta não contida no plano, ser paralela a esse plano, ela deve ser paralela a uma reta do plano. Condição necessária: Se uma reta é paralela a um plano então ela é paralela a uma reta do plano.

5 2. Paralelismo entre retas e planos Teorema (outro enunciado) - Demonstração Se uma reta é paralela a um plano então ela é paralela a uma reta do plano.

6 3. Posições relativas de uma reta e um plano L26 Posições relativas Uma reta e um plano podem ter em comum: 1º ) Dois pontos distintos: A reta está contida no plano. a α a α = a (reta a contém dois pontos) 2º ) Um único ponto: A reta e o plano são concorrentes ou a reta e o plano são secantes. a α = {P} 3º ) Nenhum ponto comum: A reta e um plano são paralelos. a // α a α =

7 4. Retas Reversas L27 Problemas envolvendo duas retas reversas (r e s) e um ponto P devem ser analisados em três casos: 1º caso: O ponto pertence a uma das retas. 2º caso: O ponto e uma das retas determinam um plano paralelo a outra reta. Ex: α = (r, P) e a // s 3º caso: O ponto e qualquer uma das retas determinam um plano não paralelo a outra reta. α = (r, P) e α não paralelo a s = (s, P) e não paralelo a r

8 L28 Definição: 5. Paralelismo entre planos Dois planos são paralelos se, e somente se, eles não têm ponto comum ou são iguais (coincidentes). α // β α = β ou α β =

9 5. Paralelismo entre planos L29 Teorema da existência planos paralelos Condição suficiente: Se um plano contém duas retas concorrentes, ambas paralelas a outro plano, então esses planos são paralelos. (ver dem)

10 5. Paralelismo entre planos Condição necessária e suficiente: Se dois planos distintos são paralelos, então um deles contém duas retas concorrentes, ambas paralelas ao outro. Segue então a condição: Uma condição necessária e suficiente para que dois planos distintos sejam paralelos é que um deles contenha duas retas concorrentes, ambas paralelas ao outro.

11 6. Posições relativas de dois planos L30 Posições relativas Dois planos podem ocupar as seguintes posições relativas:

12 6. Posições relativas de dois planos 6.2 Exemplos (ex. 53) Se dois planos paralelos interceptam um terceiro, então as interseções são paralelas.

13 6. Posições relativas de dois planos 6.2 Exemplos (cont.) (ex. 56) Teorema da Unicidade: Por um ponto fora de um plano, passa um único plano paralelo ao plano dado. (ver dem.)

14 7. Três retas reversas duas a duas L31 Problemas envolvendo retas reversas: Três retas (r, s, t) reversas, duas a duas, podem ser analisadas de duas formas:

15 8. Ângulo de duas retas Retas Ortogonais L32 Postulado da separação dos pontos de um plano Uma reta r de um plano, separa esse plano em dois subconjuntos e tais que:

16 8. Ângulo de duas retas Retas Ortogonais L33 Ângulo de duas retas quaisquer

17 8. Ângulo de duas retas Retas Ortogonais L35 Teoremas sobre ângulos de lados paralelos a) Se dois ângulos tem os lados com sentidos respectivamente concordantes, então eles são congruentes. ver dem.

18 8. Ângulo de duas retas Retas Ortogonais L35 Teoremas sobre ângulos de lados paralelos b) Se dois ângulos têm os lados com sentidos respectivamente discordantes, então eles são congruentes. É uma aplicação do teorema do item a para ângulos opostos pelo vértice:

19 8. Ângulo de duas retas Retas Ortogonais L35 (cont.) c) Se dois ângulos são tais que um lado de um deles tem sentido concordante com um lado do outro e os outros dois lados tem sentidos discordantes, então eles são suplementares.

20 8. Ângulo de duas retas Retas Ortogonais L35 (cont.) - Conclusões

21 8. Ângulo de duas retas Retas Ortogonais L36 Retas Ortogonais - Definição

22 Geometria Espacial - Perpendicularidade 1. Reta e plano perpendiculares L37 Definição Uma reta e um plano são perpendiculares se, e somente se, eles tem um ponto comum e a reta é perpendicular a todas as reta do plano que passam por esse ponto comum. Se uma reta a é perpendicular a um plano α, o traço de a em α é chamado pé da perpendicular.

23 Geometria Espacial - Perpendicularidade 1. Reta e plano perpendiculares L38 Consequência da Definição Se uma reta é perpendicular a um plano, então ela forma ângulo reto com qualquer reta do plano.

24 Geometria Espacial - Perpendicularidade 1. Reta e plano perpendiculares L39 Teorema fundamental (condição suficiente) Se uma reta é perpendicular a duas retas concorrentes de um mesmo plano, então ela é perpendicular ao plano. (ver dem)

25 Geometria Espacial - Perpendicularidade 1. Reta e plano perpendiculares L40 Generalização do Teorema fundamental Se uma reta forma ângulo com duas retas concorrentes de um plano, então ela é perpendicular ao plano.

26 Geometria Espacial - Perpendicularidade 1. Reta e plano perpendiculares Condição necessária e suficiente Uma condição necessária e suficiente para que uma reta seja perpendicular a uma plano é formar um ângulo reto com duas retas concorrentes do plano.

27 Geometria Espacial - Perpendicularidade 1. Reta e plano perpendiculares Exemplo (ex.68) Sejam a, b e c três retas no espaço tais que a b e c a. Que se pode concluir sobre as posições relativas das retas b e c?

28 Geometria Espacial - Perpendicularidade L41 Definição 1. Planos perpendiculares Um plano α é perpendicular a um plano β se, e somente se, α contém uma reta perpendicular a β. A existência de um plano perpendicular a outro baseia-se na existência de uma reta perpendicular a um plano.

29 Geometria Espacial - Perpendicularidade L42 Teorema 1. Planos perpendiculares Se dois planos são perpendiculares entre si e uma reta de um deles é perpendicular a interseção dos planos, então essa reta é perpendicular ao outro lado.

30 Geometria Espacial - Perpendicularidade 1. Planos perpendiculares L43 Observações 1ª) Pela definição, se uma reta é perpendicular a um plano, qualquer outro plano que a contenha é perpendicular ao primeiro. 2ª) Condição necessária e suficiente: Uma condição necessária e suficiente para que dois planos secantes sejam perpendiculares é que toda a reta de um deles, perpendicular a interseção, seja perpendicular ao outro. 3ª) Planos oblíquos: Dois planos secantes, não perpendiculares são dito oblíquos.

31 Geometria Espacial - Perpendicularidade Exemplo 1. Planos perpendiculares (ex.85) Se dois planos são perpendiculares entre si e uma reta perpendicular a um deles tem um ponto comum com o outro, então essa reta está contida nesse outro plano.

GGM /11/2010 Dirce Uesu Pesco Geometria Espacial

GGM /11/2010 Dirce Uesu Pesco Geometria Espacial GGM00161-06/11/2010 Turma M2 Dirce Uesu Pesco Geometria Espacial Postulados : - Por dois pontos distintos passa uma e somente uma reta - Três pontos não colineares determinam um único plano. - Qualquer

Leia mais

Geometria Espacial Curso de Licenciatura em Matemática parte I. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR

Geometria Espacial Curso de Licenciatura em Matemática parte I. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR Geometria Espacial Curso de Licenciatura em Matemática parte I Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 1 1. Conceitos Primitivos e Postulados L1. Noções 1. Conceitos primitivos:

Leia mais

MATEMÁTICA MÓDULO 13 FUNDAMENTOS. Professor Matheus Secco

MATEMÁTICA MÓDULO 13 FUNDAMENTOS. Professor Matheus Secco MATEMÁTICA Professor Matheus Secco MÓDULO 13 FUNDAMENTOS 1. FUNDAMENTOS Conceitos primitivos: ponto, reta e plano. Dois pontos distintos determinam uma única reta que pasa por eles.reta. Três pontos não

Leia mais

Geometria Espacial de Posição

Geometria Espacial de Posição Geometria Espacial de Posição Prof.: Paulo Cesar Costa www.pcdamatematica.com Noções primitivas POSTULADOS Postulados da existência Numa reta e fora dela existem infinitos pontos. Num plano e fora dele

Leia mais

Aula 24 mtm B GEOMETRIA ESPACIAL

Aula 24 mtm B GEOMETRIA ESPACIAL Aula 24 mtm B GEOMETRIA ESPACIAL Entes Geométricos Ponto A T Reta r s Plano Espaço y α z x Entes Geométricos Postulados ou Axiomas Teorema a 2 = b 2 + c 2 S i =180 Determinação de uma reta Posições relativas

Leia mais

GEOMETRIA DE POSIÇÃO

GEOMETRIA DE POSIÇÃO GEOMETRIA DE POSIÇÃO 1- Conceitos primitivos 1.1- Ponto Não possui dimensão. Representado por letras maiúsculas. A B C 1.2 - Reta É unidimensional, possuindo comprimento infinito. Não possui largura ou

Leia mais

MATEMÁTICA MÓDULO 13 FUNDAMENTOS 1. INTRODUÇÃO 1.1. POSTULADOS PRINCIPAIS 1.2. DETERMINAÇÃO DO PLANO. Conceitos primitivos: ponto, reta e plano.

MATEMÁTICA MÓDULO 13 FUNDAMENTOS 1. INTRODUÇÃO 1.1. POSTULADOS PRINCIPAIS 1.2. DETERMINAÇÃO DO PLANO. Conceitos primitivos: ponto, reta e plano. FUNDAMENTOS 1. INTRODUÇÃO Conceitos primitivos: ponto, reta e plano. 1.1. POSTULADOS PRINCIPAIS Dois pontos distintos determinam uma única reta que passa por eles. Três pontos não colineares determinam

Leia mais

Posição Relativa. 1. Quatro pontos distintos e não coplanares determinam exatamente: (A) 1 plano (B) 2 planos (C) 3 planos (D) 4 planos (E) 5 planos.

Posição Relativa. 1. Quatro pontos distintos e não coplanares determinam exatamente: (A) 1 plano (B) 2 planos (C) 3 planos (D) 4 planos (E) 5 planos. SEI Ensina MILITAR Matemática Posição Relativa 1. Quatro pontos distintos e não coplanares determinam exatamente: (A) 1 plano (B) 2 planos (C) 3 planos (D) 4 planos (E) 5 planos. 2. Considere as seguintes

Leia mais

4. Posições relativas entre uma reta e um plano

4. Posições relativas entre uma reta e um plano RESUMO GEOMETRIA DE POSIÇÃO OU EUCLIDIANA 1.Geometria de posição espacial Ponto, reta e plano são considerados noções primitivas na Geometria. Espaço é o conjunto de todos o pontos. Postulados são proposições

Leia mais

3.5 Posições relativas

3.5 Posições relativas 3.5 Posições relativas Geometria Descritiva 2006/2007 Paralelismo Paralelismo de duas rectas É condição necessária e suficiente para que duas rectas, não de perfil, sejam paralelas que as suas projecções

Leia mais

GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA

GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA PONTO, RETA, PLANO E ESPAÇO; PROPOSIÇÕES GEOMÉTRICAS; POSIÇOES RELATIVAS POSIÇÕES RELATIVAS ENTRE PONTO E RETA POSIÇÕES RELATIVAS DE PONTO E PLANO POSIÇÕES

Leia mais

Axiomas da Geometria Diferencial: Incidência Axioma I 1 : Para todo ponto P e para todo ponto Q distinto de P, existe uma única reta l que passa por

Axiomas da Geometria Diferencial: Incidência Axioma I 1 : Para todo ponto P e para todo ponto Q distinto de P, existe uma única reta l que passa por GEOMETRIA ESPACIAL Axiomas da Geometria Diferencial: Incidência Axioma I 1 : Para todo ponto P e para todo ponto Q distinto de P, existe uma única reta l que passa por P e Q. Axioma I 2 : Toda reta possui

Leia mais

Geometria Plana - Aula 01

Geometria Plana - Aula 01 Geometria Plana - Aula 01 Elaine Pimentel Universidade Federal de Minas Gerais, Departamento de Matemática Geometria Plana Especialização 2008 - p. 1 Esquema da aula O que é um sistema axiomático. Conceitos

Leia mais

Geometria Euclidiana Espacial e Introdução à Geometria Descritiva

Geometria Euclidiana Espacial e Introdução à Geometria Descritiva UNIVERSIDDE ESTDUL PULIST DEPRTMENTO DE MTEMÁTIC Geometria Euclidiana Espacial e Introdução à Geometria Descritiva Material em preparação!! Última atualização: 28.04.2008 Luciana F. Martins e Neuza K.

Leia mais

a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares.

a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares. 01 a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares. c) Verdadeira. Três pontos distintos e não colineares sempre determinam um plano.

Leia mais

FAMEBLU Arquitetura e Urbanismo

FAMEBLU Arquitetura e Urbanismo FAMEBLU Arquitetura e Urbanismo Disciplina GEOMETRIA DESCRITIVA APLICADA A ARQUITETURA 1 Aula 8: Revisão Geral Exercícios Professor: Eng. Daniel Funchal, Esp. Revisão PLANOS Um plano pode ser determinado

Leia mais

Teorema do ângulo externo e sua consequencias

Teorema do ângulo externo e sua consequencias Teorema do ângulo externo e sua consequencias Definição. Os ângulos internos de um triângulo são os ângulos formados pelos lados do triângulo. Um ângulo suplementar a um ângulo interno do triângulo é denominado

Leia mais

MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira

MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 1 Fundamentos de Geometria Euclidiana Plana e Ângulos SUMÁRIO 1. Fundamentos 1.1. Postulados principais 1.2. Determinação do plano 1.3. Posições

Leia mais

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS 2 1 NOÇÕES DE GEOMETRIA PLANA 1.1 GEOMETRIA A necessidade de medir terras

Leia mais

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA:

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: ANO LETIVO 2016/2017 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (9º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro) Metas Curriculares Conteúdos Aulas

Leia mais

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos

Leia mais

a) Postulado 1 - Por dois pontos...passa uma e só uma reta

a) Postulado 1 - Por dois pontos...passa uma e só uma reta PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL I) Completes a lacunas: a) Postulado 1 - Por dois pontos...passa uma e só uma reta b) Postulado 2 Para todo...ab e todo...cd exist um único...e

Leia mais

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos Ângulos entre retas Retas e Planos Perpendiculares Walcy Santos Ângulo entre duas retas A idéia do ângulo entre duas retas será adaptado do conceito que temos na Geometria Plana. Se duas retas são concorrentes

Leia mais

Metas Curriculares do Ensino Básico Matemática 3.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo

Metas Curriculares do Ensino Básico Matemática 3.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Metas Curriculares do Ensino Básico Matemática 3.º Ciclo António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Geometria e Medida 3.º ciclo Grandes temas: 1. Continuação do estudo dos polígonos

Leia mais

PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL

PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL I) Completes a lacunas: a) Postulado 1 - Por dois pontos...passa uma e só uma reta b) Postulado 2 Para todo...ab e todo...cd exist um único...e

Leia mais

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique.

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique. Universidade Federal de Uberlândia Faculdade de Matemática Disciplina: Geometria euclidiana espacial (GMA010) Assunto: Paralelisno e Perpendicularismo; Distância e Ângulos no Espaço. Prof. Sato 1 a Lista

Leia mais

Posições de Retas. Algumas definições sobre retas foram sistematizadas por Euclides, por volta de 300a.C.

Posições de Retas. Algumas definições sobre retas foram sistematizadas por Euclides, por volta de 300a.C. Posições de Retas Introdução: Conceitos Primitivos Algumas definições sobre retas foram sistematizadas por Euclides, por volta de 300a.C. A partir dessas definições estabeleceram-se os termos geométricos

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria

Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria Geometria Descritiva Prof. Luiz Antonio do Nascimento ladnascimento@gmail.com www.lnascimento.com.br A Geometria, como qualquer outra ciência, fundamenta-se em observações e experiências para estabelecer

Leia mais

Soluções do Capítulo 8 (Volume 2)

Soluções do Capítulo 8 (Volume 2) Soluções do Capítulo 8 (Volume 2) 1. Não. Basta considerar duas retas concorrentes s e t em um plano perpendicular a uma reta r. As retas s e t são ambas ortogonais a r, mas não são paralelas entre si.

Leia mais

9.º Ano. Planificação Matemática 16/17. Escola Básica Integrada de Fragoso 9.º Ano

9.º Ano. Planificação Matemática 16/17. Escola Básica Integrada de Fragoso 9.º Ano 9.º Ano Planificação Matemática 1/17 Escola Básica Integrada de Fragoso 9.º Ano Funções, sequências e sucessões Álgebra Organização e tratamento de dados Domínio Subdomínio Conteúdos Objetivos gerais /

Leia mais

EXERCÍCIOS COMPLEMENTARES

EXERCÍCIOS COMPLEMENTARES Questão 01) EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL PROF.: GILSON DUARTE d) Se e são perpendiculares entre-si, então é perpendicular a todas as retas contidas em. Todas as afirmações abaixo estão

Leia mais

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! 1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,

Leia mais

Ângulo é a abertura que duas semi-reta faz. Observe a figura:

Ângulo é a abertura que duas semi-reta faz. Observe a figura: A geometria plana estuda a geometria no plano, ou seja, em uma coisa plana, imagine um desenho em uma folha de papel ou no chão. Resumindo, a geometria plana tem o objetivo de estudar as figuras geométricas

Leia mais

❷ Uma recta e um ponto exterior à recta definem um e um só plano.

❷ Uma recta e um ponto exterior à recta definem um e um só plano. Uma resolução da Ficha de Trabalho (10.º Ano) POSIÇÕES RELATIVAS, PERSPECTIVAS, CORTES. 1. FORMAS DE DEFINIR UM PLANO: ❶ Três pontos não colineares definem um e um só plano. ❷ Uma recta e um ponto exterior

Leia mais

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I 6º Olímpico Matemática I Sistema de numeração romano. Situações problema com as seis operações com números naturais (adição, subtração, multiplicação, divisão, potenciação e radiciação). Expressões numéricas

Leia mais

Tarefa nº_ 2.2. (A) Um ponto (B) Uma reta (C) Um plano (D) Nenhuma das anteriores

Tarefa nº_ 2.2. (A) Um ponto (B) Uma reta (C) Um plano (D) Nenhuma das anteriores Tarefa nº_. MATEMÁTICA Geometria Nome: 11º Ano Data / / 1. Num referencial o.n. Oxyz, qual das seguintes condições define uma recta paralela ao eixo Oz? (A) x = y = 1 (C) z = 1 (B) (x, y, z) = (1,,0) +

Leia mais

2. Cada 3 pontos determinam um plano. Logo, há um total de. = 4 planos (que correspondem às faces do tetraedro cujos vértices são estes 4 pontos).

2. Cada 3 pontos determinam um plano. Logo, há um total de. = 4 planos (que correspondem às faces do tetraedro cujos vértices são estes 4 pontos). Soluções do apítulo 7 (Volume ) 1. Supondo que, neste trecho, tanto a ponte quanto a via férrea estejam em planos horizontais (sem rampa), temos as seguintes relações: α e β são paralelos; r está contida

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

Um plano fica definido por duas retas paralelas ou concorrentes.

Um plano fica definido por duas retas paralelas ou concorrentes. 1 3 - ESTUDO DOS PLANOS Um plano fica definido por duas retas paralelas ou concorrentes. 3.1. Traços do plano São as retas de interseção de um plano com os planos de projeção. απ' - traço vertical de (α)

Leia mais

n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações

n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações Vetor normal (ortogonal) a uma reta - R plano: (x, y) Considere a reta r do plano cartesiano, de equação ax + by

Leia mais

PHA ( ) PHP ( ) Iº DIEDRO: PVI ( ) IIIº DIEDRO:

PHA ( ) PHP ( ) Iº DIEDRO: PVI ( ) IIIº DIEDRO: GEOMETRIA DESCRITIVA UNIDADE 01 GEOMETRIA DESCRITIVA PLANO DE PROJEÇÃO PHA ( ) PHP ( ) Iº DIEDRO: PVS ( ) IIº DIEDRO: PVI ( ) IIIº DIEDRO: LT ( ) IVº DIEDRO: 1 GEOMETRIA DESCRITIVA UNIDADE 01 Linha Terra

Leia mais

Aula 10 Produto interno, vetorial e misto -

Aula 10 Produto interno, vetorial e misto - MÓDULO 2 - AULA 10 Aula 10 Produto interno, vetorial e misto - Aplicações II Objetivos Estudar as posições relativas entre retas no espaço. Obter as expressões para calcular distância entre retas. Continuando

Leia mais

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular MODULO 1 - AULA 7 Aula 7 Complementos Apresentamos esta aula em forma de Exercícios Resolvidos, mas são resultados importantes que foram omitidos na primeira aula que tratou de Conceitos Básicos. Exercício

Leia mais

Domínio Números e Operações Subdomínio Adição e subtração de números racionais não negativos. Metas/Objetivos Conceitos/Conteúdos Aulas previstas

Domínio Números e Operações Subdomínio Adição e subtração de números racionais não negativos. Metas/Objetivos Conceitos/Conteúdos Aulas previstas Números e Operações Adição e subtração de números racionais não negativos DEPARTAMENTO DE MATEMÀTICA DISCIPLINA: Matemática PLANIFICAÇÃO 1ºperíodo - 5º ANO - Efetuar operações com números racionais não

Leia mais

Módulo de Geometria Espacial I - Fundamentos. Pontos, Retas e Planos. 3 ano/e.m.

Módulo de Geometria Espacial I - Fundamentos. Pontos, Retas e Planos. 3 ano/e.m. Módulo de Geometria Espacial I - Fundamentos Pontos, Retas e Planos. 3 ano/e.m. Geometria Espacial I - Fundamentos Pontos, Retas e Planos. 1 Exercícios Introdutórios 2 Exercícios de Fixação Exercício 4.

Leia mais

Lista 3: Geometria Analítica

Lista 3: Geometria Analítica Lista 3: Geometria Analítica A. Ramos 25 de abril de 2017 Lista em constante atualização. 1. Equação da reta e do plano; 2. Ângulo entre retas e entre planos. Resumo Equação da reta Equação vetorial. Uma

Leia mais

Plano Curricular de Matemática 5ºAno - 2º Ciclo

Plano Curricular de Matemática 5ºAno - 2º Ciclo Plano Curricular de Matemática 5ºAno - 2º Ciclo Domínio Conteúdos Metas Nº de Tempos Previstos Numeros e Operações Números racionais não negativos (Educação Financeira) - Cidadania - Simplificação de frações;

Leia mais

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1 Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA - 5.º ANO PERFIL DO ALUNO

PLANO DE ESTUDOS DE MATEMÁTICA - 5.º ANO PERFIL DO ALUNO DE MATEMÁTICA - 5.º ANO Ano Letivo 2014 2015 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de conhecer e aplicar propriedades dos divisores e efetuar operações com números

Leia mais

Aula 21 - Baiano GEOMETRIA PLANA

Aula 21 - Baiano GEOMETRIA PLANA Aula 21 - Baiano GEOMETRIA PLANA Definição: Polígono de quatro lados formado por quatro vértices não colineares dois a dois. A D S i = 180º (n 2)= 180º (4 2)= 360º S e = 360º B C d = n. (n - 3) 2 = 4.

Leia mais

Av. João Pessoa, 100 Magalhães Laguna / Santa Catarina CEP

Av. João Pessoa, 100 Magalhães Laguna / Santa Catarina CEP Disciplina: Matemática Curso: Ensino Médio Professor(a): Flávio Calônico Júnior Turma: 3ª Série E M E N T A II Trimestre 2013 Conteúdos Programáticos Data 21/maio 28/maio Conteúdo FUNÇÃO MODULAR Interpretação

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Teorema de Tales no plano

Teorema de Tales no plano MA620 - Aula 3 p. 1/ Teorema de Tales no plano Teorema de Tales: (no plano) Se duas retas paralelas são cortadas por duas retas concorrentes, então as medidas dos segmentos correspondentes determinados

Leia mais

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2 Lista 2: Retas, Planos e Distâncias - Engenharia Mecânica Professora: Elisandra Bär de Figueiredo x = 2 + 2t 1. Determine os valores de m para que as retas r : y = mt z = 4 + 5t sejam: (a) ortogonais (b)

Leia mais

LISTA DE EXERCÍCIOS COMPLEMENTAR 1ª PROVA

LISTA DE EXERCÍCIOS COMPLEMENTAR 1ª PROVA MINISTÉRI DA EDUCAÇÃ UNIVERSIDADE FEDERAL D PARANÁ SETR DE CIÊNCIAS EXATAS DEPARTAMENT DE EXPRESSÃ GRÁFICA Professora Elen Andrea Janzen Lor Representação de Retas LISTA DE EXERCÍCIS CMPLEMENTAR 1ª PRVA

Leia mais

Um pouco de história. Ariane Piovezan Entringer. Geometria Euclidiana Plana - Introdução

Um pouco de história. Ariane Piovezan Entringer. Geometria Euclidiana Plana - Introdução Geometria Euclidiana Plana - Um pouco de história Prof a. Introdução Daremos início ao estudo axiomático da geometria estudada no ensino fundamental e médio, a Geometria Euclidiana Plana. Faremos uso do

Leia mais

Retas e círculos, posições relativas e distância de um ponto a uma reta

Retas e círculos, posições relativas e distância de um ponto a uma reta Capítulo 3 Retas e círculos, posições relativas e distância de um ponto a uma reta Nesta aula vamos caracterizar de forma algébrica a posição relativa de duas retas no plano e de uma reta e de um círculo

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO

CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO DISCIPLINA: 030362 Geometria Espacial DURAÇÃO: Semestral CARGA HORÁRIA TOTAL: 45 horas CARGA HORÁRIA

Leia mais

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x.

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x. Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Reginaldo J. Santos Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi

Leia mais

Projeções de entidades geométricas elementares condicionadas por relações de pertença (incidência) 8

Projeções de entidades geométricas elementares condicionadas por relações de pertença (incidência) 8 Índice Item Representação diédrica Projeções de entidades geométricas elementares condicionadas por relações de pertença (incidência) 8 Reta e plano 8 Ponto pertencente a uma reta 8 Traços de uma reta

Leia mais

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.

Leia mais

Escola Politécnica UFRJ Departamento de Expressão Gráfica DEG. Sistemas Projetivos. Representação de Retas no Sistema Mongeano NOTAS DE AULA

Escola Politécnica UFRJ Departamento de Expressão Gráfica DEG. Sistemas Projetivos. Representação de Retas no Sistema Mongeano NOTAS DE AULA Escola Politécnica UFRJ Departamento de Expressão Gráfica DEG Sistemas Projetivos Representação de Retas no Sistema Mongeano NOTAS DE AULA Prof. Julio Cesar B. Torres (juliotorres@ufrj.br) REPRESENTAÇÃO

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa e Metas Curriculares

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa e Metas Curriculares AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas Curriculares 3º CICLO MATEMÁTICA 9ºANO TEMAS/DOMÍNIOS CONTEÚDOS OBJETIVOS

Leia mais

Desenho Computacional. Parte I

Desenho Computacional. Parte I FACULDADE FUCAPI Desenho Computacional Parte I, M.Sc. Doutorando em Informática (UFAM) Mestre em Engenharia Elétrica (UFAM) Engenheiro de Telecomunicações (FUCAPI) Referências SILVA, Arlindo; RIBEIRO,

Leia mais

Lugares geométricos básicos I

Lugares geométricos básicos I Lugares geométricos básicos I M13 - Unidade 5 Resumo elaborado por Eduardo Wagner baseado no texto:. Caminha M. Neto. Geometria. Coleção PROFMT Definição Lugar Geométrico da propriedade P é o conjunto

Leia mais

Geometria Plana - Aula 08

Geometria Plana - Aula 08 Geometria Plana - Aula 08 Elaine Pimentel Universidade Federal de Minas Gerais, Departamento de Matemática Geometria Plana Especialização 2008 - p. 1 Esquema da aula Círculos, raios e cordas. Tangentes.

Leia mais

RETAS. A marca de uma ponta de lápis bem fina no papel dá a idéia do que é um ponto. Toda figura geométrica é considerada um conjunto de pontos.

RETAS. A marca de uma ponta de lápis bem fina no papel dá a idéia do que é um ponto. Toda figura geométrica é considerada um conjunto de pontos. 1 RETAS PONTO: A Geometria é a Ciência da extensão. O espaço é extenso sem interrupção e sem limite. Um lugar concebido sem extensão no espaço chama-se Ponto. O ponto não tem dimensão. A marca de uma ponta

Leia mais

Manual de. Geometria Descritiva. António Galrinho

Manual de. Geometria Descritiva. António Galrinho Manual de Geometria Descritiva António Galrinho FICHA TÉCNICA Título Manual de Geometria Descritiva Autor António Galrinho Grafismo Do autor Edição 2ª - 2012 APRESENTAÇÃO Este livro apresenta uma compilação

Leia mais

Geometria Descritiva. Alfabeto do Plano:

Geometria Descritiva. Alfabeto do Plano: Geometria Descritiva Alfabeto do Plano: Posição de um plano em relação aos: Planos projectantes - Paralelo - perpendicular a um só plano - perpendicular aos dois planos Planos não projectantes: Retas contidas

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Vetores, Retas e Planos

Álgebra Linear e Geometria Anaĺıtica. Vetores, Retas e Planos universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 3 Vetores, Retas e lanos roduto interno em R n [3 01] Dados os vetores X =

Leia mais

ISOMETRIAS - TRANSLAÇÃO, ROTAÇÃO E REFLEXÃO -

ISOMETRIAS - TRANSLAÇÃO, ROTAÇÃO E REFLEXÃO - ISOMETRIAS - TRANSLAÇÃO, ROTAÇÃO E REFLEXÃO - MATEMÁTICA 8º Ano Professora: Patrícia Isidoro Antes de Começar para recordar Posição relativa de duas retas no plano Retas Concorrentes Perpendiculares Oblíquas

Leia mais

LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I

LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I LISTA DE EXERCÍCIOS MAT 230 - GEOMETRIA E DESENHO GEOMÉTRICO I 1. Numa geometria de incidência, o plano tem 5 pontos. Quantas retas tem este plano? A resposta é única? 2. Exibir um plano de incidência

Leia mais

Item 1 (Paralelismo) Item 2 (Distâncias)

Item 1 (Paralelismo) Item 2 (Distâncias) Item 1 (Paralelismo) 1. Representam-se os dados do enunciado; 2. Este relatório apresenta dois processos distintos para a resolução do primeiro exercício do Exame: o Processo A (que consiste em visualizar

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo INTRODUÇÃO Os ângulos são formados por duas semi-retas que têm a mesma origem O. OBS.: o ângulo é denominado

Leia mais

Retas e planos. Posições relativas

Retas e planos. Posições relativas Retas e planos. Posições relativas Recordar Noção de Plano Se prolongares indefinidamente e em todas as direções o tampo do quadro, obténs um Plano. Como desenhar um plano é impossível, convencionou-se

Leia mais

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>.

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>. n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo

Leia mais

Coeficiente angular. MA092 Geometria plana e analítica. Equação da reta a partir de um ponto e um ângulo. Exemplo 1

Coeficiente angular. MA092 Geometria plana e analítica. Equação da reta a partir de um ponto e um ângulo. Exemplo 1 Coeficiente angular MA092 Geometria plana e analítica. e perpendiculares Resultado Uma reta não vertical, y = mx + q, tem coeficiente angular m dado pela tangente do ângulo α medido no sentido anti-horário

Leia mais

Planificação Anual (por unidades)

Planificação Anual (por unidades) Planificação Anual (por unidades) Total de tempos letivos planificados: 10 Disciplina: MATEMÁTICA 5º ANO Ano letivo: 01/015 Período Unidade didática Nº DE TEMPOS PREVISTOS Total - Apresentação. - Atividades

Leia mais

PERPENDICULARIDADES. Sumário:

PERPENDICULARIDADES. Sumário: 9 PERPENDICULARIDADES Neste capítulo estudam-se as retas e os planos nas suas relações de paralelismo e de perpendicularidade, nas diferentes possibilidades: retas com retas, planos com planos e retas

Leia mais

n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas

n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas Sejam as retas r1, que passa pelo ponto A (x1, y1, z1) e tem a direção de um vetor

Leia mais

3. Representação diédrica de pontos, rectas e planos

3. Representação diédrica de pontos, rectas e planos 3. Representação diédrica de pontos, rectas e planos Geometria Descritiva 2006/2007 Geometria de Monge Utilizam-se simultaneamente dois sistemas de projecção paralela ortogonal. Os planos de projecção

Leia mais

Turma preparatória para Olimpíadas.

Turma preparatória para Olimpíadas. p: João Alvaro w: www.matemaniacos.com.br e: joao.baptista@iff.edu.br Turma preparatória para Olimpíadas. TRIÂNGULOS - V01 DEFINIÇÃO Sejam três pontos não colineares A, B e C, o triângulo ABC é uma figura

Leia mais

4.1 posição relativas entre retas

4.1 posição relativas entre retas 4 P O S I Ç Õ E S R E L AT I VA S Nosso objetivo nesta seção é entender a posição relativa entre duas retas, dois planos e ou uma reta e um plano, isto é, se estes se interseccionam, se são paralelos,

Leia mais

Geometria Descritiva Mudança de Planos Introdução

Geometria Descritiva Mudança de Planos Introdução Mudança de Planos Introdução As projecções de uma figura só representam as suas verdadeiras grandezas se essa figura está contida num plano paralelo aos planos projectantes. Caso contrário as projecções

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 3. Círculos: elementos, arcos e ângulos inscritos

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 3. Círculos: elementos, arcos e ângulos inscritos Material eórico - Módulo Elementos ásicos de Geometria lana - arte 3 írculos: elementos, arcos e ângulos inscritos itavo ano do Ensino Fundamental utor: rof. Jocelino Sato Revisor: rof. ntonio aminha M.

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

1. SISTEMA DE PROJEÇÕES

1. SISTEMA DE PROJEÇÕES Expressão Gráfica I 1 Desde a pré-história o homem já defrontou-se com o problema de representar em um só plano. O desenho assumiu a função simbólica, mística (os povos primitivos representavam em cavernas

Leia mais

Aula 33.1 Conteúdo: Ângulos: conceito e classificação dos ângulos; Relação entre ângulos FORTALECENDO SABERES CONTEÚDO E HABILIDADES

Aula 33.1 Conteúdo: Ângulos: conceito e classificação dos ângulos; Relação entre ângulos FORTALECENDO SABERES CONTEÚDO E HABILIDADES CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Aula 33.1 Conteúdo: Ângulos: conceito e classificação dos ângulos; Relação entre ângulos 2 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO

Leia mais

Período Conteúdos Metas Curriculares Nº de Aulas

Período Conteúdos Metas Curriculares Nº de Aulas AGRUPAMENTO VERTICAL DE ESCOLAS DE MOURA Agrupamento de Escolas de Moura Planificação de Matemática -5ºAno Período Conteúdos Metas Curriculares Nº de Aulas 1.º Números naturais Critérios de divisibilidade

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

Números e Operações (NO) Álgebra (ALG) DOMÍNIO SUBDOMÍNIO OBJETIVO GERAL/DESCRITORES RECURSOS. Conhecer e aplicar propriedades dos divisores

Números e Operações (NO) Álgebra (ALG) DOMÍNIO SUBDOMÍNIO OBJETIVO GERAL/DESCRITORES RECURSOS. Conhecer e aplicar propriedades dos divisores ESCOLA BÁSICA CRISTÓVÃO FALCÃO ANO LETIVO: 2016/2017 SERVIÇO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS DATA: Set 2016 ASSUNTO PLANIFICAÇÃO ANUAL 5º Ano RESPONSÁVEL: Grupo 230 DOMÍNIO SUBDOMÍNIO

Leia mais

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria IV Paralelismo e perpendicularidade. Sistemas de equações.

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria IV Paralelismo e perpendicularidade. Sistemas de equações. Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria IV Paralelismo e perpendicularidade. Sistemas de equações. 11º Ano Paralelismo e perpendicularidade de retas No espaço, duas

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais

Geometria Plana - Aula 05

Geometria Plana - Aula 05 Geometria Plana - Aula 05 Elaine Pimentel Universidade Federal de Minas Gerais, Departamento de Matemática Geometria Plana Especialização 2008 - p. 1 Esquema da aula Quadrilátero - definição e. Quadriláteros

Leia mais

GEOMETRIA. Esse quadradinho no ângulo O significa que é um ângulo reto e sua medida equivale a 90 graus.

GEOMETRIA. Esse quadradinho no ângulo O significa que é um ângulo reto e sua medida equivale a 90 graus. GEOMETRIA Ângulos É a abertura existente entre duas semi-retas que tem a mesma origem. Ângulo reto é formado por duas semi-retas perpendiculares, ou seja, uma horizontal e uma vertical sendo o ponto de

Leia mais