f x a , com a e a 1 em que a é denominada de base da função. h x 3 3

Tamanho: px
Começar a partir da página:

Download "f x a , com a e a 1 em que a é denominada de base da função. h x 3 3"

Transcrição

1 FUNÇÃO EXPONENCIAL Definição: É toda função definida por Eemplo: f: tal que f a. Para as funções eponenciais f f 4. f f 4 5 h., g 5 Função eponencial, com a e a em que a é denominada de base da função. e h, note que: Observações: O motivo que leva a definição de função eponencial não admitir bases negativas está pautado nos seguintes fatos: Admita, por eemplo, que eista uma função eponencial f: dada por f, observe que f resultado que não pertence aos reais ( ) o que mostra um inconveniente de tomar bases negativas. Assim como nesse caso, pode-se mostrar uma infinidade de outros similares que mostraria que essa função, e de f a com a, não estão definidas para todos os reais. forma geral para as funções Outro caso que não interessa para o estudo dessa seção são as funções da forma f a ambos os casos as funções seriam constantes, ou seja, f para e. GRÁFICO com a ou a, pois em f para todo. Pode-se construir o gráfico da função eponencial eaminando alguns pontos pertencentes à função no plano cartesiano, e em seguida observar o comportamento quanto ao seu crescimento. Note os eemplos a seguir.. Construa o gráfico das funções dadas abaio: a) f: tal que f. A partir da função observe que: y f f,5 f f f 4 f 8 No Plano Cartesiano tem-se:

2 Função eponencial b) f: com f y f f f Com isso:. f 9 f Atente-se para o fato de que o gráfico dessa função não intersecta o eio, ou seja, por mais que se tome valores grandes para ainda assim o valor da função, mesmo que seja próimo de zero, não será igual a zero. Diz-se assim que o gráfico da função eponencial é assintótico ao eio.

3 Função eponencial Contudo, pode-se demonstrar que quando se toma valores para tendendo ao infinito, o valor da função f a zero, isto é: lim. De forma análoga, pode-se dizer que lim. Em geral, eistem duas situações a se destacar quanto à construção de gráficos de funções eponenciais: caso a base seja maior que ( a ) ou quando a base esteja entre e ( a ). I. a. Aqui a função é estritamente crescente como pode ser visto no eemplo a acima ou, de forma generalizada, na figura abaio: tende Note pelo gráfico que: f f a a. Esta propriedade é geralmente usada na solução de inequações. Em decorrência da função ser estritamente crescente ela é injetiva, isto é, no caso de f f. Essa propriedade é relevante na solução de equações, pois: a a. II. a. Como pode ser visto no eemplo b acima, a fim de que torne a análise mais acessível, a função eponencial com base qualquer no intervalo a é estritamente decrescente. Observe:, então

4 Função eponencial Assim como no primeiro caso, é imediato pelo gráfico acima que: f f a a. Também podemos destacar que Eemplos: a. Resolva a equação 4. Solução: Note que: Fazendo a substituição.t 9.t 4 t' t 4 t'' t obtém-se: Para t'. Para t''. Com isso, o conjunto solução da equação é dado por S,. Resolva as inequações: a) b) 9. c) Soluções: a, então, conseqüência da injetividade da função eponencial.. a) Da inequação tem-se 5 5. Como a base da eponencial é maior que um e conseqüentemente a função eponencial associada a essa desigualdade é crescente, mantém-se o sentido da desigualdade para os epoentes, ou seja: 5 5. Logo, o conjunto solução dessa inequação é dado por S /. 4 b) Fazendo 9. Como a função eponencial associada a essa inequação é decrescente, sua base está entre zero e um, deve-se inverter o sentido da desigualdade para os epoentes, portanto:

5 Função eponencial. Com isso, o conjunto solução é S / , pode-se fazer a troca de variável c) Como t 9t 8. t' Notando que t 9t 8, tem-se: t'' 8. t, de forma que Logo, t 8. E o conjunto solução é S /.. CASO GERAL DA FUNÇÃO EXPONENCIAL Seja Pt a porcentagem do conteúdo de uma determinada disciplina que um estudante típico consegue recordar, Pt era dada por bt em que a, b e c são constantes positivas e a,b. (observação: e,78, conhecido por decorridas t semanas, após tê-la estudado arduamente. Comprovou-se que a função P t a e c número de Euler),5t Admita, por eemplo, que para um estudante obteve-se que ele consegue recordar P t 6e 4 por cento do conteúdo de matemática, t semanas após tê-lo estudado. Fazendo uma interpretação dessa função, note que inicialmente, para t =, o aluno em questão consegue recordar % do conteúdo estudado, P 6e 4. Contudo, qual será o comportamento da memória desse indivíduo? Ao transcorrer um longo período de tempo ele consegue recordar quanto daquilo que estudou? Essas e outras indagações podem ser elucidadas simplesmente observando o gráfico da função P(t).,5t Para a construção do gráfico da função,5t Pt 6 4 e. Como e e, então o gráfico da função P t 6e 4, comecemos reescrevendo-a como a seguir: Pt pode ser obtido através das transformações mostradas a seguir: Restringindo o domínio da função para t, tem-se:

6 Função eponencial Pode-se inferir, ao analisar o gráfico acima, que esse aluno, ao passar de tempo, recordará gradativamente menos daquilo que estudou e, transcorrido um longo período de tempo, ainda assim conseguirá se lembrar mais de 4% do conteúdo estudado. De forma geral, seja a função f: dada por A,, a e a. O gráfico dessa função é dado nos seguintes casos: I. a : f Aa B, em que a, A, B, e são constantes reais tais que II. a : Eemplo: P. Suponha que a população de uma certa cidade seja estimada, para daqui a anos, por habitantes. Com base nessas informações, julgue os itens a seguir. () Avalia-se que durante o terceiro ano, essa população aumentará de até 5 habitantes. () É possível encontrar dois instantes, e, tais que então P P. () Está população sempre será inferior a habitantes. Solução:

7 () (Falso) O aumento durante o terceiro ano é dado por: P P 4 8 P P 5 habitantes. 8 Função eponencial () (Falso) Para que encontremos dois instantes e, tais que P P é necessário que essa função, para algum subconjunto de seu domínio, seja decrescente. Contudo, pela figura abaio, gráfico da função então P, pode-se ver claramente que essa função é crescente em todo seu domínio. () (verdadeiro) Das informações oferecidas no gráfico do item, pode-se inferir que o gráfico da função P é assintótico em relação a reta y =., logo a população dessa cidade será sempre inferior a. habitantes. Outra forma, não gráfica, de chegarmos a essa conclusão é supondo, por absurdo, que eista um instante para o qual P., com isso:... Como a desigualdade é absurda, conclui-se que essa população sempre será inferior a habitantes, ou seja, para todo tem-se P..

8 EXERCÍCIOS Função eponencial ) A população mundial está ficando mais velha, os índices de natalidade diminuíram e a epectativa de vida aumentou. No gráfico seguinte, são apresentados dados obtidos por pesquisa realizada pela Organização das Nações Unidas (ONU), a respeito da quantidade de pessoas com 6 anos ou mais em todo o mundo. Os números da coluna da direita representam as faias percentuais. Por eemplo, em 95 havia 95 milhões de pessoas com 6 anos ou mais nos países desenvolvidos, número entre % e 5% da população total nos países desenvolvidos. Suponha que o modelo eponencial y = 6 e,, em que = corresponde ao ano, = corresponde ao ano, e assim sucessivamente, e que y é a população em milhões de habitantes no ano, seja usado para estimar essa população com 6 anos ou mais de idade nos países em desenvolvimento entre e 5. Desse modo, considerando e, =,5, estima-se que a população com 6 anos ou mais estará, em, entre a) 49 e 5 milhões. b) 55 e 6 milhões. c) 78 e 8 milhões. d) 8 e 86 milhões. e) 87 e 9 milhões. ) Um grupo de animais de certa espécie está sendo estudado por veterinários. A cada seis meses, esses animais são submetidos a procedimentos de morfometria e, para tanto, são sedados com certa droga. A quantidade mínima da droga que deve permanecer na corrente sanguínea de cada um desses animais, para mantê-los sedados, é de mg por quilograma de peso corporal. Além disso, a meia-vida da droga usada é de hora isto é, a cada 6 minutos, a quantidade da droga presente na corrente sanguínea de um animal reduz-se à metade. Sabe-se que a quantidade q(t) da droga presente na corrente sanguínea de cada animal, t minutos após um dado instante inicial, é dada por kt em que: q(t) q, q é a quantidade de droga presente na corrente sanguínea de cada animal no instante inicial; e k é uma constante característica da droga e da espécie. Considere que um dos animais em estudo, que pesa quilogramas, recebe uma dose inicial de mg da droga e que, após minutos, deve receber uma segunda dose. Suponha que, antes dessa dose inicial, não havia qualquer quantidade da droga no organismo do mesmo animal. Com base nessas informações, a) calcule a quantidade da droga presente no organismo desse animal imediatamente antes de se aplicar a segunda dose; b) calcule a quantidade mínima da droga que esse animal deve receber, como segunda dose, a fim de ele permanecer sedado por, pelo menos, mais minutos.

9 Função eponencial ) No programa de rádio HORA NACIONAL, o locutor informa: "Atenção, senhores ouvintes. Acabamos de receber uma notificação da defesa civil do País alertando para a chegada de um furacão de grandes proporções nas próimas 4 horas. Pede-se que mantenham a calma, uma vez que os órgãos do governo já estão tomando todas as providências cabíveis". Para atender às solicitações que seguem, suponha que o número de pessoas que tenha acesso a essa informação, quando transcorridas t horas após a divulgação da notícia, seja dado pela epressão P f(t) Pt 9. sendo t > e P a população do País. a) Calcule o percentual da população que tomou conhecimento da notícia no instante de sua divulgação. b) Calcule em quantas horas 9% da população tem acesso à notícia, considerando que, em hora após a notícia, 5% da população do país já conhecia a informação. 4) Os gráficos das funções eponenciais g e h são simétricos em relação à reta y =, como mostra a figura: Sendo g() = a + b c e h() = d + e f, a soma a + b + c + d + e + f é igual a: 7 a). b). c). d) 8. e) 9. 5) A teoria da cronologia do carbono, utilizada para determinar a idade de fósseis, baseia-se no fato de que o isótopo do carbono 4 (C-4) é produzido na atmosfera pela ação de radiações cósmicas no nitrogênio e que a quantidade de C-4 na atmosfera é a mesma que está presente nos organismos vivos. Quando um organismo morre, absorção de C-4, através de respiração ou alimentação, cessa, e a quantidade de C-4 presente no fóssil é dada pela função Ct C kt, onde t é dado em anos a partir da morte do organismo, C é a quantidade de C- 4 para t e k é uma constante. Sabe-se que 56 anos após a morte, a quantidade de C-4 presente no organismo é a metade da quantidade inicial (quando t ). C No momento em que um fóssil foi descoberto, a quantidade de C-4 medida foi de. Tendo em vista estas informações, calcule a idade do fóssil no momento em que ele foi descoberto. 6) Considere que num recipiente, no instante t=, um número N o de bactérias estão se reproduzindo normalmente. É t aceito cientificamente que o número de bactérias num certo instante t > é dado pela equação N(t) N K, sendo N(t) o número de bactérias no instante t e K uma constante que depende do tipo de bactéria. Suponhamos que, num certo instante, observou-se que havia bactérias no recipiente reproduzindo-se normalmente. Passadas horas havia 6 bactérias. Após 48 horas do início da observação, quantas bactérias eistirão?

10 Função eponencial 7) O Estado de Alagoas situa-se a leste da região Nordeste. É o seto estado mais populoso da região, com um total de quase.. de habitantes. Apresenta a quinta maior média de crescimento anual da região: cerca de,%. Em quatro anos, a população cresceu em torno de 4. habitantes nos municípios. O mais populoso deles é Maceió, com cerca de 885. habitantes, ocupando uma área de aproimadamente 5 km. Dentre as Unidades de Conservação Federais, a maior é a Área de Proteção Ambiental Costa dos Corais, com 4.56 hectares ( ha = 4 m ). Suponha que a população alagoana de um conjunto de municípios cresce eponencialmente pela função definida por p(t) = p.,5.t e a demanda por bens de consumo cresce linearmente pela função d(t) =,5. p. t, em que t é o tempo medido em anos. Nessas condições, no instante em que essa população passasse a ser p, a demanda por bens de consumo seria a) 4 p b) p c) p d) 8 p e) 6 p 8) A meia-vida de um núcleo atômico radioativo é, por definição, o tempo necessário para que a metade dos núcleos inicialmente presentes em uma amostra se desintegre. Esse tempo não depende da massa da amostra. Por eemplo, uma amostra de,g de iodo, isótopo do Iodo, usado no tratamento de câncer da tireóide, diminui para,5 g em 8 dias.a meia-vida do iodo é, então, igual a 8 dias. O gráfico ao lado ilustra o decaimento radioativo para essa amostra, em um período de até 4 dias. Em relação à amostra analisada, julgue os itens que se seguem., massa do iodo (em g),5 8 4 tempo (em dias) () O período transcorrido até que a massa dessa amostra fique reduzida a,5 g é superior a 7 dias () Após 5 dias, a massa de iodo dessa amostra é inferior a, g () Se M e M são as massas dessa amostra medidas, nessa ordem, em um intervalo de 8 dias, então o quociente M /M é igual a (4) Se M é a massa inicial dessa amostra e M(t) é a massa após t dias, então o quociente M /M(t) é constante 9) As substâncias radiativas têm uma tendência natural a se desintegrarem, emitindo partículas e transformando-se em uma nova substância. Conseqüentemente, com o passar do tempo, a quantidade da substância radiativa diminui. A velocidade de decaimento pode ser medida contando-se o número de partículas liberadas por unidade de tempo. Instrumentos para medir a radiatividade, como, por eemplo, o contador de Geiger, fazem isso automaticamente. O plutônio 4 ( 4 Pu), produzido em reatores nucleares, é um material radiativo de longa vida, o que torna o lio atômico desses reatores de difícil armazenamento. A partir de uma massa inicial M dessa substância, a sua massa M, após t séculos, será, aproimadamente, determinada pela equação. M = M (,) -t Com base nessas informações, determine, em porcentagem, a quantidade de massa de 4 Pu restante, após séculos de desintegração. Gabarito Eercícios

11 ) E Função eponencial ) a) q() 6 5 mg. b) 5 5 mg. ) a) % b) horas 4) D 5) 8 6) 6 7) B 8) E C C E 9) 97

MATEMÁTICA - 3 o ANO MÓDULO 11 FUNÇÃO EXPONENCIAL

MATEMÁTICA - 3 o ANO MÓDULO 11 FUNÇÃO EXPONENCIAL MATEMÁTICA - 3 o ANO MÓDULO 11 FUNÇÃO EXPONENCIAL a >1 f(x) f(x) = a x 1 x f(x) = a x f(x) 1 x Como pode cair no enem Em setembro de 1987, Goiânia foi palco do maior acidente radioativo ocorrido no Brasil,

Leia mais

Ciências da Natureza e Matemática

Ciências da Natureza e Matemática 1 CEDAE Acompanhamento Escolar 2 CEDAE Acompanhamento Escolar 1. Resolva as equações abaixo: 3. Resolvas as equações exponenciais abaixo: 4.(ITA) A soma das raízes reais e positivas da equação vale: a)

Leia mais

5,7 0,19.10, então x é

5,7 0,19.10, então x é EQUAÇÕES E FUNÇÕES EXPONENCIAIS ) O valor de que verifica a equação 7 9 é 0,4 0,8,,, ) A solução da equação 7 é ) Se 0, então o valor de é 6) O valor positivo de em 6 é 7) Se,7 0,00 0,9.0, então é ) A

Leia mais

contiver qualquer marca identificadora em um outro local deste caderno. que prejudique a leitura, peça imediatamente ao fiscal que o substitua.

contiver qualquer marca identificadora em um outro local deste caderno. que prejudique a leitura, peça imediatamente ao fiscal que o substitua. 1. Só se identifique na parte inferior desta capa. Sua prova será anulada se contiver qualquer marca identificadora em um outro local deste caderno. 2. Este caderno contém 05 questões. Se estiver incompleto

Leia mais

Lista de exercícios interdisciplinar 03 Aluno (a):

Lista de exercícios interdisciplinar 03 Aluno (a): Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: É fundamental a apresentação de uma lista legível, limpa e organizada. Rasuras podem invalidar a lista. Nas questões que

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Conteúdo: Recuperação do Bimestre Matemática Prof. Leandro Capítulo : Função eponencial: potenciação; função eponencial; gráfico; equações eponenciais; inequações

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 24 FUNÇÃO EXPONENCIAL

MATEMÁTICA - 1 o ANO MÓDULO 24 FUNÇÃO EXPONENCIAL MATEMÁTICA - 1 o ANO MÓDULO 24 FUNÇÃO EXPONENCIAL f() = 2 y 1 2 2 4 0 1-1 ½ -2 ¼ 1 y A função é crescente. f() = (1/2) y 1 ½ 2 ¼ 0 1-1 2-2 4 1 y A função é decrescente. Como pode cair no enem (UFF) A automedicação

Leia mais

UM MEIO OU UMA DESCULPA

UM MEIO OU UMA DESCULPA Nome Nº Ano/Série Ensino Turma 1 o Médio Disciplina Professores Natureza Código/ Tipo Trimestre / Ano Data de Entrega Matemática 1 Tema: Júnior Lista de Exercícios Funções Exponenciais Parte IV 3º / 2012

Leia mais

CÁLCULO I. 1 Crescimento e Decaimento Exponencial

CÁLCULO I. 1 Crescimento e Decaimento Exponencial CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 27: Aplicações da Derivada: Decaimento Radioativo, Crescimento Populacional e Lei de Resfriamento de Newton Objetivos da Aula Aplicar derivada

Leia mais

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição Pré-Cálculo Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Funções crescentes Pré-Cálculo 1 Atividade Pré-Cálculo 2 Dizemos que uma função f : D C é crescente

Leia mais

FUNÇÕES EXPONENCIAIS Leia e descubra que eu não vim do além

FUNÇÕES EXPONENCIAIS Leia e descubra que eu não vim do além FUNÇÕES EXPONENCIAIS Leia e descubra que eu não vim do além Coordenação da Matemática 1 De potência em potência Os primeiros registros de cálculos utilizando potências são encontrados em tabelas babilônicas,

Leia mais

Soluções dos Problemas do Capítulo 3

Soluções dos Problemas do Capítulo 3 48 Temas e Problemas Soluções dos Problemas do Capítulo 3. A cada período de 5 anos, a população da cidade é multiplicada por,0. Logo, em 0 anos, ela é multiplicada por,0 4 =,084. Assim, o crescimento

Leia mais

Equação, inequação e função exponencial

Equação, inequação e função exponencial Equação, inequação e função exponencial 07 abr 01. Resumo 02. Exercícios de Aula 03. Exercícios de Casa 04. Questão Contexto RESUMO A função definida pela lei f(x) = a x, sendo 0

Leia mais

O Decaimento Radioativo (6 aula)

O Decaimento Radioativo (6 aula) O Decaimento Radioativo (6 aula) O decaimento Radioativo Famílias Radioativas Formação do Material Radioativo O Decaimento Radioativo Quando um átomo instável emite partículas a, b, ou radiação g, ele

Leia mais

MATEMÁTICA B. 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. Duração desta prova: TRÊS HORAS. UNIVERSIDADE FEDERAL DE MINAS GERAIS FAÇA LETRA LEGÍVEL.

MATEMÁTICA B. 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. Duração desta prova: TRÊS HORAS. UNIVERSIDADE FEDERAL DE MINAS GERAIS FAÇA LETRA LEGÍVEL. UNIVERSIDADE FEDERAL DE MINAS GERAIS MATEMÁTICA B 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. Leia atentamente as instruções que se seguem. 1 - Este Caderno de Prova contém cinco questões, constituídas de itens,

Leia mais

Funções monótonas. Pré-Cálculo. Funções decrescentes. Funções crescentes. Humberto José Bortolossi. Parte 3. Definição. Definição

Funções monótonas. Pré-Cálculo. Funções decrescentes. Funções crescentes. Humberto José Bortolossi. Parte 3. Definição. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Funções crescentes Funções

Leia mais

Matemática / Função Exponencial / Questões Comentados Direitos Autorais Reservados

Matemática / Função Exponencial / Questões Comentados Direitos Autorais Reservados Matemática / Função Eponencial / Questões Comentados Matemática / Função Eponencial / Questões Comentadas 1 Matemática / Função Eponencial / Questões Comentados Matemática / Função Eponencial / Questões

Leia mais

Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard FUNÇÃO EXPONENCIAL Aulas 01 a 06 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Equação Exponencial... 1 Equação Exponencial... 1 Exemplo 1... 1 Método da redução à base comum...

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

MATEMÁTICA QUESTÕES DE VESTIBULARES Função Modular Função Exponencial Função Logarítmica 3 a SÉRIE ENSINO MÉDIO 2009 Prof.

MATEMÁTICA QUESTÕES DE VESTIBULARES Função Modular Função Exponencial Função Logarítmica 3 a SÉRIE ENSINO MÉDIO 2009 Prof. MATEMÁTICA QUESTÕES DE VESTIBULARES Função Modular Função Eponencial Função Logarítmica a SÉRIE ENSINO MÉDIO 009 Prof. Rogério Rodrigues =======================================================================

Leia mais

FUNÇÕES EXPONENCIAIS

FUNÇÕES EXPONENCIAIS FUNÇÕES EXPONENCIAIS ) Uma possível lei para a função eponencial do gráfico é (a) = 0,7. (b) =. 0,7 (c) = -. 0,7 (d) = -.,7 (e) = - 0,7. ) Os gráficos de = e = - (a) têm dois pontos em comum. (b) são coincidentes.

Leia mais

Equações Exponenciais. 1 ano E.M. Professores Cleber Assis e Tiago Miranda

Equações Exponenciais. 1 ano E.M. Professores Cleber Assis e Tiago Miranda Função Exponencial Equações Exponenciais 1 ano E.M. Professores Cleber Assis e Tiago Miranda Função Exponencial Equações Exponenciais d) R Q. Exercício 8. Quantas raízes reais possui a equação 1 Exercícios

Leia mais

Processo Seletivo Estendido 2016 LISTA FUNÇ~OES - 5

Processo Seletivo Estendido 2016 LISTA FUNÇ~OES - 5 Processo Seletivo Estendido 06 LISTA FUNÇ~OES - 5 Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR Esta lista foi inicialmente elaborada pelo professor Aleandre Trovon UFPR A presente

Leia mais

FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO

FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO FUNÇÃO Introdução ao Cálculo Diferencial I /Mário DEFINIÇÃO Seja D um subconjunto dos reais, não vazio. Definir em D uma função f é eplicitar uma regra que a CADA elemento D associa-se a UM ÚNICO R. Notação

Leia mais

Guia de Atividades para Introduzir Equações Diferenciais Ordinárias usando o Software Powersim

Guia de Atividades para Introduzir Equações Diferenciais Ordinárias usando o Software Powersim Guia de Atividades para Introduzir Equações Diferenciais Ordinárias usando o Software Powersim Nestas atividades temos como objetivo abordar a definição, solução e notação de uma equação diferencial e,

Leia mais

EXPONENCIAL E LOGARITMO

EXPONENCIAL E LOGARITMO EXPONENCIAL E LOGARITMO 1) (ENEM) Suponha que o modelo exponencial y = 363 e 0,03x, em que x = 0 corresponde ao ano 2000, x = 1 corresponde ao ano 2001, e assim sucessivamente, e que y é a população em

Leia mais

Unidade 5 Diferenciação Incremento e taxa média de variação

Unidade 5 Diferenciação Incremento e taxa média de variação Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático

Leia mais

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO.º ANO COMPILAÇÃO TEMA FUNÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA FUNÇÕES 06 07 Matemática A.º Ano Fichas de Trabalho Compilação Tema

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU. Apontamentos Teóricos: Função Exponencial e Função Logarítmica

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU. Apontamentos Teóricos: Função Exponencial e Função Logarítmica INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 007/008 Semestre 1 o Apontamentos Teóricos:

Leia mais

Função Exponencial. 1.Definição 2.Propriedades 3.Imagem 4.Gráfico 5.Equações exponenciais 6.Inequações exponenciais

Função Exponencial. 1.Definição 2.Propriedades 3.Imagem 4.Gráfico 5.Equações exponenciais 6.Inequações exponenciais UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Eponencial Prof.:

Leia mais

( ) Função Exponencial. Função Exponencial. x = 0 f(0) = a 0 = 1. x 1 < x 2 f(x 1 ) > f(x 2 ) x a. 1 a ) Na função exponencial f(x) = a x, temos:

( ) Função Exponencial. Função Exponencial. x = 0 f(0) = a 0 = 1. x 1 < x 2 f(x 1 ) > f(x 2 ) x a. 1 a ) Na função exponencial f(x) = a x, temos: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Eponencial. Propriedades

Leia mais

Guia de Atividades 2

Guia de Atividades 2 Guia de Atividades 2 Atividade A Nesta atividade você trabalhará com a planilha intitulada iodo.sxc, que se encontra no material de apoio do Teleduc. As duas primeiras colunas desta planilha apresentam

Leia mais

1. Matrizes. 1. Dê um exemplo, em cada alínea, de uma matriz A = [a ij ] m n com:

1. Matrizes. 1. Dê um exemplo, em cada alínea, de uma matriz A = [a ij ] m n com: Matemática Licenciatura em Biologia 4 / 5. Matrizes.. Dê um eemplo, em cada alínea, de uma matriz A = [a ij ] m n com: m =, n = cuja soma das entradas principais seja. (b) m = n = 4 com a a e a 4 = a 4.

Leia mais

Mat.Semana 6. Alex Amaral (Rodrigo Molinari)

Mat.Semana 6. Alex Amaral (Rodrigo Molinari) Alex Amaral (Rodrigo Molinari) Semana 6 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 09/03

Leia mais

Matemática Caderno 5

Matemática Caderno 5 FUNÇÃO LOGARÍTMICA: Dado um número real a positivo e diferente de um (a > 0 e a 1), denominados função logarítmica de base a à função f() = log a definida para todo real positivo. D (f) = IR * + Im (f)

Leia mais

LTDA APES PROF. RANILDO LOPES SITE:

LTDA APES PROF. RANILDO LOPES SITE: Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO

Leia mais

PROF. HENRIQUE DE FARIA

PROF. HENRIQUE DE FARIA Função Eponencial - EXTRA ª SÉRIE MATEMÁTICA PROF. HENRIQUE DE FARIA 0. Em cada item a seguir, reconheça se é uma unção eponencial. a) 00 b) 0, 000 c) d) 4 e) ) sen 6 0. (Espce (Aman) 08) As raízes inteiras

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 6 FUNÇÕES CRESCENTES OU DECRESCENTES... 7 SINAL DE UMA

Leia mais

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Equações Eponenciais: FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Chamamos de equações eponenciais toda equação na qual a incógnita aparece em epoente. Para resolver equações eponenciais, devemos realizar

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... 5 GRÁFICO DA FUNÇÃO DO º GRAU... 5 IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 7 FUNÇÕES CRESCENTES OU DECRESCENTES... 7 SINAL DE

Leia mais

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir

Leia mais

Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 e 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 e 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard FUNÇÃO EXPONENCIAL Aulas 01 e 06 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano: 2015 Sumário Equação Exponencial 1 Equação Exponencial 1 Exemplo 1 1 Método da redução à base comum

Leia mais

COLÉGIO APROVAÇÃO LTDA. (21)

COLÉGIO APROVAÇÃO LTDA. (21) COLÉGIO APROVAÇÃO LTDA. ( 635-75 ALUNO/A: DATA: PROFESSOR: Victor Daniel Carvalho TURMA: PRÉ-VESTIBULAR DISCIPLINA: Matemática LISTA DE EXERCÍCIOS 7 (Logaritmos (UEPB A equação x + x + log (m + 3 = 0 não

Leia mais

EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS

EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS - 06. (Unicamp 06) Considere a função f() 5, definida para todo número real. a) Esboce o gráfico de y f() no plano cartesiano para. b) Determine os valores

Leia mais

ENEM 2009 (Questões 136, 137, 138, 139, 147, 148, 149)

ENEM 2009 (Questões 136, 137, 138, 139, 147, 148, 149) (Questões 136, 137, 138, 139, 147, 148, 149) 1. (Questão 136) Dados da Associação Nacional de Empresas de Transportes Urbanos (ANTU) mostram que o número de passageiros transportados mensalmente nas principais

Leia mais

Lista 2 Funções: Definição e exemplos

Lista 2 Funções: Definição e exemplos Lista Funções: Definição e exemplos. Seja f : R R definida por f(x) = x 3. Qual é o elemento do dominio que 5 tem 3 como imagem? 4. É dada uma função real tal que: (a) f(x) f(y) = f(x + y) (b) f() = (c)

Leia mais

FÍSICA MÉDICA. Aula 04 Desintegração Nuclear. Prof. Me. Wangner Barbosa da Costa

FÍSICA MÉDICA. Aula 04 Desintegração Nuclear. Prof. Me. Wangner Barbosa da Costa FÍSICA MÉDICA Aula 04 Desintegração Nuclear Prof. Me. Wangner Barbosa da Costa Desintegração Nuclear Núcleos prótons e nêutrons. Elemento com diferentes nº de nêutrons são chamados de isótopos. Núcleos

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 3: Derivadas Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Derivada

Cálculo I (2015/1) IM UFRJ Lista 3: Derivadas Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Derivada Eercícios de Derivada Eercícios de Fiação Cálculo I (0/) IM UFRJ Lista : Derivadas Prof Milton Lopes e Prof Marco Cabral Versão 7040 Fi : Determine a equação da reta tangente ao gráco de f() no ponto =

Leia mais

Taxas de Variação: Velocidade e Funções Marginais. Taxas de Variação: Velocidade e Funções Marginais

Taxas de Variação: Velocidade e Funções Marginais. Taxas de Variação: Velocidade e Funções Marginais UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taas de Variação:

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 1º Ensino Médio Professor: João Ângelo Matemática Atividades para Estudos Autônomos Data: 4 / 9 / 2018 Aluno(a): Nº: Turma: Caro(a)

Leia mais

Matemática Básica Função polinomial do primeiro grau

Matemática Básica Função polinomial do primeiro grau Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:

Leia mais

ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 1ª Série EM

ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 1ª Série EM ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 1ª Série EM REVISÃO 1) Uma pesquisa mostrou que 33% dos entrevistados lêem o jornal A, 29% lêem o jornal B,

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, com a > 0 e a, chamamos função eponencial de base a a função f de R R que associa a cada real o número a. Podemos escrever, também: f: R R a Eemplos

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Aula nº 2 do plano de trabalho nº 1

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Aula nº 2 do plano de trabalho nº 1 Escola Secundária com º ciclo D. Dinis 1º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II Aula nº do plano de trabalho nº 1 Resolver a atividade 4 da página 11 e os eercícios 15, 16, 17

Leia mais

MATEMÁTICA A - 11o Ano. Propostas de resolução

MATEMÁTICA A - 11o Ano. Propostas de resolução MATEMÁTICA A - o Ano Funções racionais Propostas de resolução Eercícios de eames e testes intermédios. Como o conjunto solução da condição f 0 é o conjunto das abcissas dos pontos do gráfico da função

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 1 a série do Ensino Médio

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 1 a série do Ensino Médio AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática a série do Ensino Médio Turma EM GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimestre de 6 Data / / Escola Aluno A B C D E 4 5 6 7 8 9 A B C

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES FUNÇÃO DEFINIDA POR MAIS DE UMA SENTENÇA... MÓDULO... 6 PROPRIEDADES DO MÓDULO... 6 FUNÇÃO MODULAR... 9 GRÁFICO DA FUNÇÃO MODULAR... 9 EQUAÇÕES MODULARES... 7 INEQUAÇÕES MODULARES... 3 RESPOSTAS... 37

Leia mais

por Carbono 14 Prof. Alexandre Alves Universidade São Judas Tadeu Cálculo Diferencial e Integral 1 - EEN 17 de março de 2009

por Carbono 14 Prof. Alexandre Alves Universidade São Judas Tadeu Cálculo Diferencial e Integral 1 - EEN 17 de março de 2009 Aplicação de Função Exponencial: A Datação por Carbono 14 Prof. Alexandre Alves Universidade São Judas Tadeu Cálculo Diferencial e Integral 1 - EEN 17 de março de 2009 1 Introdução Uma importante técnica

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

UFF- EGM- GMA- Lista1 de Pré-Cálculo (7 páginas) LISTA 1

UFF- EGM- GMA- Lista1 de Pré-Cálculo (7 páginas) LISTA 1 UFF- EGM- GMA- Lista de Pré-Cálculo (7 páginas) 9- LISTA )Resolva, se possível, as equações, indicando em cada passo a propriedade algébrica dos números reais utilizada. i) ( + ) = ii) 5 = iii) + = iv)

Leia mais

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1 Universiae e Brasília Departamento e Matemática Cálculo 1 Mais erivaas Neste teto vamos apresentar mais alguns eemplos importantes e funções eriváveis. Até o momento, temos a seguinte tabela e erivaas:

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

PLANO DE TRABALHO SOBRE FUNÇÃO EXPONENCIAL. Carlos Henrique Andrade de São Pedro 1. Introdução:

PLANO DE TRABALHO SOBRE FUNÇÃO EXPONENCIAL. Carlos Henrique Andrade de São Pedro 1. Introdução: FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: CIEP BRIZOLÃO 175 JOSÉ LINS DO REGO PROFESSOR: CARLOS HENRIQUE ANDRADE DE SÃO PEDRO MATRÍCULA: 09433194 SÉRIE: 1º

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

FUNÇÃO EXPONENCIAL. Chama-se função exponencial de base a, com a Є f: R definida por f(x) =

FUNÇÃO EXPONENCIAL. Chama-se função exponencial de base a, com a Є f: R definida por f(x) = Matemática Matemática Avançada 3 o ano João mar/11 Nome: FUNÇÃO EXPONENCIAL Definição Chama-se função exponencial de base a, com a Є f: R definida por f(x) = - {1}, a função Definições - O gráfico da função

Leia mais

Estatística. Prof Carlos

Estatística. Prof Carlos Estatística Prof Carlos Estatística O que é: É a ciência que coleta, organiza e interpreta dados colhidos entre um grupo aleatório de pessoas. Divisão da estatística: Estatística geral Visa elaborar métodos

Leia mais

MAT Cálculo I - POLI Gabarito da P2 - A

MAT Cálculo I - POLI Gabarito da P2 - A MAT 45 - Cálculo I - POLI - 006 Gabarito da P - A Questão A) Calcule (.0) (a) lim ( cos() ) / (.0) (b) 0 ( ( π ) ) cos + e d (a) Tem-se, ( π/4, π/4) \ {0}: (cos ) / = ep( ln(cos )). Pondo f() =. ln(cos

Leia mais

FUNÇÃO EXPONENCIAL. Definição. - {1}, a função f: R!! Chama-se função exponencial de base a, com a Є!! definida por f(x) =!!

FUNÇÃO EXPONENCIAL. Definição. - {1}, a função f: R!! Chama-se função exponencial de base a, com a Є!! definida por f(x) =!! Matemática Matemática Avançada 3 o ano João mar/1 Nome: FUNÇÃO EXPONENCIAL Definição Chama-se função exponencial de base a, com a Є!! - {1}, a função f: R!! definida por f(x) =!! Definições - O gráfico

Leia mais

MATEMÁTICA A - 12o Ano Funções - Assintotas

MATEMÁTICA A - 12o Ano Funções - Assintotas MATEMÁTICA A - 12o Ano Funções - Assintotas Eercícios de eames e testes intermédios 1. Seja f a função, de domínio R + 0, definida por f() = 2 e 1 Estude a função f quanto à eistência de assintota horizontal,

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01)

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01) Questão 0) Um recipiente com capacidade para 5 litros está completamente cheio de leite puro. Uma pessoa retira 3 litros desse leite e completa o recipiente com 3 litros de água. Em seguida, retira 3 litros

Leia mais

MATEMÁTICA FRENTE 1 ENEM

MATEMÁTICA FRENTE 1 ENEM MATEMÁTICA FRENTE 1 ENEM 1. (Enem 016) Um túnel deve ser lacrado com uma tampa de concreto. A seção transversal do túnel e a tampa de concreto têm contornos de um arco de parábola e mesmas dimensões. Para

Leia mais

Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática APOSTILA 6

Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática APOSTILA 6 Colégio Nossa Senhora de Lourdes Professor: Leonardo Maciel Matemática APOSTILA 6 1. (Enem 2016) Em 2011, um terremoto de magnitude 9,0 na escala Richter causou um devastador tsunami no Japão, provocando

Leia mais

LISTA DE PRÉ-CÁLCULO

LISTA DE PRÉ-CÁLCULO LISTA DE PRÉ-CÁLCULO Instituto de Matemática - UFRJ Prof. Nei Rocha Rio de Janeiro 2018-2 Eercício 1 Resolva: (a) 1 = + 1 (b) 6 3 1 = 3 (1 + 2 2 ) (c) 8 < 3 4 (d) 2 2 + 10 12 < 0 (e) 1 2 + 2 3 4 (f) +

Leia mais

DERIVADAS TABELA DE DERIVADAS FUNÇÃO DERIVADA FUNÇÃO DERIVADA y c, c = constante y 0

DERIVADAS TABELA DE DERIVADAS FUNÇÃO DERIVADA FUNÇÃO DERIVADA y c, c = constante y 0 DERIVADAS TABELA DE DERIVADAS FUNÇÃO DERIVADA FUNÇÃO DERIVADA y c, c = constante 0 y sen cos n y n 1 n y cos sen y = cf y = cf ' y tag sec y f g f g y cot g csc y f. g f. g f. g y sec sec tag f f. g f.

Leia mais

MATEMÁTICA MÓDULO 7 FUNÇÃO EXPONENCIAL 1. DEFINIÇÃO 2. GRÁFICO. como sendo. Sendo a 0, a. a. Tal função é dita

MATEMÁTICA MÓDULO 7 FUNÇÃO EXPONENCIAL 1. DEFINIÇÃO 2. GRÁFICO. como sendo. Sendo a 0, a. a. Tal função é dita FUNÇÃO EXPONENCIAL. DEFINIÇÃO Sendo a 0, a, um número real, definimos a função função eponencial de base a. * f: f como sendo a. Tal função é dita. GRÁFICO (BASE > ) (BASE < ) 3. EQUAÇÕES EXPONENCIAIS

Leia mais

Matemática A Extensivo V. 3

Matemática A Extensivo V. 3 Etensivo V. Eercícios 0) a) S = {, } b) S = c) S = ; 4 d) S = {,,, } e) S = ; a) + = Pela propriedade IX temos: + = ou + = = = = = Para = Para = + = + = = = = (ok) = (ok) S = {, } b) = + Pela propriedade

Leia mais

Lista 1 - Radioatividade

Lista 1 - Radioatividade 1. Para cada um dos radionuclídeos mostrados a seguir, escreva a equação que representa a emissão radioativa. Consulte a tabela periódica. a) b) c) d) e) 222 86 Rn, um alfa emissor presente no ar. 235

Leia mais

CSE-MME Revisão de Métodos Matemáticos para Engenharia

CSE-MME Revisão de Métodos Matemáticos para Engenharia CSE-MME Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES

Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES número de bactérias Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES. Um biólogo, ao estudar uma cultura bacteriológica, contou o número de bactérias num determinado instante ao qual chamou

Leia mais

MAT Cálculo para funções de uma variável II. Revisitando a Função Logaritmo

MAT Cálculo para funções de uma variável II. Revisitando a Função Logaritmo MAT 1352 - Cálculo para funções de uma variável II Profa. Martha Salerno Monteiro IME-USP - Novembro de 2004 Revisitando a Função Logaritmo Considere a curva y = 1 t, t > 0. Para cada x > 1 defina a função

Leia mais

Minicurso de nivelamento de pré-cálculo:

Minicurso de nivelamento de pré-cálculo: Minicurso de nivelamento de pré-cálculo: 07. Quinta-feira Resolva os eercícios abaio, tomando bastante cuidado na maneira de escrever a resolução dos mesmos. Não use a calculadora, a idéia é que você treine

Leia mais

1. (Uerj 2001) Mostre que, em 1 de outubro de 2000, a razão entre os números de eleitores de A e B era maior que 1.

1. (Uerj 2001) Mostre que, em 1 de outubro de 2000, a razão entre os números de eleitores de A e B era maior que 1. 1. (Uerj 2001) Mostre que, em 1 de outubro de 2000, a razão entre os números de eleitores de A e B era maior que 1. TEXTO PARA AS PRÓXIMAS 2 QUESTÕES. (Uerj 2001) Em um município, após uma pesquisa de

Leia mais

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 EMENTA Funções Reais de uma Variável Real Principais Funções Elementares e suas Aplicações Matrizes Livro Teto: Leithold, Louis.

Leia mais

Matemática A Extensivo v. 5

Matemática A Extensivo v. 5 Matemática A Etensivo v. Eercícios ) D f() ( ) f(). Portanto, f() é ímpar. Demonstrar que a função f() é bijetora, isto é, injetora e sobrejetora. Pode ser um tanto "difícil". Para resolução da questão,

Leia mais

Capítulo 2. Funções. 2.1 Funções

Capítulo 2. Funções. 2.1 Funções Capítulo Funções Ao final deste capítulo você deverá: Recordar o conceito de função, domínio e imagem; Enunciar e praticar as operações com funções; Identificar as funções elementares, calcular função

Leia mais

1ª LISTA DE EXERCÍCIOS - FUNÇÕES 2011/1

1ª LISTA DE EXERCÍCIOS - FUNÇÕES 2011/1 1 1. Esboce o gráfico da função y = 1 + 2., determine o domínio, imagem, crescimento ou 2 decrescimento e a assíntota. 2. Esboce o gráfico da função y 2 3.(2) =, determine o domínio, imagem, crescimento

Leia mais

a) Escrever a equação nuclear balanceada que representa a reação que leva à emissão do positrão.

a) Escrever a equação nuclear balanceada que representa a reação que leva à emissão do positrão. A PET permite obter imagens com maiores detalhes, e menor exposição à radiação do que outras técnicas tomográficas. A técnica de PET pode utilizar compostos marcados com 6 C 11. Este isótopo emite um positrão,

Leia mais

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço Universidade Federal de Alagoas Instituto de Ciências e Biológicas e da Saúde BIOB-3 Biomatemática Prof. Marcos Vinícius Carneiro Vital 1. Começando pelos exemplos. - Existem vários exemplos reais de situações

Leia mais

CPV o Cursinho que mais aprova na GV

CPV o Cursinho que mais aprova na GV CPV o Cursinho que mais aprova na GV FGV ADM 4/dezembro/16 MAteMátiCA 1. Estima-se que, em determinado país, o consumo médio por minuto de farinha de trigo seja 4,8 toneladas. Nessas condições, o consumo

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Trigonometria e Números Compleos TPC nº. Seja f = + ln (entregar até 7/0/009).. Determine f ( ), usando a definição

Leia mais

a) log 2 x = 5 b) 3 = log 4 x a) log 5 x c) log 2 (2x + 1) d) log 4 (x 2 16) a) log x 5 10 b) log 2x 1 3 c) log 3x 5 2

a) log 2 x = 5 b) 3 = log 4 x a) log 5 x c) log 2 (2x + 1) d) log 4 (x 2 16) a) log x 5 10 b) log 2x 1 3 c) log 3x 5 2 Lista de Exercícios - 04 Pré Universitário Uni-Anhanguera Aluno (: Nº. Professor: Flávio Série: º ano (Ensino médio) Disciplina: Matemática Data de entrega: 0/06/04 Observação: A lista deverá apresentar

Leia mais

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário

Leia mais

Exemplo 1. Suponhamos que a concentração c(t) (em mg/100 ml) de um certo metabólito em um meio líquido de cultura seja expressa pela equação,

Exemplo 1. Suponhamos que a concentração c(t) (em mg/100 ml) de um certo metabólito em um meio líquido de cultura seja expressa pela equação, Exemplos sobre Variação de Funções Exemplo 1. Suponhamos que a concentração c(t) (em mg/1 ml) de um certo metabólito em um meio líquido de cultura seja expressa pela equação, ( t ) ( ) +, c ( t) = t onde

Leia mais

MATEMÁTICA ELEMENTAR II:

MATEMÁTICA ELEMENTAR II: Marcelo Gorges Olímpio Rudinin Vissoto Leite MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia 009 009 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer

Leia mais

4(u v) 5. u(u 1) v e) u + v. (10000) é igual a. ax b LISTA EXATAMENTE LOGARÍTMOS

4(u v) 5. u(u 1) v e) u + v. (10000) é igual a. ax b LISTA EXATAMENTE LOGARÍTMOS LISTA EXATAMENTE LOGARÍTMOS 1. (Cesgranrio) O valor de log x (x x ) é: a) 3 4. b) 4 3. c) 3. d) 3. e) 4.. (Cesgranrio) Se log 10 (x - ) = 0, então x vale: a). b) 4. c) 3. d) 7/3. e) /. 3. (Fei) Se log

Leia mais

PROFESSOR: ALEXSANDRO DE SOUSA

PROFESSOR: ALEXSANDRO DE SOUSA E.E. Dona Antônia Valadares MATEMÁTICA FUNÇÃO EXPONENCIAL - 1º ANO ESTATÍSTICA PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net As funções eponenciais possuem uma diversidade

Leia mais

9 Integrais e Primitivas.

9 Integrais e Primitivas. Eercícios de Cálculo p. Informática, 006-07 9 Integrais e Primitivas. E 9- Determine a primitiva F da função f que satisfaz a condição indicada, em cada um dos casos seguintes: a) f() = sin, F (π) = 3.

Leia mais

FICHA DE TRABALHO N.º 8 MATEMÁTICA A - 10.º ANO FUNÇÕES REAIS DE VARIÁVEL REAL

FICHA DE TRABALHO N.º 8 MATEMÁTICA A - 10.º ANO FUNÇÕES REAIS DE VARIÁVEL REAL Função Inversa e Função Composta; Generalidades; Monotonia, Etremos e Concavidades FICHA DE TRABALH N.º 8 MATEMÁTICA A - 0.º AN FUNÇÕES REAIS DE VARIÁVEL REAL FUNÇÃ CMPSTA E FUNÇÃ INVERSA; GENERALIDADES;

Leia mais

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Inequações Quociente. Primeiro Ano do Ensino Médio

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Inequações Quociente. Primeiro Ano do Ensino Médio Material Teórico - Inequações Produto e Quociente de Primeiro Grau Inequações Quociente Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 27 de

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Matemática A Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Nesse caso temos {a} como subconjunto de {a, b}, logo a relação correta seria a} {a,

Leia mais