Universidade Fernando Pessoa Departamento de Ciência e Tecnologia. Apontamentos ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Maria Alzira Pimenta Dinis

Tamanho: px
Começar a partir da página:

Download "Universidade Fernando Pessoa Departamento de Ciência e Tecnologia. Apontamentos ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Maria Alzira Pimenta Dinis"

Transcrição

1 Uiversidde Ferdo Pesso Deprteto de Ciêci e ecologi potetos de ÁLGER LINER E GEOMERI NLÍIC Mri lir Piet Diis

2 99

3 Ídice Ídice Pág. Cpítulo I Mtries e Sistes de Equções Lieres. Mtries. dição de Mtries e Multiplicção por u Esclr. Multiplicção de Mtries. rspost. Mtries e Sistes de Equções Lieres. Mtries Esclods. 9 Equivlêci por Lihs e Operções Eleetres co Lihs. Mtries Qudrds. Mtries Iversíveis. Método de Guss-Jord pr Resolução de Sistes de Equções Lieres. Cpítulo II Espços Vectoriis. 7 Proprieddes Eleetres dos Espços Vectoriis. Produto Crtesio. O Espço Vectoril R. Su-espços Vectoriis. Coição Lier de Vectores. Gerdores de u Espço Vectoril. Depedêci e Idepedêci Lieres. se e Diesão. Costrução de U se. Cpítulo III rsforções Lieres. rsforções ou plicções. rsforção Lier. Proprieddes ds rsforções Lieres. Mtri ssocid U rsforção Lier. i

4 Ídice Mtries Seelhtes. Ige e Núcleo de u rsforção Lier. Mudç de se. 7 Cpítulo IV Deterites. Deterite de ª Orde. Deterite de ª Orde. Regr de Crer. Geerlição do Coceito do Deterite. eore de Lplce. Mtri djut. Mtri Ivers. Proprieddes Fudetis dos Deterites. Vlores Próprios e Vectores Próprios. Digolição de U Mtri Qudrd. Cpítulo V Espços Euclidios. Produto Esclr e Espços Vectoriis. Espço Vectoril Euclidio. Módulo de u Vector e Sus Proprieddes. Âgulo de Dois Vectores. 7 Vectores Ortogois e Cojuto Ortogol de Vectores. Cojuto Ortoorl e se Ortoorl. 9 Copoetes dos Vectores e Produto Esclr. 7 Processo de Ortogolição de Gr-Schidt. 7 For Qudrátic e E. 7 For Qudrátic o Plo. 7 Redução d For Qudrátic o Plo à For Cóic. 7 ii

5 Ídice Cpítulo VI Geoetri lític o Plo. Siste de Coordeds o Plo. Idetificção de E co o Plo Euclidio. Equções Prétrics e Crtesi d Rect. Âgulo de Dus Rects. Prleliso Etre Dus Rects. Ortogolidde Etre Dus Rects. Distâci Etre Dois Potos. Distâci Etre U Poto e U Rect. 7 Cóics. Equção Reduid de U Cóic. 9 Clssificção ds Cóics. 9 Cpítulo VII Geoetri lític o Espço. 9 Siste de Coordeds o Espço. 9 Idetificção de E co o Espço Euclidio. 9 Equções Prétrics e Crtesis d Rect. 9 Equções Prétrics e Crtesi doplo. 99 Prleliso Etre Dois Plos. Perpediculridde Etre Dois Plos. Prleliso Etre Rect e Plo. Perpediculridde Etre Rect e Plo. Itersecção de Dois Plos. Distâci Etre Dois Potos. Distâci de U Poto U Rect. Distâci Etre Dus Rects. Distâci de U Poto U Plo. Quádrics. Equção Reduid de U Quádric. Clssificção ds Quádrics. 7 iii

6 Ídice iliogrfi. iv

7 Cpítulo I MRIZES E SISEMS DE EQUÇÕES LINERES

8 Cpítulo I Mtries e Sistes de Equções Lieres Cpítulo I o trlhr co u siste de equções lieres, soete os coeficietes e sus respectivs posições são iporttes. o reduir o siste à for esclod, é essecil ter s equções cuiddosete lihds. ssi, esses coeficietes pode ser eficieteete rrudos u disposição rectgulr chd tri. eos que se dig o cotrário, todos os eleetos ds tries pertece lgu corpo K, ritrário s fio. os eleetos de K chos esclres. Podeos supor, por eeplo, que K é o corpo rel R ou o corpo copleo C. Os eleetos de R ou C são represetdos por vectores lih ou vectores colu, que são csos especiis de tries. Mtries. Sej K u corpo ritrário. U disposição regulr d for ode os ij são esclres e K, é chd tri sore K, ou siplesete tri, se K está iplícito. tri ci é té otd por ( ) ij, i,,, j,,, ou siplesete por ( ) (,, ), (,,, ),, (,,, ), ij. s -upls horiotis são s lihs d tri, e s -upls verticis eleeto,,, são s sus colus. De otr que o ij, chdo eleeto ij ou copoete ij prece i -ési lih e j -ési colu. tri co lihs e colus é chd u tri do tipo por, ( ) ; o pr de úeros ( ), é chdo o tho ou for. Prof. lir Diis

9 Cpítulo I Mtries e Sistes de Equções Lieres Eeplo tri (,, ) e (,, ). s colus são, e. é u tri por. s sus lihs são s tries represet-se orlete por ísculs,, e os eleetos do corpo K por iúsculs,,. Dus tries e são iguis, es for e se os eleetos correspodetes são iguis., se tê Eeplo iguldde w w é equivlete o seguite siste de equções:. solução do siste é,, e w. w w U tri co u lih é té chd u vector lih, e co u colu, u vector colu. U eleeto o corpo K pode ser cosiderdo coo u tri por. dição de Mtries e Multiplicção por u Esclr. Sej e dus tries co o eso tipo, isto é, o eso úero de lihs e colus, digos, tries : e. so de e,, é tri otid diciodo Prof. lir Diis

10 Cpítulo I Mtries e Sistes de Equções Lieres Prof. lir Diis os teros correspodetes:. O produto de u esclr k pel tri, k, ou siplesete k, é tri otid ultiplicdo cd eleeto de por k : k k k k k k k k k k. Oserv-se que e k são té tries. é se defie e ( ). so de tries co tipos diferetes ão é defiid. Eeplo Sej e 7. Etão, 7, ( ) ( ) 9, Eeplo tri cujos eleetos são todos ero, é chd tri ul, sedo represetd por. É seelhte o esclr o setido de que pr qulquer tri ( ) ij do tipo, ( ) ( ) ij ij. s proprieddes ásics ds operções de dição e ultiplicção por u esclr são s seguites:

11 Cpítulo I Mtries e Sistes de Equções Lieres eore Sej V o cojuto de tods s tries sore u corpo K. Etão, pr quisquer tries,, C V e quisquer esclres k, k K, (i) ( ) C ( C) (ii) (iii) ( ) (iv) (v) k ( ) k k (vi) ( k k ) k k (vii) ( k ) k ( ) (viii) k Usdo (vi) e (viii), té se te que k e,, Multiplicção de Mtries. O produto ds tries e,, é u pouco is coplicdo. Vejos o seguite: (i) Sej ( ) e ( ) i pertecetes i R, represetdo por u vector (ii) lih e por u vector colu. Etão o produto itero pode ser ecotrdo coido s tries coo se segue: (,,, ) defiido tri produto de u vector lih por u vector colu. Cosidereos s equções. O siste é equivlete à equção tricil ou siplesete X X X ode e são Prof. lir Diis

12 Cpítulo I Mtries e Sistes de Equções Lieres (iii) s lihs de. De otr que o produto de u tri por u vector colu produ outro vector colu. Cosidereos gor s equções que já seos poder represetr por ( ), ( ) ij i Y e ( ) equções de (iii), te-se: i ou siplesete Y Z, ode Z. Sustituido os vlores de e de (ii) s ( ) ( ) ( ) ( ) teros, ou, regrupdo os ( ) ( ) ( ) ( ) ( ) ( ). Por outro ldo, usdo equção tricil X Y e sustituido Y e Y Z, oté-se X Z, que represetrá o siste otido se defiiros o produto de e coo se segue: ode e são s lihs de e, e são s colus de. O pricipl requisito é que o úero de colus de sej igul o úero de lihs de. Defiição Supohos que ( ) e ( ) ij são tries tis que o úero de colus de é igul o úero de lihs de, é u tri ij p e u tri p. Etão o produto é u tri cujo eleeto ij é otido ultiplicdo i -ési lih i pel j -ési colu j de : Prof. lir Diis

13 Cpítulo I Mtries e Sistes de Equções Lieres Prof. lir Diis 7 p pj p j p ip i p ij c c c c c ode p k kj ik pj ip j i ij i ij c. cetue-se que se é u tri p e u tri q, ode q p, o produto ão é defiido. Eeplo - u t u t u t s r s r s r u t s r. Eeplo - e. Este eeplo ostr que ultiplicção de tries ão é couttiv, isto é, os produtos e ão são ecessriete iguis. ultiplicção de tries stisf s seguites proprieddes: eore (i) ( ) ( ) C C, (lei ssocitiv) (ii) ( ) C C, (lei distriutiv à esquerd) (iii) ( ) C C, (lei distriutiv à direit) (iv) ( ) ( ) ( ) k k k, ode k é u esclr Oserve-se que e, ode é tri ul.

14 Cpítulo I Mtries e Sistes de Equções Lieres Prof. lir Diis rspost. trspost de u tri,, é tri otid escrevedo s lihs de, ordedete coo colus:. Oserve-se que, se é u tri, etão é. Eeplo -. operção trsposição de tries stisf s proprieddes seguites: eore - (i) ( ) (ii) ( ) (iii) ( ) k k, ode k é u esclr (iv) ( ) Mtries e Sistes de Equções Lieres. O siste de equções lieres é equivlete à equção tricil ou siplesete X, ode ( ) ij, ( ) i X e ( ) i. O siste hoogéeo ssocido é equivlete X. tri é chd tri dos coeficietes do siste, e tri

15 Cpítulo I Mtries e Sistes de Equções Lieres Prof. lir Diis 9 seguite é chd tri coplet ou tri uetd do siste. tri uetd perite deterir copletete o siste. Eeplo tri dos coeficietes e tri uetd do siste 7 são s seguites tries, e 7, sedo o siste equivlete à equção tricil 7. Mtries Esclods. U tri ( ) ij é u tri esclod, ou di-se que está for esclod, se o úero de eros precededo o prieiro eleeto ão ulo de u lih uet lih por lih té que sore soete lihs uls, isto é, se eiste eleetos ão ulos r rj j j,,,, ode r j j j < < < co propriedde ij pr r i, i j j, e pr r i >. Ch-se r j rj,, os eleetos distitos d tri. Eeplo Ns tries esclods seguites, os eleetos distitos for circuddos: 7,,. U tri esclod é chd tri esclod reduid por lihs. Se os eleetos distitos são: (i) os úicos eleetos ão ulos s sus respectivs colus. (ii) iguis.

16 Cpítulo I Mtries e Sistes de Equções Lieres Prof. lir Diis terceir tri do eeplo terior é u eeplo de u tri esclod reduid por lihs, s outrs ão. tri ero,, é sepre u tri esclod reduid por lihs. Equivlêci por Lihs e Operções Eleetres co Lihs. Di-se que u tri é equivlete por lihs u tri se pode ser otid de por u sequêci fiit ds seguites operções chds operções eleetres co lihs: [E] roc ds ési i e j -ési lihs etre si: j i R R ; [E] Multiplicção d i -ési lih por u esclr k ão ulo: j i kr R, k ; [E] Sustituição d i -ési lih por k vees j -ési lih is i -ési lih: i j i k R R R. Eeplo tri seguite é reduid por lihs à for esclod plicdo s operções: pr pr. Pr ulr o, ultiplicou-se prieir lih por e soou-se co ª. Fe-se o eso pr ª, s gor ultiplicou-se ª por. Pr ulr o ultiplicou-se ª lih por diciodo à ª, ultiplicd por. Eeplo N tri seguite for plicds s operções: 7, ssi otedo-se for cóic por lihs de.

17 Cpítulo I Mtries e Sistes de Equções Lieres Mtries Qudrds. U tri co o eso úero de lihs e colus é chd tri qudrd. Di-se que u tri qudrd co lihs e colus é de orde. digol - ou digol pricipl d tri qudrd de orde ( ) ij cosiste os eleetos,,,. Eeplo tri seguite é qudrd de orde : 7. Os eleetos d 9 digol pricipl são,, 9. U tri trigulr superior ou siplesete u tri trigulr é u tri qudrd cujos eleetos io d digol pricipl são todos ulos: ou. Seelhteete, u tri trigulr iferior é u tri qudrd cujos eleetos ci d digol pricipl são todos ulos. U tri digol é u tri qudrd cujos eleetos ão digois são todos ulos: E prticulr, tri qudrd ou. co s digol e s o restte, represetd por I, ou siplesete por I, é chd tri uidde ou idetidde; por eeplo I. tri I é seelhte o esclr, o setido de que, pr qulquer tri qudrd, de orde, tri k I, pr u esclr k K I I., é chd tri esclr; é u tri digol Prof. lir Diis

18 Cpítulo I Mtries e Sistes de Equções Lieres Prof. lir Diis cujos eleetos digois são iguis k. U tri siétric é do tipo. Mtries Iversíveis. Di-se que u tri qudrd é iversível se eiste u tri co propriedde I ode I é tri idetidde. l tri é úic; porque s igulddes I e I iplic que I ( ) ( ) I. Ch-se tl tri ivers de e ot-se. Se é ivers de, té é ivers de. Eeplo -. ssi, e são iversíveis e são iverss u d outr, stdo verificr pes u dos produtos. Eeplo -. O cálculo d ivers pode ser feito de dus fors is cous. prieir cosiste e justpor à tri dos coeficietes tri idetidde ou uidde, por for oter prieiro tri idetidde e seguir tri ivers. Isto é, ( ) ( ) I I trvés ds operções oris.

19 Cpítulo I Mtries e Sistes de Equções Lieres Prof. lir Diis Eeplo -. Etão ssi, O outro odo de clculr ivers du tri copreede vários pssos. Prieiro clcul-se trspost d tri. E seguid for-se tri dos cofctores d tri. U cofctor clcul-se escolhedo u eleeto de u tri e ultiplicdo, elevdo o úero d lih is o úero d colu do eleeto escolhido, pelo deterite que result sutrido lih e colu e que esse eleeto se isere. Oté-se ssi tri djut de. De seguid ultiplic-se det pel dj, otedo-se.

20 Cpítulo I Mtries e Sistes de Equções Lieres Eeplo -, C,, ( ) ( ) C, C, C, C, C, C, C 7, C. dj, det e portto 7 dj Not O deterite ( ) pricipl pelo siétrico d outr digol., ultiplicdo digol O étodo que vios este últio eeplo será elhor copreedido qudo estudros os deterites. Método de Guss-Jord pr Resolução de Sistes de Equções Lieres. resolução de sistes de equções lieres é u prole cetrl e Álger Lier. O étodo de eliição de Guss é u étodo de resolução siples que plic o étodo de sustituição prte fil. Vejos u eeplo: Eeplo Cosidere-se o siste. Pretede-se plicr o étodo de eliição de Guss pr oter os vlores ds icógits, e. Coeç-se por sutrir últiplos d prieir equção às resttes por for eliir icógit desss equções. Pr isso ultiplic-se prieir equção por e sutri-se o resultdo à segud, e ultiplic-se prieir equção por e Prof. lir Diis

21 Cpítulo I Mtries e Sistes de Equções Lieres sutri-se o resultdo à terceir:. Ch-se pivot deste prieiro psso de eliição o coeficiete d icógit prieir equção. No segudo psso de eliição sutri-se à terceir equção u últiplo d segud de for eliir icógit d terceir equção. Pr isso ultiplic-se segud equção por e sutri-se o resultdo à terceir. O pivot este segudo psso de eliição é o coeficiete d icógit segud equção:. edo coseguido eliir tudo o que está pr io d digol pricipl, teri qui o processo de eliição. O étodo prossegue co resolução do siste d últi pr prieir equção sustituido os vlores etretto deteridos:. É fácil ver coo se pode tetr plicr o étodo outros sistes de equções lieres icógits. Prieiro elii-se prieir icógit de tods s equções ecepto d prieir, uldo todos os coeficietes deio do prieiro pivot. Depois ul-se os coeficietes por io do segudo pivot de for eliir segud icógit de tods s equções ecepto ds dus prieirs. Procede-se logete e pssos seguites todo-se pr pivot d equção k o coeficiete que ultiplic icógit k, té chegr à últi equção, ltur e que o processo de eliição teri. Iici-se etão deterição dos vlores ds icógits, por sustituição. É clro que tudo se tor is fácil se usros tries:, e que últi colu represet os teros idepedetes. Se e ve do étodo de eliição de Guss quiseros usr o étodo de eliição de Guss-Jord o processo é seelhte o terior s pretede-se ulr té Prof. lir Diis

22 Cpítulo I Mtries e Sistes de Equções Lieres Prof. lir Diis o que se ecotr ci d digol pricipl, reduido tri do siste à tri uidde e sedo deterição ds icógits iedit. Eeplo Guss-Jord:,,. Eiste u terceiro étodo, o étodo de sustituição, que é u o étodo pr sistes de dus equções dus icógits ou três equções três icógits s coplic-se pr sistes de ior diesão. Cosiste e oter u icógit e fução ds resttes e ir sustituido. Eeplo - ( ). Por vees, é coselhável trocr s lihs, e qulquer dos étodos ci pr siplificr os cálculos.

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares LGUMS CONSIDERÇÕES TEORICS. Siste de equções Lieres De fo gerl, podeos dier que u siste de equções lieres ou siste lier é u cojuto coposto por dus ou is equções lieres. U siste lier pode ser represetdo

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTS E U Geoetri lític e Álger ier Cpítulo - Prte Professor: ui Ferdo Nues Geoetri lític e Álger ier ii Ídice Sistes de Equções ieres efiições Geris Iterpretção Geoétric de Sistes de Equções Iterpretção

Leia mais

Módulo 01. Matrizes. [Poole 134 a 178]

Módulo 01. Matrizes. [Poole 134 a 178] ódulo Note em, leitur destes potmetos ão dispes de modo lgum leitur tet d iliogrfi pricipl d cdeir hm-se à teção pr importâci do trlho pessol relizr pelo luo resolvedo os prolems presetdos iliogrfi, sem

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

; determine a matriz inversa A -1

; determine a matriz inversa A -1 - REVISÃO MATEMÁTICA Neste cpítulo recordrão-se lgus coceitos de Álger Lier e Aálise Mtemátic que serão ecessários pr o estudo d teori do Método Simple - Mtrizes Iversíveis Defiição Um mtriz A de ordem

Leia mais

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet SISTEMAS LINEARES Cristieguedes.pro.r/cefet Itrodução Notção B A X Mtricil Form. : m m m m m m m A es Mtri dos Coeficiet : X Mtri dsvriáveis : m B Termos Idepede tes : Número de soluções Ddo um sistem

Leia mais

a é dita potência do número real a e representa a

a é dita potência do número real a e representa a IFSC / Mteátic Básic Prof. Júlio Césr TOMIO POTENCIAÇÃO [ou Expoecição] # Potêci co Expoete Nturl: Defiição: Ddo u úero iteiro positivo, expressão ultiplicção do úero rel e questão vezes. é dit potêci

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTS E U Geometri lític e Álger ier Sistems de Equções ieres Professor: ui Ferdo Nues, r Geometri lític e Álger ier ii Ídice Sistems de Equções ieres efiições Geris Iterpretção Geométric de Sistems de

Leia mais

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO A potecição idic ultiplicções de ftores iguis. Por eeplo, o produto... pode ser idicdo for. Assi, o síolo, sedo u úero iteiro e u úero turl ior que, sigific o produto

Leia mais

Revisão de Álgebra Matricial

Revisão de Álgebra Matricial evisão de Álgebr Mtricil Prof. Ptrici Mri ortolo Fote: OLDINI, C. e WETZLE, F.; Álgebr Lier. ª. ed. São Pulo. Editor Hrbr, 986 Álgebr Mtricil D Mtemátic do º. Gru: y ( y ( De( : y Em ( : ( Em ( : y y 8

Leia mais

4 SISTEMAS DE EQUAÇÕES LINEARES. 4.1 Equação Linear

4 SISTEMAS DE EQUAÇÕES LINEARES. 4.1 Equação Linear SISTEMAS DE EQUAÇÕES INEARES. Eqção ier U eqção do tipo = qe epress vriável e fção d vriável e d costte, é chd eqção lier. A plvr lier é tilid tedo e vist qe o gráfico dess eqção é lih ret. D es for, eqção

Leia mais

UNIDADE 12 FUNÇÕES POLINOMIAIS

UNIDADE 12 FUNÇÕES POLINOMIAIS REVISÃO DA TEORIA MA UNIDADE 2 FUNÇÕES POLINOMIAIS Fuções Polioiis vs Poliôios Diz-se que p: IRIR é u fução polioil qudo eiste úeros 0,,..., tis que, pr todo R, te-se p() = + +... + + 0 Se 0, dizeos que

Leia mais

Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo:

Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo: I MTRIZES Elemeos de Álgebr Lier - MTRIZES Prof Emíli / Edmé Defiição: Sem dois úmeros ieiros Um mriz rel é um bel de úmeros reis com m lihs e colus, disribuídos como bixo: ( ) i m m m m Cd elemeo d mriz

Leia mais

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES - SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES.- Métodos etos pr solução de sistems lieres Métodos pr solução de sistems de equções lieres são divididos priciplmete em dois grupos: ) Métodos Etos:

Leia mais

Integrais Duplos. Definição de integral duplo

Integrais Duplos. Definição de integral duplo Itegris uplos Recorde-se defiição de itegrl de Riem em : Um fução f :,, limitd em,, é itegrável à Riem em, se eiste e é fiito lim m j 0 j1 ft j j j1. ode P 0,, um qulquer prtição de, e t 1,,t um sequêci

Leia mais

SISTEMA DE EQUAÇÕES LINEARES

SISTEMA DE EQUAÇÕES LINEARES SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é

Leia mais

3 SISTEMAS DE EQUAÇÕES LINEARES

3 SISTEMAS DE EQUAÇÕES LINEARES . Itrodução SISTEAS DE EQUAÇÕES INEARES A solução de sistems lieres é um ferrmet mtemátic muito importte egehri. Normlmete os prolems ão-lieres são soluciodos por ferrmets lieres. As fotes mis comus de

Leia mais

CODIFICAÇÃO DE CANAL PARA SISTEMAS DE COMUNICAÇÃO DIGITAL

CODIFICAÇÃO DE CANAL PARA SISTEMAS DE COMUNICAÇÃO DIGITAL Grupo (Group), G CODIFICAÇÃO DE CANAL PARA SISTEMAS DE COMUNICAÇÃO DIGITAL INTRODUÇÃO À ÁLGEBRA Evelio M. G. Ferádez - 2011 Sistem lgébrico com um operção e seu iverso. cojuto de elemetos e xioms G1 à

Leia mais

Cálculo I 3ª Lista de Exercícios Limites

Cálculo I 3ª Lista de Exercícios Limites Cálculo I ª List de Eercícios Liites Clcule os liites: 9 / /8 Resp.: 6 li li li li li li e d c e d c Clcule os liites io: Clcule: 8 6 li 8 li e d li li c li li / /.: Resp e d c Resp.: li li li li li li

Leia mais

No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou.

No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou. MAT Cálculo Diferecil e Itegrl I RESUMO DA AULA TEÓRICA 3 Livro do Stewrt: Seções.5 e.6. FUNÇÃO EXPONENCIAL: DEFINIÇÃO No ue segue, presetos u defiição forl pr epoecição uisuer R e., pr 2 3 Se, por defiição

Leia mais

Olimpíada Brasileira de Matemática X semana olímpica 21 a 28 de janeiro de Eduardo Poço. Integrais discretas Níveis III e U

Olimpíada Brasileira de Matemática X semana olímpica 21 a 28 de janeiro de Eduardo Poço. Integrais discretas Níveis III e U Olipíd Brsileir de Mteátic X se olípic 8 de jeiro de 007 Edurdo Poço Itegris discrets Níveis III e U Itegrl discret: dizeos que F é itegrl discret de F F f f se e soete se:, pr iteiro pricípio D es for,

Leia mais

MATRIZES. Exemplo: A tabela abaixo descreve as safras de milho, trigo, soja, arroz e feijão, em toneladas, durante os anos de 1991, 1992, 1993 e 1994.

MATRIZES. Exemplo: A tabela abaixo descreve as safras de milho, trigo, soja, arroz e feijão, em toneladas, durante os anos de 1991, 1992, 1993 e 1994. Professor Muricio Lut MTRIZES INTRODUÇÃO Qudo um prolem evolve um grde úmero de ddos (costtes ou vriáveis), disposição destes um tel retgulr de dupl etrd propici um visão mis glol do mesmo s tels ssim

Leia mais

Sistemas de Equações Lineares Métodos Directos. Computação 2º Semestre 2016/2017

Sistemas de Equações Lineares Métodos Directos. Computação 2º Semestre 2016/2017 Sistems de Equções Lieres Métodos Directos Computção º Semestre 06/07 Sistems de Equções Muitos pricípios fudmetis em problems de ciêci e egehri podem ser epressos em termos de equções: vriável depedete

Leia mais

PROPRIEDADE E EXERCICIOS RESOLVIDOS.

PROPRIEDADE E EXERCICIOS RESOLVIDOS. PROPRIEDADE E EXERCICIOS RESOLVIDOS. Proprieddes:. Epoete Igul u(. Cosiderdo d coo se osse qulquer uero ou o d u letr que pode tor qulquer vlor. d d d e: d 9 9 9. Epoete Mior que U(. De u or gerl te-se:...

Leia mais

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares;

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares; Álger Lier Mtrizes e vetores Sistems lieres Espços vetoriis Bse e dimesão Trsformções lieres Mtriz de um trsformção lier Aplicções d Álger Lier: Redes elétrics Circuitos que cotém resistêcis e gerdores

Leia mais

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um).

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um). FUNÇÃO EXPONENCIAL - Iicilmete, pr estudr fução epoecil e, coseqüetemete, s equções epoeciis, devemos rever os coceitos sore Potecição. - POTENCIAÇÃO Oserve o produto io.... = 6 Este produto pode ser revido

Leia mais

Matrizes 2. Notação de uma matriz 2 Matriz Quadrada 2 Matriz Diagonal 2 Matriz linha 2 Matriz coluna 2 Matrizes iguais 2. Matriz Transposta 3

Matrizes 2. Notação de uma matriz 2 Matriz Quadrada 2 Matriz Diagonal 2 Matriz linha 2 Matriz coluna 2 Matrizes iguais 2. Matriz Transposta 3 //, :: Mrizes Defiição Noção de u riz Mriz Qudrd Mriz Digol Mriz lih Mriz colu Mrizes iguis Eercício Mriz Trspos Proprieddes d riz rspos Mriz Opos Mriz Nul Mriz ideidde ou Mriz uidde dição de Mrizes Eercício

Leia mais

Sexta Feira. Cálculo Diferencial e Integral A

Sexta Feira. Cálculo Diferencial e Integral A Set Feir Cálculo Diferecil e Itegrl A // Fuções Reis iite de Fuções Código: EXA7 A Tur: EEAN MECAN Prof. HANS-URICH PICHOWSKI Prof. Hs-Ulrich Pilchowski Nots de ul Cálculo Diferecil iites de Fuções Sej

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros Uiversidde Federl Flumiese ICE Volt Redod Métodos Qutittivos Aplicdos I Professor: Mri Sequeiros. Poliômios Defiição: Um poliômio ou fução poliomil P, vriável, é tod epressão do tipo: P)=... 0, ode IN,

Leia mais

5 - VETORES. Usamos a notação de matriz-coluna v. ou a identificação v = (x, y, z), para

5 - VETORES. Usamos a notação de matriz-coluna v. ou a identificação v = (x, y, z), para 5 - VETORES 5.- Crcterizção U etor pode ser etedido coo estrtr de ddos ford por cojto de lores o otros eleetos de eso tipo o es estrtr. Sibolicete, deotos etores por letrs iúscls e egrito (por eeplo,,

Leia mais

2. POTÊNCIAS E RAÍZES

2. POTÊNCIAS E RAÍZES 2 2. POTÊNCIAS E RAÍZES 2.. POTÊNCIAS COM EXPOENTES INTEIROS Vios teriorete lgus sectos históricos ds otêcis e dos logritos, e coo lgus rocessos ue levr à costrução dos esos. Pssreos seguir u desevolvieto

Leia mais

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h QUESTÃO Sejm i, r + si e + (r s) + (r + s)i ( > ) termos de um seqüêci. etermie, em fução de, os vlores de r e s que torm est seqüêci um progressão ritmétic, sbedo que r e s são úmeros reis e i. Sbemos

Leia mais

Matrizes - revisão. No caso da multiplicação ser possível, é associativa e distributiva Não é, em geral, comutativa 2013/03/12 MN 1

Matrizes - revisão. No caso da multiplicação ser possível, é associativa e distributiva Não é, em geral, comutativa 2013/03/12 MN 1 Mtrizes - revisão No cso d multiplicção ser possível, é ssocitiv e distributiv A ( BC) ( AB) C A( B C) AB AC Não é, em gerl, comuttiv AB BA 03/03/ MN Mtrizes - revisão A divisão de mtrizes ão é um operção

Leia mais

MATLAB - Trabalho Prático 4

MATLAB - Trabalho Prático 4 U N I V E R S I D A D E D A B E I R A I N T E R I O R Deprtmeto de Egehri Electromecâic CONTROLO DE SISTEMAS (Lortório) MATLAB - Trlho Prático Todos os eercícios devem ser escritos um script.m. Deverão

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 SISTEMAS LINEARES

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 SISTEMAS LINEARES INTRODUÇÃO... EQUAÇÕES LINEARES... SOLUÇÕES DE UMA EQUAÇÃO LINEAR... MATRIZES DE UM SISTEMA... SOLUÇÃO DE UM SISTEMA LINEAR... SISTEMAS ESCALONADOS... RESOLUÇÃO DE SISTEMA ESCALONADO... SISTEMAS EQUIVALENTES...

Leia mais

Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra

Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI- Mteátic Coputciol Crlos Alberto Aloso Sches Juli de Melo Bezerr CCI- Rízes de Sistes ieres Eliição de Guss Guss-Jord Decoposição U Guss-Jcobi Guss-Seidel CCI- Itrodução Métodos diretos Regr de Crer

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOS DE U Geometri líti e Álger ier Mtrizes e Determites Professor: uiz Ferdo Nues, Dr 8/Sem_ Geometri líti e Álger ier ii Ídie Mtrizes e Determites Mtrizes Determites e Mtriz Ivers 8 Referêis iliográfis

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

Métodos Matemáticos Aplicados a Processos Químicos e Bioquímicos. Capítulo IV : Funções Ortogonais e Séries de Fourier

Métodos Matemáticos Aplicados a Processos Químicos e Bioquímicos. Capítulo IV : Funções Ortogonais e Séries de Fourier J.. de Medeiros & Oféli Q.F. Arújo DISCIPINA Métodos Mteáticos Aplicdos Processos Quíicos e Bioquíicos Cpítulo IV : Fuções Ortogois e Séries de Fourier José uiz de Medeiros e Oféli Q.F. Arújo Egehri Quíic

Leia mais

10.2 Séries e Integrais de Fourier

10.2 Séries e Integrais de Fourier . Séries e Itegris de Fourier Vereos coo resolver uitos probles iporttes evolvedo equções diereciis prciis, desde que poss epressr u ução dd coo u séries iiit de seos e ou cosseos. A prtir dqui vos eplicr

Leia mais

Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais.

Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais. Trsformd A TFTD de um sequêci é: Pr covergir série deve ser solutmete somável. Ifelimete muitos siis ão podem ser trtdos: A trsformd é um geerlição d TFTD que permite o trtmeto desses siis: Ζ Defiição:

Leia mais

Curso de linguagem matemática Professor Renato Tião. 1. Resolver as seguintes equações algébricas: GV. Simplifique a expressão 2 GV.

Curso de linguagem matemática Professor Renato Tião. 1. Resolver as seguintes equações algébricas: GV. Simplifique a expressão 2 GV. Curso de liguge teátic Professor Reto Tião. Resolver s seguites equções lgébrics: ) x + = b) x = c) x = d) x = e) x = f) x = g) x = ) x = i) x = j) = k) logx = l) logx= x GV. GV. Siplifique expressão 8

Leia mais

Limites. Consideremos a função f(x)=2x+1 e vamos analisar o seu comportamento quando a variável x se aproxima cada vez mais de 1.

Limites. Consideremos a função f(x)=2x+1 e vamos analisar o seu comportamento quando a variável x se aproxima cada vez mais de 1. Liites Noção ituitiv Cosidereos fução f() e vos lisr o u coporteto qudo vriável proi cd vez is de. o ) tede, ssuido vlores iferiores.,6,7,8,9,9,99,999,9999 f(),,,6,8,9,98,998,9998 ) tede, ssuido vlores

Leia mais

Análise Numérica (3) Sistemas de equações lineares V1.0, Victor Lobo, 2004

Análise Numérica (3) Sistemas de equações lineares V1.0, Victor Lobo, 2004 Aálise Numéric (3) Sistems de equções lieres V.0, Victor Lobo, 004 Sistems de fiições Equção Lier Form mtricil: A X=B Sistem de equções icógits + +... + + +... +... + +... + Form mtricil: AX=B Utilidde

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes Uiversidde Federl de Pelos Veores e Álgebr Lier Prof : Msc. Merhy Heli Rodrigues Mrizes. Mrizes. Defiição: Mriz m x é um bel de m. úmeros reis disposos em m lihs (fils horizois) e colus (fils vericis)..

Leia mais

Levantamento de Dados. Escolha do Método Numérico Adequado

Levantamento de Dados. Escolha do Método Numérico Adequado UNIDADE I. Itrodução Estudreos este curso étodos uéricos pr resolução de proles que surge s diverss áres. A resolução de tis proles evolve váris fses que pode ser ssi estruturds: Prole Rel evteto de Ddos

Leia mais

Sexta Feira. Cálculo Diferencial

Sexta Feira. Cálculo Diferencial Set Feir Cálculo Diferecil // Itrodução Ojetivos, Método de Avlição, Plejeto e revisão de teátic Código: EXA A Turs: ELEAN, MECAN Prof HANS-ULRICH PILCHOWSKI Prof Hs-Ulrich Pilchowski Nots de ul Cálculo

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão4 Nome: Nº Turm: Professor: José Tioco /4/8 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

Matrizes e Vectores. Conceitos

Matrizes e Vectores. Conceitos Mtrizes e Vectores Coceitos Mtriz, Vector, Colu, Lih. Mtriz rigulr Iferior; Mtriz rigulr Superior; Mtriz Digol. Operções etre Mtrizes. Crcterístic de um mtriz; Crcterístic máxim de um mtriz. Mtriz Ivertível,

Leia mais

Teoria de Quadripolos. Teoria de Quadripolos. Teoria de Quadripolos. Teoria de Quadripolos Classificação dos quadripolos

Teoria de Quadripolos. Teoria de Quadripolos. Teoria de Quadripolos. Teoria de Quadripolos Classificação dos quadripolos -07-04 Qudriolo é u circuito eléctrico co dois teriis de etrd e dois teriis de síd. Neste disositivo são deterids s corretes e tesões os teriis de etrd e síd e ão o iterior do eso. Clssificção dos udriolos

Leia mais

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL Itrodução Biômio de Newto: O iômio de Newto desevolvido elo célere Isc Newto serve r o cálculo de um úmero iomil do tio ( ) Se for, fic simles é es decorr que ()²

Leia mais

PROPRIEDADES DAS POTÊNCIAS

PROPRIEDADES DAS POTÊNCIAS EXPONENCIAIS REVISÃO DE POTÊNCIAS Represetos por, potêci de bse rel e epoete iteiro. Defiios potêci os csos bio: 0) Gráfico d fução f( ) 0 Crescete I ]0, [.....,, ftores 0, se 0 PROPRIEDADES DAS POTÊNCIAS

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

MÓDULO II POTENCIAÇÃO RADICIAÇÃO

MÓDULO II POTENCIAÇÃO RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO O ódulo II é oposto por eeríios evolvedo poteição e rdiição Estos dividido-o e dus prtes pr elhor opreesão ª PARTE: POTENCIAÇÃO DEFINIÇÃO

Leia mais

Vale ressaltar que um programa foi desenvolvido em MatLab para solucionar os sistemas de equações propostos.

Vale ressaltar que um programa foi desenvolvido em MatLab para solucionar os sistemas de equações propostos. MSc Alexdre Estácio Féo Associção Educciol Dom Bosco - Fculdde de Egehri de Resede Cix Postl: 8.698/87 - CEP: 75-97 - Resede - RJ Brsil Professor e Doutordo de Egehri efeo@uifei.edu.br Resumo: Neste trblho

Leia mais

POTENCIAÇÃO RADICIAÇÃO

POTENCIAÇÃO RADICIAÇÃO POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO E RADICIAÇÃO O ódulo II é oposto por eeríios evolvedo poteição e rdiição. Estos dividido-o e dus prtes pr elhor opreesão. ª PARTE: POTENCIAÇÃO. DEFINIÇÃO DE POTENCIAÇÃO

Leia mais

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto n fatores

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto n fatores POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO DEFINIÇÃO DE POTENCIAÇÃO A poteição idi ultiplições de ftores iguis Por eeplo, o produto pode ser idido for Assi, o síolo de ftores iguis : - é se; - é o epoete; -

Leia mais

AULA 10 CONDUÇÃO DE CALOR EM REGIME PERMANENTE BIDIMENSIONAL

AULA 10 CONDUÇÃO DE CALOR EM REGIME PERMANENTE BIDIMENSIONAL Nots de ul de PME 336 Processos de Trsferêci de lor 73 AUA 0 ONDUÇÃO DE AOR EM REGIME PERMANENTE BIDIMENSIONA odução Bidiesiol Até presete ul, todos os csos estuddos referi-se à codução de clor uidiesiol

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

a) N g)... Q c) 4... Z d) e) ... I... Z ... Q h)... N i) N

a) N g)... Q c) 4... Z d) e) ... I... Z ... Q h)... N i) N CONJUNTOS NUMÉRICOS NÚMEROS NATURAIS(N) N = { 0,,,,,,...} ou N* = {,,,,,...} NÚMEROS INTEIROS(Z) Z = {...,-,-,-,-,0,,,,,...} Sucojuto de Z Cojuto dos úeros iteiros ão-ulos. Z* = {...,-,-,-,-,,,,,...} Cojuto

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Diretos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Diretos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Sistems Lieres Métodos Diretos Professor Volmir uêio Wilhelm Professor Mri Klei limição de Guss Decomposição LU Decomposição Cholesky Prtição d mtriz limição de Guss limição de Guss Motivção

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas:

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas: SISTEMAS LINEARES Do grego system ( Sy sigific juto e st, permecer, sistem, em mtemátic,é o cojuto de equções que devem ser resolvids juts,ou sej, os resultdos devem stisfzêlos simultemete. Já há muito

Leia mais

PL - Casos Especiais

PL - Casos Especiais PL - Csos Especiis MINIMIAÇÃO Eiste fors de solução: ) Método Siple: i Vriável pr etrr bse: quel que reduz (o ivés de uetr) fução iiteste de otilidde: verificr se pode diiuir o se uetr o vlor de lgu vriável

Leia mais

PSI3483. Ondas Eletromagnéticas em Meios Guiados

PSI3483. Ondas Eletromagnéticas em Meios Guiados PSI3483 Ods letrogétis e Meios Guidos Guis de Ods - Coeito Gui de Ods Retgulr Gui de Ods Cilídrios PSI3483 - Ods leltrogétis e Meios Guidos - 17 Guis de ods struturs os De teril odutor Co seção trsversl

Leia mais

LOGARITMOS DEFINIÇÃO. log b. log 2 2. log61 0. loga. logam N logam. log N N. log. f ( x) log a. log FUNÇÃO LOGARITMICA

LOGARITMOS DEFINIÇÃO. log b. log 2 2. log61 0. loga. logam N logam. log N N. log. f ( x) log a. log FUNÇÃO LOGARITMICA LOGARITMOS DEFIIÇÃO log 0,, 0 FUÇÃO LOGARITMICA f ( ) log Eelos. Esoce o gráfico d fução 0,, 0 y log Eelos: log 8 ois 8 log log6 0 ois 0 ois 6 CODIÇÃO DE EXISTÊCIA 0 log eiste 0, EXEMPLO: Deterie os vlores

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo GABARITO

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo GABARITO

Leia mais

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Itegrção Numéric Regr dos Trpézio Professor Volmir Eugêio Wilhelm Professor Mri Klei Itegrção Defiid Itegrção Numéric Itegrção Numéric Itegrção Defiid Há dus situções em que é impossível

Leia mais

ANÁLISE NUMÉRICA. Sistemas Lineares (1) 5º P. ENG. DE Biomédica FUNORTE / Prof. Rodrigo Baleeiro Silva

ANÁLISE NUMÉRICA. Sistemas Lineares (1) 5º P. ENG. DE Biomédica FUNORTE / Prof. Rodrigo Baleeiro Silva NÁLISE NUMÉRIC Sistems Lieres () º P. ENG. DE Biomédic FUNORTE / Prof. Rodrigo Beeiro Siv Sistems Lieres Coceitos Fdmetis Mtriz (m ) Eemetos: ij ode i =...m e j =... m m m m Sistems Lieres Coceitos Fdmetis

Leia mais

Método de Eliminação de Gauss. Método de Eliminação de Gauss

Método de Eliminação de Gauss. Método de Eliminação de Gauss Método de Elimição de Guss idei básic deste método é trsormr o sistem b um sistem equivlete b, ode é um mtriz trigulr superior, eectudo trsormções elemetres sobre s lihs do sistem ddo. Cosidere-se o sistem

Leia mais

Capítulo 5.1: Revisão de Série de Potência

Capítulo 5.1: Revisão de Série de Potência Cpítulo 5.: Revisão de Série de Potêci Ecotrr solução gerl de um equção diferecil lier depede de determir um cojuto fudmetl ds soluções d equção homogêe. Já cohecemos um procedimeto pr costruir soluções

Leia mais

QUESTÕES DE 01 A 09. Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

QUESTÕES DE 01 A 09. Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ PROFESSORA MARIA ANTÔNIA C GOUVEIA QUESTÕES DE A 9 Assile

Leia mais

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA SOLUÇÕES DE EDO LINEARES DE A ORDEM NA FORMA INFINITA Coforme foi visto é muito simples se obter solução gerl de um EDO lier de ordem coeficietes costtes y by cy em termos ds fuções lgébrics e trscedetes

Leia mais

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes Sej, e. Defiimos: E0: Clcule: d) e) Defiição.... vezes 0 f) ( ) g) h) 0 6 ( ) i) ( ) j) E0: Dos úmeros bio, o que está mis próimo de (,).(0,) é: (9,9) 0,6 6, 6, d) 6 e) 60 E0: O vlor de 0, (0,6) é: 0,06

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. PROFESSOR: MARCOS AGUIAR CÁLCULO II INTEGRAIS DEFINIDAS. NOTAÇÃO DE SOMAÇÃO

Leia mais

1. Matrizes; 2. Determinantes; 3. Sistemas Lineares; 4.Espaços vetoriais; 5. Subespaços Vetoriais; 6. Subespaços Geradores; 7.

1. Matrizes; 2. Determinantes; 3. Sistemas Lineares; 4.Espaços vetoriais; 5. Subespaços Vetoriais; 6. Subespaços Geradores; 7. UTOR: Luiz Herique M d Silv Grdudo em Mtemátic e hbilitdo em Físic pelo UNIFEB Especilist em Educção Mtemátic pel Fculdde São Luís Mestre em Mtemátic pel Uesp (SJRP) IBILCE PROFMT (SBM) /CPES Mtrizes;

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão Nome: Nº Turm: Proessor: José Tioco 3/4/8 Apresete o seu rciocíio de orm clr, idicdo todos os cálculos que tiver de eetur e tods s

Leia mais

EXAME NACIONAL DE SELEÇÃO 2010

EXAME NACIONAL DE SELEÇÃO 2010 EXAME NACIONAL DE SELEÇÃO 00 PROVA DE MATEMÁTICA o Di: 0/0/009 - QUINTA FEIRA HORÁRIO: 8h às 0h 5m (horário de Brsíli) EXAME NACIONAL DE SELEÇÃO 00 PROVA DE MATEMÁTICA º Di: 0/0 - QUINTA-FEIRA (Mhã) HORÁRIO:

Leia mais

Z = {, 3, 2, 1,0,1,2,3, }

Z = {, 3, 2, 1,0,1,2,3, } Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv

Leia mais

2 - Modelos em Controlo por Computador

2 - Modelos em Controlo por Computador Modelção, Idetificção e Cotrolo Digitl 2-Modelos e Cotrolo por Coputdor 2 - Modelos e Cotrolo por Coputdor Objectivo: Itroduzir clsse de odelos digitis que são epregues est discipli pr o projecto de cotroldores

Leia mais

DESIGUALDADES Onofre Campos

DESIGUALDADES Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis

Leia mais

2 - Modelos em Controlo por Computador

2 - Modelos em Controlo por Computador Modelção, Idetificção e Cotrolo Digitl 2-Modelos e Cotrolo por Coputdor 2 - Modelos e Cotrolo por Coputdor Objectivo: Itroduzir clsse de odelos digitis que são epregues est discipli pr o projecto de cotroldores

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo Trigoometri

Leia mais

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2. Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r 0.000.0 00.0 00 0 0.0 00 0 00.000 00 000.008 90 0.000.000 00 000 008 90.00 00 00 00 9 Dividedo = Divisor x Quociete + Resto.0 = x.008 + 0.000. Num divisão

Leia mais

Prof.: Denilson Paulo

Prof.: Denilson Paulo Álgebr Lier Prof.: Deilso Pulo Álgebr Lier - Prof A Pul AULA Dt: / / A MATRIZES Defiição: Cojuto de úmeros dispostos um form retgulr (ou qudrd). Eemplo: B 8 C 7,6,7 D E 5 A mtriz A é retgulr, ou sej, possui

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio TP6-Métodos Numéricos pr Egehri de Produção Itegrção Numéric Regr dos Trpézio Prof. Volmir Wilhelm Curiti, 5 Itegrção Defiid Itegrção Numéric Prof. Volmir - UFPR - TP6 Itegrção Numéric Itegrção Defiid

Leia mais

Operadores Lineares e Matrizes

Operadores Lineares e Matrizes Operadores Lieares e Matrizes Ua Distição Fudaetal e Álgebra Liear Prof Carlos R Paiva Operadores Lieares e Matrizes Coeceos por apresetar a defiição de operador liear etre dois espaços lieares (ou vectoriais)

Leia mais

B é uma matriz 2 x2;

B é uma matriz 2 x2; MTRIZES e DETERMINNTES Defiição: Mriz m é um bel de m, úmeros reis disposos em m lihs (fils horizois) e colus (fils vericis) Eemplos: é um mriz ; B é um mriz ; Como podemos or os eemplos e respecivmee,

Leia mais

LOGARÍTMOS 1- DEFINIÇÃO. log2 5

LOGARÍTMOS 1- DEFINIÇÃO. log2 5 -(MACK) O vlor de o, é : 00 LOGARÍTMOS - DEFINIÇÃO ) -/ b)-/6 c) /6 d) / e) -(UFPA) O vlor do ( 5 5 ) é: ) b) - c) 0 d) e) 0,5 -( MACK) Se y= 5 :. ( 0,0),etão 00 y vle : 5 )5 b) c)7 d) e)6 - ( MACK) O

Leia mais

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b].

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b]. Mtemátic II 9. Prof.: Luiz Gozg Dmsceo E-mils: dmsceo@yhoo.com.r dmsceo@uol.com.r dmsceo@hotmil.com http://www.dmsceo.ifo www.dmsceo.ifo dmsceo.ifo Itegris defiids Cosidere um fução cotíu ritrári f() defiid

Leia mais

Exemplo: As funções seno e cosseno são funções de período 2π.

Exemplo: As funções seno e cosseno são funções de período 2π. 4. Séries de Fourier 38 As séries de Fourier têm váris plicções, como por eemplo resolução de prolems de vlor de cotoro. 4.. Fuções periódics Defiição: Um fução f() é periódic se eistir um costte T> tl

Leia mais

Unidade 2 Progressão Geométrica

Unidade 2 Progressão Geométrica Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus

Leia mais

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo

Leia mais

Resolução de sistemas lineares SME 0200 Cálculo Numérico I

Resolução de sistemas lineares SME 0200 Cálculo Numérico I Resolução de sistems lieres SME Cálculo Numérico I Docete: Prof. Dr. Mrcos Areles Estgiário PAE: Pedro Muri [reles@icmc.usp.br, muri@icmc.usp.br] Itrodução Sistems lieres são de grde importâci pr descrição

Leia mais

TÓPICOS. Álgebra matricial. Igualdade. Adição. Multiplicação por um escalar. Multiplicação matricial. Potenciação. Matriz transposta.

TÓPICOS. Álgebra matricial. Igualdade. Adição. Multiplicação por um escalar. Multiplicação matricial. Potenciação. Matriz transposta. Note em: leitur destes potmetos ão dispes de modo lgum leitur tet d iliogrfi priipl d deir TÓPICOS Álger mtriil. UL Chm-se teção pr importâi do trlho pessol relizr pelo luo resolvedo os prolems presetdos

Leia mais

PROGRAD / COSEAC ENGENHARIAS MECÂNICA E PRODUÇÃO VOLTA REDONDA - GABARITO

PROGRAD / COSEAC ENGENHARIAS MECÂNICA E PRODUÇÃO VOLTA REDONDA - GABARITO Prov de Cohecietos Especíicos QUESTÃO:, poto Deterie os vlores de e pr os quis ução dd sej cotíu e R. =,,, é cotíu e :.. li li li li. li li é cotíu e :.. li li li li Obteos Resolvedo equções θ e β: Respost:.

Leia mais

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais.

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais. Rdicição O que é, fil, riz qudrd de um úmero? Vmos supor um qudrdo com este, divididos em 9 qudrdihos iguis. Pegdo cd qudrdiho como uidde de áre, podemos dizer que áre do qudrdo é 9 qudrdihos, ou sej,

Leia mais

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019]

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019] Propost de teste de vlição [mrço 09] Nome: Ao / Turm: N.º: Dt: - - Não é permitido o uso de corretor. Deves riscr quilo que pretedes que ão sej clssificdo. A prov iclui um formulário. As cotções dos ites

Leia mais