Determine a capacidade total do tanque de combustível da caminhonete. Justifique sua resposta.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Determine a capacidade total do tanque de combustível da caminhonete. Justifique sua resposta."

Transcrição

1 1. (Fuvest 01) Um empreiteiro contratou um serviço com um grupo de trabalhadores pelo valor de R$ ,00 a serem igualmente divididos entre eles. Como três desistiram do trabalho, o valor contratado foi dividido igualmente entre os demais. Assim, o empreiteiro pagou, a cada um dos trabalhadores que realizaram o serviço, R$ 600,00 além do combinado no acordo original. a) Quantos trabalhadores realizaram o serviço? b) Quanto recebeu cada um deles?. (Uff 01) Colocando-se 4 litros de combustível no tanque de uma caminhonete, o ponteiro do marcador, que indicava 1 4 do tanque, passou a indicar 5 8. Determine a capacidade total do tanque de combustível da caminhonete. Justifique sua resposta.. (Ufsm 01) Em uma academia de ginástica, o salário mensal de um professor é de R$ 800,00. Além disso, ele ganha R$ 0,00 por mês, por cada aluno inscrito em suas aulas. Para receber R$.400,00 por mês, quantos alunos devem estar matriculados em suas aulas? a) 40. b) 50. c) 60. d) 70. e) (Uftm 01) João foi jantar em um restaurante com um cupom de promoção que diz dar 0% de desconto no preço das bebidas, 40% no preço do prato principal e 50% no da sobremesa. De acordo com instruções do cupom, os descontos não incluem os 10% de serviços do garçom que, portanto, devem ser calculados sobre os valores sem o desconto. Ao pedir a conta, João notou que ela veio sem valores em dois lugares, conforme indicado a seguir. Filé com arroz e fritas... R$ (valor com desconto) Suco... R$ 6,00 (valor com desconto) Pudim caramelado... R$ 4,5 (valor com desconto) Serviços de garçom... R$ Total... R$,85 De acordo com as informações do cupom e da conta, João conclui corretamente que o preço do prato principal, sem o desconto do cupom, em reais, foi igual a a) 8,50. b) 9,00. c) 0,00. d) 0,50. e) 1, (Mackenzie 01) Em uma urna há bolas verdes e bolas amarelas. Se retirarmos uma bola verde da urna, então um quinto das bolas restantes é de bolas verdes. Se retirarmos nove bolas amarelas, em vez de retirar uma bola verde, então um quarto das bolas restantes é de bolas verdes. O número total de bolas que há inicialmente na urna é a) 1 b) 6 c) 41 d) 56 e) (G1 - cftmg 01) Numa partida de basquetebol, uma equipe entre cestas de três e dois pontos fez 50 cestas totalizando 10 pontos. O número de cestas de três pontos foi de a) 18. Página 1 de 8

2 b) 0. c). d) (G1 - ifsc 01) Tinta e solvente são misturados na razão de dez partes de tinta para uma de solvente. Sabendo-se que foram gastos 105,6 L dessa mistura para pintar uma casa, então é CORRETO afirmar que foram usados nessa mistura: a) 10,56 L de solvente. b) 10 L de solvente. c) 9,6 L de solvente. d) 1,056 L de solvente. e) 11,7 L de solvente. 8. (Uespi 01) Em uma festa, cada homem dançou com exatamente h mulheres, e cada mulher dançou com exatamente m homens. Se o total de pessoas (homens e mulheres) presentes na festa era n, quantos eram os homens? a) mn/(h + m) b) mn/(h + m) c) mn/(h + m) d) mn/(h + m) e) mn/(h + m) 9. (G1 - ifsp 01) A companhia se saneamento básico de uma determinada cidade calcula os seus serviços de acordo com a seguinte tabela: Preço dos 10 primeiros m Preço de cada m para o consumo dos 10 m seguinte Preço de cada m consumido acima de 0 m. Preço (em R$) 10,00 (tarifa mínima),00,50 Se no mês de outubro de 011, a conta de Cris referente a esses serviços indicou o valor total de R$ 65,00, pode-se concluir que seu consumo nesse mês foi de a) 0 m. b) 40 m. c) 50 m. d) 60 m. e) 65 m. 10. (Fgv 01) As duas raízes da equação x + 6x + k = 0 na incógnita x são números inteiros e primos. O total de valores distintos que k pode assumir é a) 4. b). c). d) 1. e) (G1 - epcar (Cpcar) 01) O conjunto solução da equação em x 10 < x < 18 a) { } b) { x 17 < x < 5} c) { x 4 < x < } x x = 14 está contido Página de 8

3 d) { x 1 < x < 9} 1. (G1 - utfpr 01) A equação irracional 9x 14 = resulta em x igual a: a). b) 1. c) 0. d) 1. e). 1. (Espm 011) Define-se max(a; b) = a, se a b e max(a; b) = b, se b a valores de x, para os quais se tem a) 1 b) 0 c) d) 1 e) (G1 - epcar (Cpcar) 011) Se 4 1 y y = y 1, então a) 0 < a < 1 b) 1< a < c) a < < 5 d) < a < max(x x + ; 1+ x ) = 50, é igual a: * a + é raiz da equação na incógnita y,. A soma dos 7x 5x (G1 - utfpr 011) A equação = 0 7x 14 a) única solução: x =. b) uma única solução: x =. c) duas soluções: x = e x =. d) duas soluções: x = e x =. e) duas soluções x = e x =. possui: Página de 8

4 Gabarito: Resposta da questão 1: n = número inicial de trabalhadores. Cada trabalhador deveria receber n Como três desistiram e os demais receberam cada 600 reais a mais referente ao valor que caberia aos três desistentes, temos a equação: (n ) = 6.(n ) = 6n 18n 4 = 0 n n Resolvendo a equação acima, temos: n = 9 ou n = 6 (não convém). a) Portanto, 6 (9 ) trabalhadores realizaram o serviço. b) Cada um deles recebeu = 1800 reais. 6 Resposta da questão : Volume do tanque = x 5x x = 4 5x x = 19 x = 19 x = 64L 8 4 Resposta da questão : [E] Sendo x o número de alunos escritos em suas aulas, temos: x = 400 0x = x = 1600 x = 80. Resposta da questão 4: [C] Sejam f e s, respectivamente, os valores do prato principal e da taxa de serviço. Temos que a taxa de serviço é dada por: 6 4,5 s = 0,1 f + + s = 0,1 f + 1,6. 0,8 0,5 Além disso, o total da conta é obtido através da equação: Portanto, segue que s 0,6 f ,5 + s =,85 0,6 f + s =,6. 0,6f + 0,1 144 f + 1,6 =,6 0,7f = 1 f = 0,00. Resposta da questão 5: [E] Página 4 de 8

5 Sejam a e v, respectivamente, o número de bolas amarelas e o número de bolas verdes que há inicialmente na urna. De acordo com as informações, obtemos 1 (v 1 + a) = v 1 5 a = 4v 4 a = a = v + 9 v = 1 (v + a 9) = v 4 Portanto, o resultado pedido é a + v = = 61. Resposta da questão 6: [B] x = número de cestas de pontos 50 x = número de cestas de pontos. Como foram marcados 10 pontos, temos: ( ) x + 50 x = 10 x = 10 x = 0. Logo, o número de cestas de pontos é 0. Resposta da questão 7: [C] Tinta: x Solvente: 10x 10x + x = 105,6 11x = 105,6 x = 9,6L. Então: 9,6 L de solvente. Resposta da questão 8: [A] Sejam x e y, respectivamente, o número de homens e o número de mulheres, tal que x + y = n. Assim, de acordo com o enunciado, devemos ter m n h x = m (n x) h x + m x = m n x =. h + m Resposta da questão 9: [A] De acordo com o problema, escreve-se a equação em que x é o consumo mensal em outubro de 011. Página 5 de 8

6 ( ) ,50 x 0 = ,5x 70 = 65,5x = 105 x = 0m. Resposta da questão 10: [D] Pelas Relações de Girard, a soma das raízes da equação é igual a 6 e o produto é igual a k. Além disso, como as raízes são números primos e a soma é ímpar, segue que uma das raízes é e, portanto, a outra é 6 = 61. Logo, k só pode ser igual a 61 = 1. Resposta da questão 11: [B] x x x x x x 14 7 (x 14) 7 x 8x 196 x 57x + 78 = = + = + = = + = + Resolvendo a equação, temos: x = 18 ou x = 10,5 ão convém, pois 10,5 14 < 0). Portanto, o conjunto {18} está contido em { < < } Resposta da questão 1: [E] 9x 14 = 9x 14 = 4 9x = 18 x =. Verificação: 9 14 = (V). Logo, x = é solução da equação. Resposta da questão 1: [A] Se 1 x x + 1+ x x, então x x + = 50 x x = 50 Logo, x = 6. (x 1) = 49 x 1= ± 7 x = 6 ou x = 8. 1 x 17 x 5. Por outro lado, se 1+ x x x + x, então1+ x = 50 x = 7 ou x = 7. Desse modo, x = 7. Portanto, a soma pedida é igual a 7 + ( 6) = 1. Resposta da questão 14: [B] 4 1 y y = y 1 Página 6 de 8

7 y y = y y + 1 y y = y y y y = y 4y + 4y 5 4y 5y = 0 y.(4y 5) = 0 y = 0(não convém) ou y = = 1,5(convém) 4 Verificação: Portanto, a = 1,5 e (verdade) 4 = 4 4 1< a <. Resposta da questão 15: [B] 7x 5x (x ).(x ) = 0 = 0 7x 14 7.(x ) como x - 0, temos: x - = 0 x= Portanto, a equação possui uma única solução x =. Página 7 de 8

8 Resumo das questões selecionadas nesta atividade Data de elaboração: 1/0/01 às 17:4 Nome do arquivo: Problemas Gabarito Legenda: Q/Prova = número da questão na prova Q/DB = número da questão no banco de dados do SuperPro Q/prova Q/DB Matéria Fonte Tipo Matemática... Fuvest/01... Analítica Matemática... Uff/01... Analítica Matemática... Ufsm/01... Múltipla escolha Matemática... Uftm/01... Múltipla escolha Matemática... Mackenzie/01... Múltipla escolha Matemática... G1 - cftmg/01... Múltipla escolha Matemática... G1 - ifsc/01... Múltipla escolha Matemática... Uespi/01... Múltipla escolha Matemática... G1 - ifsp/01... Múltipla escolha Matemática... Fgv/01... Múltipla escolha Matemática... G1 - epcar (Cpcar)/01... Múltipla escolha Matemática... G1 - utfpr/01... Múltipla escolha Matemática... Espm/ Múltipla escolha Matemática... G1 - epcar (Cpcar)/ Múltipla escolha Matemática... G1 - utfpr/ Múltipla escolha Página 8 de 8

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 2

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 2 1. (Mackenzie 1996) A soma dos valores inteiros pertencentes ao domínio da função real definida por f(x) = x / x 3x a) 1. b). c) 3. d) - 1. e) -. é:. (Mackenzie 1996) Na desigualdade ser: (x 1) + x > k,

Leia mais

EXERCÍCIOS MATEMÁTICA 2

EXERCÍCIOS MATEMÁTICA 2 EXERCÍCIOS MATEMÁTICA 1. (Fgv 01) Em 1º de junho de 009, João usou R$ 150.000,00 para comprar cotas de um fundo de investimento, pagando R$ 1,50 por cota. Três anos depois, João vendeu a totalidade de

Leia mais

1. (Unicamp) Considere as funções f e g, cujos gráficos estão representados na figura abaixo.

1. (Unicamp) Considere as funções f e g, cujos gráficos estão representados na figura abaixo. 1. (Unicamp) Considere as funções f e g, cujos gráficos estão representados na figura abaixo. O valor de f(g(1)) g(f(1)) é igual a a) 0. b) 1. c) 2. d) 1. 2. (G1 - ifce) Seja f : 1, uma função dada por

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web POLÍGONOS REGULARES 1. No estudo da distribuição de torres em uma rede de telefonia celular, é comum se encontrar um modelo no qual as torres de transmissão estão localizadas nos centros de hexágonos regulares,

Leia mais

Assunto: Conjuntos Numéricos Professor: Daniel Ferretto

Assunto: Conjuntos Numéricos Professor: Daniel Ferretto Todas as questões encontram-se comentadas na videoaula do canal maismatemática, disponível para visualização gratuita no seguinte link: https://www.youtube.com/watch?v=tlsqgpe7td8 NÍVEL BÁSICO 1. (G1 -

Leia mais

max(x 2x + 2; 1+ x ) = 50, é igual a:

max(x 2x + 2; 1+ x ) = 50, é igual a: . (Ufpr 0) Durante o mês de dezembro, uma loja de cosméticos obteve um total de R$ 900,00 pelas vendas de um certo perfume. Com a chegada do mês de janeiro, a loja decidiu dar um desconto para estimular

Leia mais

MATEMÁTICA QUESTÕES DE PORCENTAGEM EXTRAS. B no valor de R$ ,00. O valor de cada. 40% do número de carros no modelo A e 60%

MATEMÁTICA QUESTÕES DE PORCENTAGEM EXTRAS. B no valor de R$ ,00. O valor de cada. 40% do número de carros no modelo A e 60% MATEMÁTICA Prof. Favalessa QUESTÕES DE PORCENTAGEM EXTRAS 1. (Faculdade Albert Einstein) Suponha que, em certo país, observou-se que o número de exames por imagem, em milhões por ano, havia crescido segundo

Leia mais

Equação do Segundo Grau

Equação do Segundo Grau Equação do Segundo Grau 1. (G1 - ifsp 014) A soma das soluções inteiras da equação x 1 x 5 x 5x 6 0 é a) 1. b). c) 5. d) 7. e) 11.. (G1 - utfpr 014) O valor da maior das raízes da equação x + x + 1 = 0,

Leia mais

Lista Função - Ita Carlos Peixoto

Lista Função - Ita Carlos Peixoto Lista Função - Ita Carlos Peixoto. (Ita 07) Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: I. Existe uma bijeção f : X Y. II. Existe uma função injetora g: Y X. III.

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 5R Ensino Médio Equipe de Matemática Data: MATEMÁTICA Conjunto dos números racionais O conjunto dos números racionais é uma ampliação do conjunto dos números inteiros.

Leia mais

REVISÃO Lista 03 Matemática financeira. Juros compostos: os juros são aplicados sobre a quantia obtida anteriormente

REVISÃO Lista 03 Matemática financeira. Juros compostos: os juros são aplicados sobre a quantia obtida anteriormente NOME: ANO: 3º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: REVISÃO Lista 03 Matemática financeira Definições Porcentagem: razão cujo denominador é 100 Juros simples: os juros são sempre aplicados sobre a quantia

Leia mais

Sequências. 1. (Uem 2013) Seja r um número inteiro positivo fixado. Considere a sequência numérica definida por 1 r

Sequências. 1. (Uem 2013) Seja r um número inteiro positivo fixado. Considere a sequência numérica definida por 1 r Sequências. (Uem 03) Seja r um número inteiro positivo fixado. Considere a sequência numérica a definida por r e assinale o que for correto. an an a 0) A soma dos 50 primeiros termos da sequência (a, a,

Leia mais

LISTA DE EXERCÍCIOS 9º ANO 1º BIMESTRE MATEMÁTICA-REVISÃO

LISTA DE EXERCÍCIOS 9º ANO 1º BIMESTRE MATEMÁTICA-REVISÃO 1. (G1 - ifsc) A solução da equação 0,1x 0,6 3 tem como resultado, 1 0,4x 2 a) um número racional negativo. b) um número irracional. c) um número inteiro negativo. d) um número racional maior que 5. e)

Leia mais

AO VIVO MATEMÁTICA Professor Haroldo Filho 3 de maio, 2016 EQUAÇÕES IRRACIONAIS

AO VIVO MATEMÁTICA Professor Haroldo Filho 3 de maio, 2016 EQUAÇÕES IRRACIONAIS MATEMÁTICA Professor Haroldo Filho de maio, 016 EQUAÇÕES IRRACIONAIS Na resolução das equações irracionais, onde a incógnita se encontra sob um radical de índice dois, seremos obrigados a elevar ao quadrado

Leia mais

8º ANO. Lista extra de exercícios

8º ANO. Lista extra de exercícios 8º ANO Lista extra de exercícios . Determine os valores de x que tornam as equações a seguir verdadeiras. a) (x + 4)(x ) = 0 b) (x + 6)(x ) = 0 c) (x + )(6x 9) = 0 d) 4x(x ) = 0 e) 7x(x ) = 0. Determine

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 8B Ensino Médio Equipe de Matemática Data: MATEMÁTICA PORCENTAGEM Diariamente, encontramos em nossos jornais e revistas o uso de expressões que refletem acréscimos

Leia mais

COLÉGIO MIGUEL COUTO MEIER REVISÃO DE MATEMÁTICA 30/08/12

COLÉGIO MIGUEL COUTO MEIER REVISÃO DE MATEMÁTICA 30/08/12 COLÉGIO MIGUEL COUTO MEIER REVISÃO DE MATEMÁTICA 30/08/1 1. (Upe 01) Na figura a seguir, estão representados o ciclo trigonométrico e um triângulo isósceles OAB. Qual das expressões abaixo corresponde

Leia mais

Combinação A forma de escrita. Assim sendo, podemos interpretar este exercício como sendo:

Combinação A forma de escrita. Assim sendo, podemos interpretar este exercício como sendo: Combinação 016 1. (Fgv 015) Em uma sala estão presentes n pessoas, com n 3. Pelo menos uma pessoa da sala não trocou aperto de mão com todos os presentes na sala, e os demais presentes trocaram apertos

Leia mais

1. (Upe 2015) A figura a seguir mostra o vetor v representado no plano cartesiano.

1. (Upe 2015) A figura a seguir mostra o vetor v representado no plano cartesiano. 1. (Upe 2015) A figura a seguir mostra o vetor v representado no plano cartesiano. A representação e o módulo desse vetor são, respectivamente, a) v (5,1) e v 3 b) v (3, 0) e v 3 c) v ( 3, 4) e v 4 d)

Leia mais

x é igual a: 07. (Colégio Naval) No conjunto R dos números reais, qual será o 01. (PUC) O valor de m, de modo que a equação

x é igual a: 07. (Colégio Naval) No conjunto R dos números reais, qual será o 01. (PUC) O valor de m, de modo que a equação 0. (PUC) O valor de m, de modo que a equação 5 m m 0 b) c) d) 0. Quantos valores de satisfazem a equação a) b) c) d) 5 e) 0 Prof. Paulo Cesar Costa tenha uma das raízes igual a, é: ( ). 07. (Colégio Naval)

Leia mais

c) 90. d) 105. e) 180. a 2 da capacidade do reservatório, então

c) 90. d) 105. e) 180. a 2 da capacidade do reservatório, então 1. (Uerj 2015) Na imagem da etiqueta, informa-se o valor a ser pago por 0,256 kg de peito de peru. O SUS oferece 1,0 médico para cada grupo de x habitantes. Na região Norte, o valor de x é aproximadamente

Leia mais

8º ANO. Lista extra de exercícios

8º ANO. Lista extra de exercícios 8º ANO Lista extra de exercícios 1. Calcule a média dos seguintes números. a) 1; 4; 5 e 9 b) 13; 16; 18; 1 e 91 c) 1; 34; 5,6; 7,8 e 90 d) 3,; 5,6; 4,8; 57,5 e 8,8 e) 1,9;,3; 3,43; 104,65; 105, e 06. Encontre

Leia mais

a) 10 b) 7 c) 0 d) 3 e) 4 6. (G1 - cftmg 2013) A soma das raízes da equação a) 7. b) 4. c) 3. d) 5.

a) 10 b) 7 c) 0 d) 3 e) 4 6. (G1 - cftmg 2013) A soma das raízes da equação a) 7. b) 4. c) 3. d) 5. Equações Modulares 1. (Espcex (Aman) 015) O número de soluções da equação 1 x x = x, no conjunto, é a) 1. b). c). d) 4. e) 5.. (Ufsc 014) Assinale a(s) proposição(ões) CORRETA(S). x 1 01) O domínio da

Leia mais

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 TRABALHO ESTUDOS INDEPENDENTES

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 TRABALHO ESTUDOS INDEPENDENTES ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 TRABALHO ESTUDOS INDEPENDENTES Nome Nº Turma 9º Data 04/12 Nota Disciplina Matemática Prof. Ariele Valor 70 1) Aplicando as relações métricas nos

Leia mais

b) Um pacote de amendoim e dois sucos custam 20 reais, e dois pacotes de amendoim e suco custam 25 reais.

b) Um pacote de amendoim e dois sucos custam 20 reais, e dois pacotes de amendoim e suco custam 25 reais. PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 7º ANO - ENSINO FUNDAMENTAL ============================================================================================= Responda às questões

Leia mais

Preço de Venda Quantidade Vendida R$ 100,00 30 R$ 90,00 40 R$ 85,00 45 R$ 80,00 50

Preço de Venda Quantidade Vendida R$ 100,00 30 R$ 90,00 40 R$ 85,00 45 R$ 80,00 50 1 A Editora Progresso decidiu promover o lançamento do livro Descobrindo o Pantanal em uma Feira Internacional de Livros, em 2012. Uma pesquisa feita pelo departamento de Marketing estimou a quantidade

Leia mais

Questões utilizadas nas aulas de terça (15/10)

Questões utilizadas nas aulas de terça (15/10) Matemática Matemática financeira 3 os anos João/Blaidi out/13 Nome: Nº: Turma: Questões utilizadas nas aulas de terça (15/10) 1. (Fgv 013) Para o consumidor individual, a editora fez esta promoção na compra

Leia mais

Lista de Exercícios de Matemática

Lista de Exercícios de Matemática Lista de Exercícios de Matemática Álgebra e Aritmética 01) (Epcar/2003) - De dois conjuntos A e B, sabe-se que: I) O número de elementos que pertencem a A B é 45; II) 40% desses elementos pertencem a ambos

Leia mais

A conta do = = 8 Logo, = 385 Como você poderia estabelecer o produto de um número de três algarismos abc por 11.

A conta do = = 8 Logo, = 385 Como você poderia estabelecer o produto de um número de três algarismos abc por 11. Aula n ọ 05 A conta do 11 Para multiplicar um número de dois algarismos por 11, podemos fazê-lo assim: conservamos a unidade na unidade do resultado; a dezena na centena do resultado; e a dezena do resultado

Leia mais

MATEMÁTICA. EXERCÍCIOS E PROBLEMAS PROPOSTOS Nível: Ensino Fundamental SUJESTÕES PARA ESTUDO DE RACIOCÍNIO LÓGICO E RAZÕES = CONCURSOS =

MATEMÁTICA. EXERCÍCIOS E PROBLEMAS PROPOSTOS Nível: Ensino Fundamental SUJESTÕES PARA ESTUDO DE RACIOCÍNIO LÓGICO E RAZÕES = CONCURSOS = MATEMÁTICA EXERCÍCIOS E PROBLEMAS PROPOSTOS Nível: Ensino Fundamental SUJESTÕES PARA ESTUDO DE RACIOCÍNIO LÓGICO E RAZÕES = CONCURSOS = SELEÇÃO DE EXERCÍCIOS FEITA PELO PROFESSOR MARCELO S SILVÉRIO profmarcelo@uol.com.br

Leia mais

21/08/ x + 2 y > 15. Considere a situação a seguir: Das sentenças matemáticas a seguir, quais são inequações?

21/08/ x + 2 y > 15. Considere a situação a seguir: Das sentenças matemáticas a seguir, quais são inequações? Considere a situação a seguir: Um retângulo tem metros de comprimento e y metros de largura, e um triângulo equilátero tem 5 m de lado. Supondo que o perímetro do retângulo seja maior que o perímetro do

Leia mais

LISTA DE EXERCÍCIOS II - 3 O BIMESTRE. FRAÇÕES: conceito, classificação, números mistos, fração de quantidade e equivalência

LISTA DE EXERCÍCIOS II - 3 O BIMESTRE. FRAÇÕES: conceito, classificação, números mistos, fração de quantidade e equivalência NOME: Nº. - 6 o ANO - E.F.II DATA: / / 2016 PROF. MARCO MALZONE - MATEMÁTICA I LISTA DE EXERCÍCIOS II - 3 O BIMESTRE FRAÇÕES: conceito, classificação, números mistos, fração de quantidade e equivalência

Leia mais

Retas Tangentes à Circunferência

Retas Tangentes à Circunferência Retas Tangentes à Circunferência 1. (Fuvest 01) São dados, no plano cartesiano, o ponto P de coordenadas (,6) e a circunferência C de equação um ponto Q. Então a distância de P a Q é a) 15 b) 17 c) 18

Leia mais

Exercícios de Aprofundamento 2015 Mat Log/Exp/Teo. Num.

Exercícios de Aprofundamento 2015 Mat Log/Exp/Teo. Num. Eercícios de Aprofundamento 05 Mat Log/Ep/Teo. Num.. (Ita 05) Considere as seguintes afirmações sobre números reais: I. Se a epansão decimal de é infinita e periódica, então é um número racional. II..

Leia mais

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z:

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z: Sistemas Lineares 1. (Unesp 2013) Uma coleção de artrópodes é formada por 36 exemplares, todos eles íntegros e que somam, no total da coleção, 113 pares de patas articuladas. Na coleção não há exemplares

Leia mais

Matemática I Capítulo 11 Função Modular

Matemática I Capítulo 11 Função Modular Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 11 Função Modular 11.1 - Módulo O módulo, ou valor absoluto, de um número real x representado

Leia mais

CPV 73% de aprovação na ESPM

CPV 73% de aprovação na ESPM 7% de aprovação na ESPM ESPM NOVEMBRO/007 PROVA E MATEMÁTICA. O menor número natural tal que 0800. = n 5, com n N*, é igual a: a) 745 b) 50 c) 5 d) 4050 e) 785 Temos que 0800. = n 5 4.. 5. = n 5 para que

Leia mais

Prof: Danilo Dacar

Prof: Danilo Dacar Parte A: 1. (Uece 014) Sejam f : R R a função definida por f(x) x x 1, P e Q pontos do gráfico de f tais que o segmento de reta PQ é horizontal e tem comprimento igual a 4 m. A medida da distância do segmento

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 36 SISTEMAS DE EQUAÇÕES

MATEMÁTICA - 3 o ANO MÓDULO 36 SISTEMAS DE EQUAÇÕES MATEMÁTICA - 3 o ANO MÓDULO 36 SISTEMAS DE EQUAÇÕES SISTEMA LINEAR POSSÍVEL IMPOSSÍVEL DETERMINADO INDETERMINADO concorrentes coincidentes paralelas Como pode cair no enem Numa lanchonete, o garçom apresenta

Leia mais

EXERCÍCIOS COMPLEMENTARES DE ÓPTICA GEOMÉTRICA

EXERCÍCIOS COMPLEMENTARES DE ÓPTICA GEOMÉTRICA EXERCÍCIOS COMPLEMENTARES DE ÓPTICA GEOMÉTRICA PROF. GISOLDI. (Unesp 204) Para observar uma pequena folha em detalhes, um estudante utiliza uma lente esférica convergente funcionando como lupa. Mantendo

Leia mais

x 5x 6 a) b) 1,6 01. Qual é o número cujo dobro somado com sua quinta parte é igual a 121?

x 5x 6 a) b) 1,6 01. Qual é o número cujo dobro somado com sua quinta parte é igual a 121? Nome: ºANO / CURSO TURMA: DATA: / / 0 Professor: Paulo 0. Qual é o número cujo dobro somado com sua quinta parte é igual a? 0. Para impressionar Pedro, Lucas propôs a seguintebrincadeira: - Escolha um

Leia mais

Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ),

Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ), Florianópolis Professor: Erivaldo Santa Catarina Função Quadrática SUPERSEMI 1)(Afa 013) O gráfico de uma função polinomial do segundo grau y = f( x ), que tem como coordenadas do vértice (5, ) e passa

Leia mais

Matemática. Exercícios de Revisão II

Matemática. Exercícios de Revisão II Nome: n o : E nsino: Médio S érie: T urma: Data: Prof(a): Eldimar 2 a Matemática Exercícios de Revisão II 1) (Unifesp-2009) Sob determinadas condições, o antibiótico gentamicina, quando ingerido, é eliminado

Leia mais

sergiomelega.wix.com/fisicaemat

sergiomelega.wix.com/fisicaemat 1 EXERCÍCIOS E RZÃO E PROPORÇÃO LIST 02 Prof. Sérgio Mélega 1) Uma pessoa recebe R$ 10.000 por 25 dias de trabalho. Quanto receberia se tivesse trabalhando 8 dias a mais? a) R$ 12.300,00 b) R$ 10.400,00

Leia mais

Nome: nº Professor(a): Série : Turma: Data: / /2012 Desconto Ortográfico: Nota: Bateria de Exercícios 3º ano Ensino Médio

Nome: nº Professor(a): Série : Turma: Data: / /2012 Desconto Ortográfico: Nota: Bateria de Exercícios 3º ano Ensino Médio Sem limite para crescer Nome: nº Professor(a): Série : Turma: Data: / /2012 Desconto Ortográfico: Nota: Bateria de Exercícios 3º ano Ensino Médio 1- Resolva a equação: 2- (EEM-SP) Resolva a equação: 3-

Leia mais

Lista de Exercícios 8 ano- Matemática VC Professora: Vanessa Vianna Macedo

Lista de Exercícios 8 ano- Matemática VC Professora: Vanessa Vianna Macedo Lista de Exercícios 8 ano- Matemática VC Professora: Vanessa Vianna Macedo 1) Resolva as equações a seguir: a)18x - 43 = 65 b) 23x - 16 = 14-17x c) 10y - 5 (1 + y) = 3 (2y - 2) 20 d) x(x + 4) + x(x + 2)

Leia mais

Atividades de Funções do Primeiro Grau

Atividades de Funções do Primeiro Grau Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse

Leia mais

Militar e 1 2. a) 2 b) 3 c) 4 d) 5 e) 1 TESTES. 01.Calcular a média aritmética entre os números 3, 4, 6, 9 e 13.

Militar e 1 2. a) 2 b) 3 c) 4 d) 5 e) 1 TESTES. 01.Calcular a média aritmética entre os números 3, 4, 6, 9 e 13. Matática TESTES 0.Calcular a média aritmética entre os números,, 6, 9 e. 0. Calcular a média geométrica entre os números, 5 e 50. a) b) c) d) 5 e). Qual a média harmônica entre os números e? 0. Calcular

Leia mais

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 1

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 1 Eercícios de Aprofundamento Matemática Equações e Inequações 1. (Mackenzie 013) A função f() a) S / 3 ou 1 3 b) S / 3 ou 1 3 c) S / 3 ou 1 3 d) S / 1 ou 1 3 e) S / 1 ou 1 3 9 tem como domínio o conjunto

Leia mais

2010 PORCENTAGEM NA 1ª FASE (ALGUMAS QUESTÕES)

2010 PORCENTAGEM NA 1ª FASE (ALGUMAS QUESTÕES) LISTA 2-2010 2 2010 PORCENTAGEM NA 1ª FASE (ALGUMAS QUESTÕES) 1) [Fuvest 77] Um vendedor ambulante vende seus produtos com um lucro de 50% sobre o preço de venda. Então seu lucro sobre o preço de custo

Leia mais

Questões MATEMÁTICA / PROFESSOR: RONILTON LOYOLA O1. Os anos bissextos têm, ao contrário dos outros anos, 366 dias. Esse dia a mais é colocado sempre no final do mês de fevereiro, que, nesses casos, passa

Leia mais

Lista de Exercícios de Matemática. 01-) Quantos números naturais há na sequência {103, 104, 105,..., 827, 828}?

Lista de Exercícios de Matemática. 01-) Quantos números naturais há na sequência {103, 104, 105,..., 827, 828}? Lista de Exercícios de Matemática 01-) Quantos números naturais há na sequência {10, 104, 105,..., 87, 88}? 0-) V ou F: a) Todo número natural é inteiro. Todo número racional é inteiro. c) Existe número

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS 12º Ano Turma A - C.C.H. de Ciências e Tecnologias - 1ª Teste de Avaliação de Matemática A V1 Duração: 90 min 05 Nov. 09 Prof.: Na folha de respostas, indicar de forma legível

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM 8% de aprovação na ESPM ESPM NOVEMBRO/00 Prova E MATemática. Assinale a alternativa cujo valor seja a soma dos valores das demais: a) 0 + b) 5% c) d) 75% de 3 e) log 0,5 a) 0 + + 3,5 5 b) 5 % 5 00 0 0,5

Leia mais

Exercícios de Aprofundamento Mat Sistemas Lineares

Exercícios de Aprofundamento Mat Sistemas Lineares 1. (Unesp 013) Uma coleção de artrópodes é formada por 36 exemplares, todos eles íntegros e que somam, no total da coleção, 113 pares de patas articuladas. Na coleção não há exemplares das classes às quais

Leia mais

Logaritmo e Função Logarítmica

Logaritmo e Função Logarítmica Logaritmo e Função Logarítmica. (Unifor 04) Após acionar um flash de uma câmera, a bateria imediatamente começa a recarregar o capacitor do flash, o qual armazena uma carga elétrica dada por t Q(t) Q 0

Leia mais

Abril Educação Equações e sistemas de equações fracionárias Aluno(a): Número: Ano: Professor(a): Data: Nota:

Abril Educação Equações e sistemas de equações fracionárias Aluno(a): Número: Ano: Professor(a): Data: Nota: Abril Educação Equações e sistemas de equações fracionárias Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (UEL PR) Tome um número real x e acrescente-lhe a sua quinta parte. Do resultado obtido,

Leia mais

Orientação de estudos

Orientação de estudos Roteiro de estudos 1º trimestre. Matemática-Física-Química-Biologia O roteiro foi montado especialmente para reforçar os conceitos dados em aula. Com os exercícios você deve fixar os seus conhecimentos

Leia mais

Aulas 11 e 12 Equações do 2º grau

Aulas 11 e 12 Equações do 2º grau Aulas e Equações do º grau 0) (Enem) A temperatura T de um forno (em graus centígrados) é reduzida por um sistema a partir do instante de seu desligamento (t 0) e varia de acordo com a t epressão Tt (

Leia mais

Solução do Simulado PROFMAT/UESC 2012

Solução do Simulado PROFMAT/UESC 2012 Solução do Simulado PROFMAT/UESC 01 (1) Encontre uma fração equivalente a 9/5 cuja soma dos termos é igual a 196: (A) 96/100 (B) 106/90 (C) 116/80 (D) 16/70 (E) 136/60 9 5 = 9 5 14 14 = 16 70 () Um grupo

Leia mais

CENPRO - CONCURSOS MILITARES E TÉCNICOS 5ª REVISÃO DE MATEMÁTICA - CURSO PREPARATÓRIO CMBH Nome Completo: 30/10/12

CENPRO - CONCURSOS MILITARES E TÉCNICOS 5ª REVISÃO DE MATEMÁTICA - CURSO PREPARATÓRIO CMBH Nome Completo: 30/10/12 Pág.1 5ª REVISÃO DE MATEMÁTICA - CURSO PREPARATÓRIO CMBH 2013 Nome Completo: 30/10/12 Instruções ao candidato: * Esta prova é composta de 20 questões de múltipla escolha; * A duração da prova é de 2 horas,

Leia mais

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016 POLINÕMIOS E EQUAÇÕES POLINOMIAIS 06. (Unicamp 06) Considere o polinômio cúbico p() a, onde a é um número real. a) No caso em que p() 0, determine os valores de para os quais a matriz A abaio não é invertível.

Leia mais

Disciplina: Matemática Prof. Diego Lima 1ª Lista de Exercícios Equação do 1 Grau

Disciplina: Matemática Prof. Diego Lima 1ª Lista de Exercícios Equação do 1 Grau Disciplina: Matemática Prof. Diego Lima 1ª Lista de Exercícios Equação do 1 Grau 1. (G1) Resolver a equação x 9 = 0, em N: a) V = {3} b) V = { 3} c) V = { 3, 3} d) V = {4} e) V =. (Fuvest) Um casal tem

Leia mais

RESOLUÇÃO DA PROVA DO COLÉGIO NAVAL DE 2006 (PROVA VERDE):

RESOLUÇÃO DA PROVA DO COLÉGIO NAVAL DE 2006 (PROVA VERDE): RESOLUÇÃO DA PROVA DO COLÉGIO NAVAL DE 006 (PROVA VERDE): 1) Observe o sistema de equações lineares abaixo. x y 3 1 S 1: x 7y Sendo (x 1,y 1 ) solução de S 1, o resultado de (6 )x1 (1 3)y1 é igual a a)

Leia mais

b) Aumentando de uma unidade a intensidade do terremoto, por quanto fica multiplicada a energia liberada?

b) Aumentando de uma unidade a intensidade do terremoto, por quanto fica multiplicada a energia liberada? Professor Habib Lista de Matemática 1. (G1) Resolva a equação 2Ñ = 128 2. (G1) Calcule x de modo que se obtenha 10 Ñ = 1 3. (Uff) Resolva o sistema ý3ñ + 3Ò = 36 þ ÿ3ñ Ò = 243 4. (Ufsc) Determinar o valor

Leia mais

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE 01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP

Leia mais

LISTA DE EXERCÍCIOS-MATEMÁTICA BÁSICA

LISTA DE EXERCÍCIOS-MATEMÁTICA BÁSICA 1. As idades de duas pessoas estão na razão de 7 para 6. Admitindo-se que a diferença das idades seja igual a 8 anos, calcular a idade de cada uma. 2. Um caminhão vai ser carregado com 105 sacos de batata

Leia mais

Lista de exercícios de equações do 1º Grau

Lista de exercícios de equações do 1º Grau IVIDDES 2014 luno(a): Série: 6ª/7 ano Data: / / Lista de exercícios de equações do 1º Grau 1) Resolva as equações a seguir: a)18x - 43 = 65 (R: x = 6) b) 23x - 16 = 14-17x (R: x = ¾) c) 10y - 5 (1 + y)

Leia mais

1 INTRODUÇÃO 3 RELAÇÕES DE GIRARD 2 SOMAS DE GIRARD. Exercício Resolvido 1. Matemática Polinômios CAPÍTULO 04 RELAÇÕES DE GIRARD

1 INTRODUÇÃO 3 RELAÇÕES DE GIRARD 2 SOMAS DE GIRARD. Exercício Resolvido 1. Matemática Polinômios CAPÍTULO 04 RELAÇÕES DE GIRARD Matemática Polinômios CAPÍTULO 04 RELAÇÕES DE GIRARD 1 INTRODUÇÃO Aprendemos, até agora, a resolver equações do primeiro e do segundo grau. Nossa meta, agora, é encontrar maneiras de resolver equações

Leia mais

Exercícios: comandos condicionais

Exercícios: comandos condicionais Universidade Federal de Uberlândia - UFU Faculdade de Computação - FACOM Lista de exercícios de programação em linguagem Python Exercícios: comandos condicionais 1. Faça um programa que receba dois números

Leia mais

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e

Leia mais

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- Professor Xanchão 1 (G1 - utfpr 013) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base Se em um triângulo isósceles

Leia mais

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x. Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)

Leia mais

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente.

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente. Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x 2 - x - 1 = 0 é

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Atividades de Funções do Primeiro Grau

Atividades de Funções do Primeiro Grau Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse

Leia mais

Universidade Federal do Pará - PARFOR. Disciplina: Álgebra Básica e Laboratório de Ensino de Álgebra Básica

Universidade Federal do Pará - PARFOR. Disciplina: Álgebra Básica e Laboratório de Ensino de Álgebra Básica Universidade Federal do Pará - PARFOR Disciplina: Álgebra Básica e Laboratório de Ensino de Álgebra Básica Lista de Exercícios para Prova Substitutiva Assuntos Abordados: Polinômios, Produtos notáveis

Leia mais

Grupo de exercícios I - Geometria plana- Professor Xanchão

Grupo de exercícios I - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- 1. (G1 - ifce 01) Na figura abaixo, R, S e T são pontos sobre a circunferência de centro O. Se x é o número real, tal que a = 5x e b = 3x + 4 são as medidas dos

Leia mais

Sala de Estudo Acompanhado Municipal

Sala de Estudo Acompanhado Municipal Sala de Estudo Acompanhado Municipal 9º Ano º Teste Intermédio (Modelo) Lê com atenção as questões que se seguem e responde de forma correcta. Bom trabalho! "Cada problema que resolvi, tornou-se numa regra,

Leia mais

A afirmação Todo jovem gosta de matemática adora esportes e festas pode ser representada segundo o diagrama:

A afirmação Todo jovem gosta de matemática adora esportes e festas pode ser representada segundo o diagrama: Questão 01) A afirmação Todo jovem gosta de matemática adora esportes e festas pode ser representada segundo o diagrama: ={jovens que gostam de matemática} = {jovens que adoram esportes} = {jovens que

Leia mais

2. (G2 - utfpr 2014) A área do círculo, em cm 2, cuja circunferência mede 10π cm, é: a) 10 π. b) 36 π. c) 64 π. d) 50 π. e) 25 π.

2. (G2 - utfpr 2014) A área do círculo, em cm 2, cuja circunferência mede 10π cm, é: a) 10 π. b) 36 π. c) 64 π. d) 50 π. e) 25 π. Grupo de exercícios II - Geometria plana- 1. (G - ifsp 014) Um restaurante foi representado em sua planta por um retângulo PQRS. Um arquiteto dividiu sua área em: cozinha (C), área de atendimento ao público

Leia mais

Se, no universo R, as inequações 3(x 1) 2(x + 2) 2 e x + ( k 1) mesmo conjunto solução, então a constante k é igual a 112

Se, no universo R, as inequações 3(x 1) 2(x + 2) 2 e x + ( k 1) mesmo conjunto solução, então a constante k é igual a 112 Questão 01) A fórmula N 5 p + 8 4 = dá o valor aproximado do número do calçado (N) em função do comprimento (p), em centímetros, do pé de qualquer pessoa. De acordo com a fórmula, o comprimento do pé de

Leia mais

Simulado _Rec_1Bim 15/05/2015 Colégio Nomelini. Gabarito: Resposta da questão 1: [E] Resposta da questão 2: [C] Resposta da questão 3: [D]

Simulado _Rec_1Bim 15/05/2015 Colégio Nomelini. Gabarito: Resposta da questão 1: [E] Resposta da questão 2: [C] Resposta da questão 3: [D] Gabarito: Resposta da questão 1: Resposta da questão 2: Resposta da questão 3: Resposta da questão 4: Resposta da questão 5: Resposta da questão 6: Resposta da questão 7: Resposta da questão 8: Resposta

Leia mais

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES 01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores

Leia mais

Receita, Custo e Lucro

Receita, Custo e Lucro Receita, Custo e Lucro 1. (Espcex (Aman) 014) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é V(x) 3x 1x e o custo mensal da produção é dado por

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES.

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. 1) Calcule o valor das expressões: a) 19,6 + 3,04 + 0,076 = b) 17 + 4,32 + 0,006 = c) 4,85-2,3 = d) 9,9-8,76 = e) (0,378-0,06)

Leia mais

Matemática Financeira. 1ª Parte: Porcentagem Comparação entre Valores - Aumento e Desconto Juros

Matemática Financeira. 1ª Parte: Porcentagem Comparação entre Valores - Aumento e Desconto Juros Matemática ª série Lista 08 Junho/2016 Profª Helena Matemática Financeira 1ª Parte: Porcentagem Comparação entre Valores - Aumento e Desconto Juros 1) (GV) Carlos recebeu R$ 240.000,00 pela venda de um

Leia mais

Nome do aluno: Nº. Classificação: E.Educação:

Nome do aluno: Nº. Classificação: E.Educação: 9º Ano ESCOLA SECUNDÁRIA/3 DE SANTA MARIA DA FEIRA Ano Letivo 2012/13 TURMA: A TESTE DE MATEMÁTICA Professora Lourdes Fonseca Nome do aluno: Nº Classificação: E.Educação: 1. Observa a roleta da sorte representada

Leia mais

x 2y z 9 2x y z 3, 3x y 2z 4

x 2y z 9 2x y z 3, 3x y 2z 4 PROFESSOR: Equipe BANCO DE QUESTÕES - MATEMÁTICA - 2ª SÉRIE - ENSINO MÉDIO - PARTE 3 ============================================================================================= Sistemas 01- Se a terna

Leia mais

Professor: Pedro Ítallo

Professor: Pedro Ítallo Professor: Pedro Ítallo 01 - (UNIRG TO) O reservatório de água de uma cidade tem formato cilíndrico, com 4 m de altura e 6 m de diâmetro. Para resolver o problema de abastecimento de água decidiram construir

Leia mais

Matemática EXCETO

Matemática EXCETO Matemática 01 Considere as seguintes afirmações abaixo: I 0,777... é um número racional. II é maior que 5/3. III Todo número par pode ser escrito na forma 2n + 1. Estão corretas apenas as afirmações a)

Leia mais

FUNÇÃO DO 2 GRAU TERÇA FEIRA

FUNÇÃO DO 2 GRAU TERÇA FEIRA FUNÇÃO DO GRAU TERÇA FEIRA 1. (G1 - cftmg 016) Dadas as funções reais f e g, definidas por correto afirmar que 1 a) f(x) g 0, 4 para todo x. b) f(x) 0, para todo x. f(x) 3x e g(x) 4x 1, é c) f(x) g(x),

Leia mais

Nome: N.º: endereço: data: telefone: PARA QUEM CURSA O 7 Ọ ANO EM Disciplina: matemática

Nome: N.º: endereço: data: telefone:   PARA QUEM CURSA O 7 Ọ ANO EM Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 7 Ọ ANO EM 0 Disciplina: matemática Prova: desafio nota: QUESTÃO 6 Um aluno que adora matemática desenha uma estrela de 6 pontas e

Leia mais

Matemática. Progressão Aritmética. Eduardo. Matemática Progressões

Matemática. Progressão Aritmética. Eduardo. Matemática Progressões Matemática Progressão Aritmética Eduardo Progressão Aritmética P.A. CRESCENTE r > 0 Ex: (-4, -2, 0,...) P.A. DECRESCENTE r < 0 Ex: (10, 8, 6,...) P.A. CONSTANTE r = 0 Ex: (8, 8, 8,...) Progressão Aritmética

Leia mais

6º Ano do Ensino Fundamental

6º Ano do Ensino Fundamental MINISTÉRIO DA DEFESA Manaus AM 8 de outubro de 2009. EXÉRCITO BRASILEIRO CONCURSO DE ADMISSÃO 2009/200 DECEx - D E P A COLÉGIO MILITAR DE MANAUS MATEMÁTICA 6º Ano do Ensino Fundamental INSTRUÇÕES (CANDIDATO

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web . (Pucrj 015) Sejam as funções f(x) = x 6x e g(x) = x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) < g(x) é: a) 8 b) 1 c) 60 d) 7 e) 10 4. (Acafe 014) O vazamento ocorrido

Leia mais

Graduação em Administração Módulo Discursivo - Matemática Aplicada 02/12/2007 Ingresso em fevereiro de 2008

Graduação em Administração Módulo Discursivo - Matemática Aplicada 02/12/2007 Ingresso em fevereiro de 2008 Graduação em Administração Módulo Discursivo - Matemática Aplicada 02/12/2007 Ingresso em fevereiro de 2008 Favor aguardar a autorização do fiscal para abrir o caderno e iniciar a prova. Instruções Leia

Leia mais

Pode-se calcular a raiz quadrada de um número x com uma boa aproximação usando a fórmula x =, na qual Q é o quadrado mais próximo de x.

Pode-se calcular a raiz quadrada de um número x com uma boa aproximação usando a fórmula x =, na qual Q é o quadrado mais próximo de x. MATEMÁTICA E SUAS TECNOLOGIAS QUESTÃO 1 Pode-se calcular a raiz quadrada de um número x com uma boa aproximação x + Q usando a fórmula x =, na qual Q é o quadrado mais próximo de x. 2 Q D C E B A 12 13

Leia mais

Escola Secundária Dr. Augusto César da Silva Ferreira Rio Maior. Ano Lectivo 2008/2009. Ficha de Exercícios/Problemas N.º 2

Escola Secundária Dr. Augusto César da Silva Ferreira Rio Maior. Ano Lectivo 2008/2009. Ficha de Exercícios/Problemas N.º 2 Escola Secundária Dr. Augusto César da Silva Ferreira Rio Maior Ano Lectivo 2008/2009 Ficha de Exercícios/Problemas N.º 2 Razão. Proporção. Regra de três simples. Percentagens. Proporcionalidade Directa.

Leia mais

Sistemas Lineares 2016

Sistemas Lineares 2016 Sistemas Lineares 016 1. (Uel 016) A Internet armazena uma quantidade enorme de informações. Ao fazer uma busca na rede, os sites são listados em ordem decrescente segundo o seu grau de importância. Considere

Leia mais