OFICINA DA PESQUISA. Prof. Msc. Carlos José Giudice dos Santos

Tamanho: px
Começar a partir da página:

Download "OFICINA DA PESQUISA. Prof. Msc. Carlos José Giudice dos Santos"

Transcrição

1 OFICINA DA PESQUISA DISCIPLINA: LÓGICA MATEMÁTICA E COMPUTACIONAL APOSTILA 6 TEORIA DOS CONJUNTOS Prof. Msc. Carlos José Giudice dos Santos

2 TEORIA DE CONJUNTOS [1] A ideia básica de conjunto é tão ou mais antiga que a noção de número. Ainda hoje existem algumas tribos não contaminadas pela civilização em que essa noção que confunde conjunto com a noção de número é clara. A matemática desses povos é extremamente simples. Por exemplo, a noção de quantidade se resume a apenas três ordens de grandeza: um, dois e muitos. O conceito de conjunto e o de elemento de um conjunto são considerados conceitos primitivos, ou seja, não são definidos. Apesar disso, os matemáticos aceitam o fato de que um conjunto fica categorizado a partir do momento em que conhecemos seus elementos.

3 TEORIA DE CONJUNTOS [2] Partindo do pressuposto que podemos afirmar que um dado objeto ou ser faz ou não parte de um determinado conjunto, temos assim um conjunto formalmente caracterizado. Assim, só podemos trabalhar com conjuntos a partir do momento em que seus elementos também possuem características que nos permita reconhece-los. Um conjunto pode ser determinado de duas maneiras: 1. Pela designação de seus elementos; 2. Pela propriedade de seus elementos.

4 TEORIA DE CONJUNTOS [3] Por exemplo, um conjunto determinado pela designação de seus elementos é aquele em que indicamos os elementos do conjunto, escrevendo eles entre chaves. Assim, o conjunto das vogais de nosso alfabeto pode ser designado pelo conjunto A = {a, e, i, o, u} Já um conjunto designado pela propriedade de seus elementos pressupõe a existência de uma propriedade que todos os elementos do conjunto, e somente eles, possuem. Assim, o conjunto {6, 7, 8, 9, 10,...} pode ser designado como um conjunto B = {x x é natural e x > 10}.

5 TEORIA DE CONJUNTOS [4]

6 CONJUNTOS NUMÉRICOS A utilização de conjuntos numéricos surgiu da necessidade de representar quantidades. Ao longo da história, surgiram necessidades como a de ordenar ou contar um certo número de objetos em diversas culturas (babilônica, romana, chinesa e indo-arábica). O sistema de numeração utilizado por nós hoje é derivado do sistema indo-arábico, que embora tenha sido inventado há cerca de 5 mil anos, só foi formalmente introduzido na Europa no século XIII. O primeiro conjunto numérico derivado dessa representação é o conjunto dos números naturais.

7 Conjunto dos Números Naturais O conjunto dos números naturais é representado pela letra N = {0, 1, 2, 3, 4,...} É um conjunto infinito e ordenado, ou seja, dados dois números naturais quaisquer, é sempre possível dizer se são iguais ou se um deles é maior ou menor que o outro. A partir do conjunto N, podemos definir o conjunto N*, como o conjunto dos números naturais não nulos. Assim: N* = {1, 2, 3, 4,...}

8 Conjunto dos Números Inteiros Relativos [1] A primeira vez que se pediu para que alguém desse o resultado da operação 1 2, não foi possível encontrar uma resposta. A solução desse problema ficou sem resposta por um bom tempo porque a subtração de dois números naturais (a-b) só era admitida quando a b. Para resolver situações desse tipo foi criado o conjunto dos números inteiros relativos, em que qualquer número negativo é menor que zero ou qualquer outro número positivo. Esse é o conjunto conhecido como Z = {..., -4, -3, -2, -1, 0, 1, 2, 3, 4,...}

9 Conjunto dos Números Inteiros Relativos [2]

10 Conjunto dos Números Racionais

11 Conjunto dos Números Irracionais

12 Conjunto dos Números Reais Quando falamos em números reais, estamos falando em todos os números vistos até aqui, ou seja, o conjunto, o conjunto R dos números reais abrange o conjunto Q dos números racionais e o conjunto I rac dos números irracionais. R = Q + I rac ou R = Q U I rac. Além do conjunto dos números reais, existe ainda o conjunto dos números complexos (Conjunto C), em que R é um subconjunto de C. Todo número complexo é formado por uma par ordenado (a, b), que equivale ao valor a + b.i, em que a R e b R. No segundo termo, i é a unidade imaginária, que equivale a 1.

13 Relação entre conjuntos e seus elementos

14 Igualdade de Conjuntos Dois conjuntos são iguais se, e somente se, eles possuem os mesmos elementos. Assim, os conjuntos A e B são iguais, ou A = B, se, e somente se, x(x A x B) Exemplos: Seja A = {1, 2, 3} e B = {1, 2, 3} A = B Seja C = {a, b, c, d, e} e D = {a, b, c} A B

15 Conjunto Universo O conjunto universo U é o conjunto com todos os elementos que precisamos para trabalhar. Exemplos: Podemos definir o conjunto dos animais de um zoológico como o nosso conjunto U (Universo). Nesse caso, as espécies de aves desse zoológico seria um subconjunto de U. Podemos definir o conjunto de todos os alunos dessa faculdade como o nosso conjunto U. Nesse caso, os alunos de cada sala de aula seriam os subconjuntos de U.

16 Diagramas de Venn Seja U o conjunto de todas as letras do alfabeto. Nesse caso, as vogais seriam um subconjunto de U. Podemos usar a representação gráfica (Diagrama de Venn) para ilustrar essa situação.

17 Exemplos [1] A é um subconjunto de B, denotado por A B, se, e somente se, x(x A x B). Por exemplo: {1, 2} é um subconjunto de {1, 2, 3, 4}. {1, 2, 3, 4} é um subconjunto de {1, 2, 3, 4}.

18 Exemplos [2] Se A BeA B, então podemos dizer que A é um subconjunto próprio de B, denotado por A B. Formalmente: x(x A x B) x(x B x / A). Por exemplo: {1, 2} é um subconjunto próprio de {1, 2, 3, 4}. {1, 2, 3, 4} não é um subconjunto próprio de {1, 2, 3, 4}.

19 União de Conjuntos A união de 2 conjuntos A e B é o conjunto que contém elementos que pertençam à A ou B (ou ambos). A B={x x A x B} Exemplo 1: {1, 2, 3} {4, 5} = {1, 2, 3, 4, 5} Exemplo 2: {1, 2, 3} {3, 4} = {1, 2, 3, 4}

20 Interseção de Conjuntos A interseção de 2 conjuntos A e B é o conjunto que contém elementos que pertençam tanto à A quanto à B. A B={x (x A) (x B)} Exemplo 1: {1, 2, 3} {2, 3, 4, 5} = {2, 3} Exemplo 2: {1, 2, 3} {1, 4, 5, 6} = {1}

21 Conjuntos Disjuntos Dois conjuntos A e B são disjuntos se a interseção entre eles é vazia. Exemplo: {1, 2, 3, 4} e {5, 6, 7, 8, 9, 10} são disjuntos.

22 Diferença de Conjuntos A diferença de A e B (ou o complemento de A em relação à B) é o conjunto que contém elementos de A que não estão em B. Formalmente: A B = {x x A x / B} Exemplo: {1, 2, 3, 4} {2, 3} = {1, 4}

23 Identidades de Conjuntos [1]

24 Identidades de Conjuntos [2]

25 Exercício de Fixação [1] Dado um grupo de N alunos que estão estudando para fazer um concurso, sabe-se que: 20 alunos fazem um curso preparatório 35 alunos assistem vídeo-aulas no Youtube 10 alunos fazem curso preparatório e assistem vídeoaulas no Youtube. 5 alunos estudam sozinhos Qual é o número de alunos desse grupo?

26 Resolução do Exercício de Fixação [1] Seja A o conjunto de alunos que fazem o curso preparatório, e B o conjunto de alunos que fazem vídeoaulas no Youtube. Usando o diagrama de Venn, temos:

27 Exercício de Fixação [2] Uma pesquisa de mercado com 200 clientes que fizeram degustação e compraram três tipos de queijos raros (A, B e C) revelou as seguintes informações: 10 clientes compraram apenas o queijo A; 20 clientes compraram apenas o queijo C; 90 clientes compraram o queijo A; 20 clientes compraram o queijo A e B; 25 clientes compraram o queijo B e C; 15 compraram os queijos A, B e C Quantas unidades de cada tipo de queijo foram compradas pelos clientes?

28 Resolução do Exercício de Fixação [2] Usando o diagrama de Venn, temos:

29 Exercício Proposto [1]

30 Exercício Proposto [2]

31 Exercício Proposto [3] José Carlos e Marlene são os pais de Valéria. A família quer viajar nas férias de julho. José Carlos conseguiu tirar suas férias na fábrica do dia 2 ao dia 28. Marlene obteve licença no escritório de 5 a 30. As férias de Valéria na escola vão de 1 a 25. Durante quantos dias a família poderá viajar sem faltar as suas obrigações? a) 19 b) 20 c) 21 d) 22 e) 23

32 Exercício Proposto [4] (UNESP) Numa classe de 30 alunos, 16 gostam de Matemática e 20 gostam de História. O número de alunos desta classe que gostam de Matemática e História é: a) exatamente 16 b) exatamente 10 c) no máximo 6 d) no mínimo 6 e) exatamente 18

33 Exercício Proposto [5] (PUC) Numa pesquisa de mercado, verificou-se que 15 pessoas utilizam pelo menos um dos produtos A ou B. Sabendo que 10 destas pessoas não usam o produto B e que 2 destas pessoas não usam o produto A, qual é o número de pessoas que utilizam os produtos A e B? a) 2 b) 3 c) 4 d) 5 e) 8

34 Exercício Proposto [6] (Concurso Bombeiros MG 2008) Considere que temos o conjunto A = {x Є U x satisfaz p}. Sobre A podemos afirmar: a) Se x Є U então x Є A b) Se x Aentão x U c) Se x não satisfaz p então x A d) U A e) Todas as afirmativas anteriores são falsas

35 Exercício Proposto [7] (Concurso PM Acre 2012) Sejam os conjuntos A = {1, 2, 3} e B = {2, 3, 5}, determine o conjunto A B. A) { } B) {1, 5} C) {5} D) {1} E) {2, 3}

36 Exercício Proposto [8] (Concurso PM Acre 2012) Considere o conjunto A = {1, 2, {3}} e assinale a alternativa que contém um subconjunto de A. A) {3} B) {1, 3} C) {2, 3} D) {4, {3}} E) {{3}}

37 Exercício Proposto [9] Ao final de um dia, foram feitas 100 denúncias de crimes contra os direitos humanos no site da Polícia Federal. Os crimes que podem ser denunciados são: [1] Tráfico de pessoas; [2] Exploração sexual; [3] Pornografia infantil. Após a análise de informações, constatou-se que: (A) 5 denúncias não correspondem a nenhum dos três crimes; (B) 5 denúncias correspondem aos três crimes juntos; (C) 30 denúncias correspondem apenas aos crimes [1] e [3] juntos, e 5 denúncias, aos crimes [2] e [3] juntos; (D) O número de denúncias exclusivas do crime [1] foi de 5, e de denúncias exclusivas do crime [2] foi de 20, e apenas desses dois crimes [1] e [2] juntos foi de 5; (E) O total de denúncias mais alto foi do crime [3], totalizando 65 denúncias, mas que podem estar associadas com ou outros dois tipos de crimes. Quantas foram as denúncias exclusivas do crime [3] (Pornografia infantil)?

38 Exercício Proposto [10] (Concurso PMSC 2011) Leia as afirmações a seguir: I. Os números Naturais são aqueles inteiros não positivos mais o zero. II. Os números Irracionais são aqueles que representam dízimas periódicas. III. Os números Reais representam a soma dos números Racionais com os Irracionais. Assinale a única alternativa correta: a) Somente a assertiva II está correta. b) Somente a assertiva III está correta. c) Somente a assertiva I está correta. d) Somente as assertivas II e III estão corretas. e) Todas as assertivas são incorretas

39 Exercício Proposto [11] (Concurso PM Piauí 2009) Considerando o conjunto universo U = {2, 4, 6, 8, 10} e os conjuntos não-vazios A e B, subconjuntos de U, tais que B A, A U B = {6, 8, 10} e A B = {8}, pode-se afirmar, CORRETAMENTE, que A é: a) {6,8,10} b) {4,6} c) {4,6,8} d) {2,6,10} e) {6,8}

40 Exercício Proposto [12] (Concurso PM Piauí 2009) Dados os conjuntos: A = {x R/1 x<10} B = {x R/(x+1)(x-6) < 0} C = {z R/z² = 6z} O conjunto A (C B) é: a) (-1, 7) b) {3} (5, 7) c) {0, 3} d) (5, 7) e) [1, 6]

TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013.

TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013. TEORIA DOS CONJUNTOS Professor: Marcelo Silva marcelo.silva@ifrn.edu.br Natal - RN, agosto de 2013. 1 INTRODUÇÃO Um funcionário do departamento de seleção de pessoal de uma indústria automobilística, analisando

Leia mais

Conjuntos. Ou ainda por diagrama (diagrama de Venn-Euler):

Conjuntos. Ou ainda por diagrama (diagrama de Venn-Euler): Capítulo 1 Conjuntos Conjunto é uma coleção de objetos, não importando a ordem ou quantas vezes algum objeto apareça, exemplos: Conjunto dos meses do ano; Conjunto das letras do nosso alfabeto; Conjunto

Leia mais

Capítulo 2 Noções de conjuntos

Capítulo 2 Noções de conjuntos THE BRIDGEMAN/KEYSTONE Capítulo 2 Noções de conjuntos X SAIR Para representar o conjunto A formado pelos números naturais de 0 a 10, podem-se utilizar três possibilidades: 1ª forma: pela citação dos elementos.

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO

DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO Conjuntos A noção de conjunto em Matemática é praticamente a mesma utilizada na linguagem

Leia mais

MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS. Conjunto é um conceito primitivo, e portanto, não tem definição.

MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS. Conjunto é um conceito primitivo, e portanto, não tem definição. 1 - Conceito de Conjunto MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS Conjunto é um conceito primitivo, e portanto, não tem definição. Representação O conjunto pode ser representado de três maneiras diferentes:

Leia mais

RLM - PROFESSOR CARLOS EDUARDO AULA 3

RLM - PROFESSOR CARLOS EDUARDO AULA 3 AULA 3 Sucessões = sequências(numéricas) São conjuntos de números reais dispostos numa certa ordem. Uma sequência pode ser FINITA ou INFINITA. Ex: a) (3, 6, 9, 12) sequência finita P.A de razão 3 b) (5,

Leia mais

Teoria dos Conjuntos. Prof. Jorge

Teoria dos Conjuntos. Prof. Jorge Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos - Conjunto I. O conjunto dos alunos do

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

Descrevendo um conjunto

Descrevendo um conjunto Conjuntos Veja os seguintes exemplos: Jogadores de um time Lista de compras Números Inteiros Alfabeto Se você está familiarizado com estes exemplos, é claro que você tem a ideia do que é um conjunto, podemos

Leia mais

Matemática Discreta - 07

Matemática Discreta - 07 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

1 Conjunto dos números naturais N

1 Conjunto dos números naturais N Conjuntos numéricos Os primeiros números concebidos pela humanidade surgiram da necessidade de contar objetos. Porém, outras necessidades, práticas ou teóricas, provocaram a criação de outros tipos de

Leia mais

Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS

Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS O conjunto é um conceito fundamental em todos os ramos da matemática. Intuitivamente, um conjunto é uma lista, coleção ou classe de objetods bem

Leia mais

AULA 01 CONJUNTOS NUMÉRICOS

AULA 01 CONJUNTOS NUMÉRICOS AULA 01 CONJUNTOS NUMÉRICOS Apostila M1 página: 34 Para trabalharmos com números, devemos primeiramente ter um conhecimento básico de quais são os conjuntos ("tipos") de números existentes atualmente.

Leia mais

Sumário. 1 CAPÍTULO 1 Revisão de álgebra

Sumário. 1 CAPÍTULO 1 Revisão de álgebra Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção

Leia mais

Conjuntos. 1 Conceitos primitivos. representação de um conjunto. 2.1 REPRESENTAÇÃO TABULAR. 2.2 Representação por Diagrama de Venn- Euler

Conjuntos. 1 Conceitos primitivos. representação de um conjunto. 2.1 REPRESENTAÇÃO TABULAR. 2.2 Representação por Diagrama de Venn- Euler MT I Prof. Gustavo dolfo Soares Conjuntos a) 1 Conceitos primitivos Os conceitos que iniciam uma teoria são aceitos sem definição, pois, não existindo ainda a teoria, não há recurso para definí-los; por

Leia mais

Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática

Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática 2014 Na teoria dos conjuntos três noções são aceitas sem denição (noção primitiva):: Conjunto;

Leia mais

Aula 1 Conjuntos Numéricos

Aula 1 Conjuntos Numéricos 1 FUNDAMENTOS DA MATEMÁTICA Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega UNIDADE 1 2 EMENTA Basicamente, veremos: U1 Conjuntos Numéricos. Regra de três (simples e compostas). Funções de 1º e 2º

Leia mais

ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA AULA 1 _ Conjuntos Professor Luciano Nóbrega Maria Auxiliadora 2 Pode-se dizer que a é, em grande parte, trabalho de um único matemático: Georg Cantor (1845-1918). A noção de conjunto não é suscetível

Leia mais

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez). SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para

Leia mais

Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio.

Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio. CONJUNTOS Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio. Exemplos: A = {a, e, i, o, u} (conjunto das vogais do

Leia mais

Teoria dos Conjuntos FBV. Prof. Rossini Bezerra

Teoria dos Conjuntos FBV. Prof. Rossini Bezerra Teoria dos onjuntos FV Prof. Rossini ezerra Os resultados do trabalho de Georg Ferdinand Ludwing Phillip antor estabeleceram a teoria de conjuntos como uma disciplina matemática completamente desenvolvida

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Definição: Todo objeto parte de um conjunto é denominado elemento.

Definição: Todo objeto parte de um conjunto é denominado elemento. 1. CONJUNTOS 1.1. TEORIA DE CONJUNTOS 1.1.1. DEFINIÇÃO DE CONJUNTO Definição: Conjunto é toda coleção de objetos. Uma coleção de números é um conjunto. Uma coleção de letras é um conjunto. Uma coleção

Leia mais

CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,...

CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,... ssunto: Conjunto e Conjuntos Numéricos ssunto: Teoria dos Conjuntos Conceitos primitivos. Representação e tipos de conjunto. Operação com conjuntos. Conceitos Primitivos: CURSO DO ZERO Para dar início

Leia mais

EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS

EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS NOME: TURMA: SANTO ANDRÉ, DE DE EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS Conjunto dos números naturais -Representado pela letra N, este conjunto abrange todos os números inteiros positivos, incluindo

Leia mais

TURMA DO M RIO TEORIA DOS CONJUNTOS

TURMA DO M RIO TEORIA DOS CONJUNTOS TURM DO M RIO TEORI DOS ONJUNTOS Entes Primitivos onjunto é uma idéia associada à coleção de objetos ou grupo. Não existe uma definição precisa, mas mesmo assim todos os seres racionais possuem intuitivamente

Leia mais

CONJUNTOS NUMÉRICOS. O que são?

CONJUNTOS NUMÉRICOS. O que são? CONJUNTOS NUMÉRICOS O que são? Os Naturais Os números Naturais surgiram da necessidade de contar as coisas. Eles são todos os números inteiros positivos, incluindo o zero. É representado pela letra maiúscula

Leia mais

Matemática Conjuntos - Teoria

Matemática Conjuntos - Teoria Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos

Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos Pode-se dizer que a é em grande parte trabalho de um único matemático: Georg Cantor (1845-1918). noção de conjunto não é suscetível de definição precisa a partir d noções mais simples, ou seja, é uma noção

Leia mais

Conjuntos Numéricos. 16 fev. 01. Resumo 02. Exercícios de Aula 03. Exercícios de Casa 04. Questão Contexto

Conjuntos Numéricos. 16 fev. 01. Resumo 02. Exercícios de Aula 03. Exercícios de Casa 04. Questão Contexto Conjuntos Numéricos 16 fev 01. Resumo 02. Exercícios de Aula 03. Exercícios de Casa 04. Questão Contexto RESUMO Ao estudarmos os conjuntos numéricos, estamos dando um foco num segmento do estudo dos conjuntos.

Leia mais

INTRODUÇÃO À TEORIA DOS CONJUNTOS

INTRODUÇÃO À TEORIA DOS CONJUNTOS 1 INTRODUÇÃO À TEORIA DOS CONJUNTOS Gil da Costa Marques 1.1 Introdução 1.2 Conceitos básicos 1.3 Subconjuntos e intervalos 1.4 O conjunto dos números reais 1.4.1 A relação de ordem em 1.5 Intervalos 1.5.1

Leia mais

Aula 1. e o conjunto dos inteiros é :

Aula 1. e o conjunto dos inteiros é : Aula 1 1. Números reais O conjunto dos números reais, R, pode ser visto como o conjunto dos pontos da linha real, que serão em geral denotados por letras minúsculas: x, y, s, t, u, etc. R é munido de quatro

Leia mais

Aulas 10 e 11 / 18 e 20 de abril

Aulas 10 e 11 / 18 e 20 de abril 1 Conjuntos Aulas 10 e 11 / 18 e 20 de abril Um conjunto é uma coleção de objetos. Estes objetos são chamados de elementos do conjunto. A única restrição é que em geral um mesmo elemento não pode contar

Leia mais

Generalidades sobre conjuntos

Generalidades sobre conjuntos Generalidades sobre conjuntos E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Conjuntos e a noção de pertinência Na teoria dos

Leia mais

Matemática. Resolução das atividades complementares. M3 Conjuntos

Matemática. Resolução das atividades complementares. M3 Conjuntos Resolução das atividades complementares 1 Matemática M3 Conjuntos p. 52 1 Considere os conjuntos A 5 {x M* x é par e x. 6}, 5 {x M* x é ímpar e x, 21} e C 5 {x M* x é par}. Então: a) A tem 2 elementos

Leia mais

Conjuntos Contáveis e Não Contáveis / Contagem

Conjuntos Contáveis e Não Contáveis / Contagem Conjuntos Contáveis e Não Contáveis / Contagem Introdução A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras,

Leia mais

Interruptores e Conjuntos

Interruptores e Conjuntos aula 03 (Lógica) Sistemas Dicotômicos, Interruptores e Conjuntos Professor: Renê Furtado Felix E-mail: rffelix70@yahoo.com.br Site: http://www.renecomputer.net/pdflog.html Sistemas Dicotômicos Aula de

Leia mais

Também podemos representar um conjunto por meio de uma figura chamada diagrama de Venn (John Venn, lógico inglês, ).

Também podemos representar um conjunto por meio de uma figura chamada diagrama de Venn (John Venn, lógico inglês, ). O que é conjunto Frequentemente usamos a noção de conjunto. Assim, ao organizar a lista de amigos para uma festa, ao preparar o material escolar ou, então, ao formar um time, estamos constituindo conjuntos.

Leia mais

Curso de Matemática Aplicada.

Curso de Matemática Aplicada. Aula 1 p.1/25 Curso de Matemática Aplicada. Margarete Oliveira Domingues PGMET/INPE Sistema de números reais e complexos Aula 1 p.2/25 Aula 1 p.3/25 Conjuntos Conjunto, classe e coleção de objetos possuindo

Leia mais

Conjuntos e sua Representação

Conjuntos e sua Representação Conjuntos e sua Representação Professor: Nuno Rocha nuno.ahcor@gmail.com Conjuntos Um conjunto é o agrupamento de vários elementos que possuem características semelhantes. Exemplos de conjuntos: Países

Leia mais

Hewlett-Packard CONJUNTOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard CONJUNTOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard CONJUNTOS Aulas 01 a 06 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano 2016 Sumário CONJUNTOS... 2 CONCEITOS PRIMITIVOS... 2 REPRESENTAÇÃO DE UM CONJUNTO... 2 RELAÇÃO DE PERTINÊNCIA...

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

MATEMÁTICA. ÍNDICE Conjuntos Numéricos... 2

MATEMÁTICA. ÍNDICE Conjuntos Numéricos... 2 MATEMÁTICA ÍNDICE Conjuntos Numéricos... 2 1 1 Matemática 2 Conjuntos Numéricos 00 Introdução Os conjuntos numéricos mostram a evolução do homem no decorrer do tempo mostrando que, de acordo com suas necessidades,

Leia mais

Matemática A Extensivo V. 2

Matemática A Extensivo V. 2 GRITO Matemática Extensivo V. Exercícios 0) a) Verdadeira. e são elementos de. b) Verdadeira. Pois {} é elemento de. c) Verdadeira. Pois não é elemento de. d) Verdadeira. Pois {} é um subconjunto de. e)

Leia mais

Geometria Analítica. Geometria Analítica Geometria É importante compreender a geometria, para dar resposta a questões como: 15/08/2012

Geometria Analítica. Geometria Analítica Geometria É importante compreender a geometria, para dar resposta a questões como: 15/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Geometria A Geometria é um ramo da matemática preocupado com questões de forma, tamanho e posição relativa de figuras

Leia mais

Cálculo Diferencial e Integral Química Notas de Aula

Cálculo Diferencial e Integral Química Notas de Aula Cálculo Diferencial e Integral Química Notas de Aula João Roberto Gerônimo 1 1 Professor Associado do Departamento de Matemática da UEM. E-mail: jrgeronimo@uem.br. ÍNDICE 1. INTRODUÇÃO Esta notas de aula

Leia mais

2 - Explicite os conjuntos indicados: (1) { x N x 5 } (3) { x N x 2 < 5 } (2) { x N x 2 = 4 } (4) { x Z x 2 < 5 }

2 - Explicite os conjuntos indicados: (1) { x N x 5 } (3) { x N x 2 < 5 } (2) { x N x 2 = 4 } (4) { x Z x 2 < 5 } Lista de Conjuntos Numéricos Revisão para o Simulado Nacional Rumoaoita (Ciclo Zero) 1 - Considere os conjuntos: A - conjunto dos números pares positivos; B - conjunto dos números ímpares positivos; C

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

III) se deste número n subtrairmos o número 3816, obteremos um número formado pelos mesmos algarismos do número n, mas na ordem contrária.

III) se deste número n subtrairmos o número 3816, obteremos um número formado pelos mesmos algarismos do número n, mas na ordem contrária. 1 Projeto Jovem Nota 10 1. (Fuvest 2000) Um número inteiro positivo n de 4 algarismos decimais satisfaz às seguintes condições: I) a soma dos quadrados dos 1 e 4 algarismos é 58; II) a soma dos quadrados

Leia mais

Colégio Avanço de Ensino Programado

Colégio Avanço de Ensino Programado α Colégio Avanço de Ensino Programado Trabalho Bimestral 1º Semestre - 1º Bim. /2016 Nota: Professor (a): Lúcia Disciplina: Matemática Turma: 1ª Série E. Médio Nome: Nº: Atividade deverá ser entregue em

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Professor conteudista: Renato Zanini Sumário Matemática Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7 4 RESOLVENDO

Leia mais

MANT _ EJA I. Aula 01. 1º Bimestre. Teoria dos Conjuntos Professor Luciano Nóbrega. DEUS criou os números naturais. O resto é obra dos homens.

MANT _ EJA I. Aula 01. 1º Bimestre. Teoria dos Conjuntos Professor Luciano Nóbrega. DEUS criou os números naturais. O resto é obra dos homens. MANT _ EJA I DEUS criou os números naturais. O resto é obra dos homens. Aula 01 Teoria dos Conjuntos Professor Luciano Nóbrega Leopold Kronecker (Matemático Alemão) 1 1º Bimestre 2 Observe a foto de um

Leia mais

Notas de Aulas 1 - Conjuntos Prof Carlos A S Soares

Notas de Aulas 1 - Conjuntos Prof Carlos A S Soares Notas de Aulas 1 - Conjuntos Prof Carlos A S Soares 1 Preliminares e relação de pertinência Nestas notas não temos a pretensão de apresentar a teoria de conjuntos e seus axiomas, tão somente pretendemos

Leia mais

ADIÇÃO E SUBTRAÇÃO DE ARCOS ADIÇÃO E SUBTRAÇÃO DE ARCOS EXERCÍCIOS DE FIXAÇÃO

ADIÇÃO E SUBTRAÇÃO DE ARCOS ADIÇÃO E SUBTRAÇÃO DE ARCOS EXERCÍCIOS DE FIXAÇÃO ADIÇÃO E SUBTRAÇÃO DE ARCOS AULA ESCRITA EXERCÍCIOS DE FIXAÇÃO ADIÇÃO E SUBTRAÇÃO DE ARCOS EXERCÍCIOS DE FIXAÇÃO E0176 Calcule o seno de 345º. RESOLUÇÃO CONJUNTOS AULA ESCRITA EXERCÍCIOS DE FIXAÇÃO EXERCÍCIOS

Leia mais

Matemática Instrumental Prof.: Luiz Gonzaga Damasceno

Matemática Instrumental Prof.: Luiz Gonzaga Damasceno 1 Matemática Instrumental 2008.1 Aula 1 Introdução Hoje em dia temos a educação presencial, semi-presencial e educação a distância. A presencial é a dos cursos regulares, onde professores e alunos se encontram

Leia mais

LÓGICA I ANDRÉ PONTES

LÓGICA I ANDRÉ PONTES LÓGICA I ANDRÉ PONTES 3. Introdução à Teoria dos Conjuntos Um conjunto é uma coleção ou um agregado de objetos. Introduzindo Conjuntos Ex.: O conjunto das vogais; O conjuntos de pessoas na sala; O conjunto

Leia mais

Os números foram criados para quantificar algo, seja pela proporção ou medida (comprimento, área, volume, tempo, peso, etc.).

Os números foram criados para quantificar algo, seja pela proporção ou medida (comprimento, área, volume, tempo, peso, etc.). PEDREIRA, Sinvaldo Martins [1] [2] PEDREIRA, Sinvaldo Martins. O valor dos números. Revista Científica Multidisciplinar Núcleo do Conhecimento. Ano 1, Vol.8. pp.5-16, setembro de 2016. ISSN.2448-0959 RESUMO

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

ELETRÔNICA DIGITAL Aula 1- Sistemas de Numeração. Prof.ª Msc. Patricia Pedroso Estevam Ribeiro

ELETRÔNICA DIGITAL Aula 1- Sistemas de Numeração. Prof.ª Msc. Patricia Pedroso Estevam Ribeiro ELETRÔNICA DIGITAL Aula 1- Sistemas de Numeração Prof.ª Msc. Patricia Pedroso Estevam Ribeiro Email: patriciapedrosoestevam@hotmail.com 12/08/2016 1 Critérios de avaliação Duas provas e listas de exercícios

Leia mais

Unidade I MATEMÁTICA APLICADA. Profa. Ana Carolina Bueno

Unidade I MATEMÁTICA APLICADA. Profa. Ana Carolina Bueno Unidade I MATEMÁTICA APLICADA Profa. Ana Carolina Bueno Números reais Fonte: http://infomaticando.blogspot.com.br/2012/12/numeros-irracionais.html Expressões algébricas São expressões matemáticas que apresentam

Leia mais

I. Conjunto Elemento Pertinência

I. Conjunto Elemento Pertinência TEORI DOS CONJUNTOS I. Conjunto Elemento Pertinência Conjunto, elemento e pertinência são três noções aceitas sem definição, ou seja, são noções primitivas. idéia de conjunto é praticamente a mesma que

Leia mais

Matemática I Capítulo 11 Função Modular

Matemática I Capítulo 11 Função Modular Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 11 Função Modular 11.1 - Módulo O módulo, ou valor absoluto, de um número real x representado

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS e CONJUNTOS NUMÉRICOS

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS e CONJUNTOS NUMÉRICOS INTRODUÇÃO... 2 RELAÇÃO DE PERTINÊNCIA... 3 SUBCONJUNTOS E RELAÇÃO DE INCLUSÃO... 6 CONECTIVOS E e OU... 15 OPERAÇÕES ENTRE CONJUNTOS... 17 QUANTIDADE DE ELEMENTOS... 24 CONJUNTO DOS NÚMEROS NATURAIS...

Leia mais

Soluções de Questões de Matemática do Colégio Militar do Rio de Janeiro CMRJ

Soluções de Questões de Matemática do Colégio Militar do Rio de Janeiro CMRJ Soluções de Questões de Matemática do Colégio Militar do Rio de Janeiro CMRJ. Questão Funções Sendo D e D, respectivamente, domínios das funções reais f e g, definidas por f ( x) = x e g ( x) de x no intervalo:,

Leia mais

2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }.

2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. ASSUNTO DE MATEMATICA=CONJUNTOS REAIS E ETC. 2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Básica Professor conteudista: Renato Zanini Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7

Leia mais

Exercícios de Matemática Produtos Notáveis Fatoração

Exercícios de Matemática Produtos Notáveis Fatoração Exercícios de Matemática Produtos Notáveis Fatoração TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Sendo m = x + 1, n = x - x, p =

Leia mais

MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro

MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro MAT 1511 - Laboratório de Matemática I - Diurno - 2005 Profa. Martha Salerno Monteiro Representações decimais de números reais Um número real pode ser representado de várias maneiras, sendo a representação

Leia mais

MATEMÁTICA. a) 30 b) 150 c) 180 d) 200 e) 210

MATEMÁTICA. a) 30 b) 150 c) 180 d) 200 e) 210 1. Considere os conjuntos A = {0, 1, 2, 3}, B= {1, 3, 4, 6}, C= {2, 3, 6, 7} Pede-se: a) A B = b) A C = c) B C = d) A B = MATEMÁTICA 7. Das 40 crianças de uma creche 26 foram vacinadas contra poliomielite

Leia mais

QUERIDO(A) ALUNO(A):

QUERIDO(A) ALUNO(A): 1 QUERIDO(A) ALUNO(A): SEJA BEM-VINDO AO CURSO LIVRE MATEMÁTICA PARA CONCURSOS I. ESTE CURSO OBJETIVA PRIORITARIAMENTE QUE VOCÊ DESENVOLVA COMPETÊNCIAS SIGNIFICATIVAS ATRAVÉS DOS TEMAS ABORDADOS PARA USO

Leia mais

Definimos como conjunto uma coleção qualquer de elementos.

Definimos como conjunto uma coleção qualquer de elementos. Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de

Leia mais

Introdução à Matemática

Introdução à Matemática Universidade Estadual de Goiás Unidade Universitária de Ciências Sócio-Econômicas e Humanas de Anápolis Introdução à Matemática Conjuntos e Conjuntos Numéricos Introdução A noção de conjunto Propriedades,

Leia mais

Conjuntos Numéricos { } { } { } Conjunto dos Números Naturais

Conjuntos Numéricos { } { } { } Conjunto dos Números Naturais 0/0/0 Conjuntos uméricos Conjunto dos úmeros aturais Chama-se conjunto dos números naturais,,o conjunto formado pelos números 0,,,,... {,,,,...} = 0 As duas operações fundamentais, a adição e a multiplicação,

Leia mais

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante.

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante. Conjunto dos Números Naturais A noção de um número natural surge com a pura contagem de objetos. Ao contar, por exemplo, os livros de uma estante, temos como resultado um número do tipo: N = {0,1,2,3 }

Leia mais

UNIVERSIDADE SEVERINO SOMBRA NIVELAMENTO EM MATEMÁTICA 1 PROF. ILYDIO SÁ UNIDADE 1: OS NÚMEROS REAIS

UNIVERSIDADE SEVERINO SOMBRA NIVELAMENTO EM MATEMÁTICA 1 PROF. ILYDIO SÁ UNIDADE 1: OS NÚMEROS REAIS 1 UNIVERSIDADE SEVERINO SOMBRA NIVELAMENTO EM MATEMÁTICA 1 PROF. ILYDIO SÁ UNIDADE 1: OS NÚMEROS REAIS Para esta primeira unidade de nosso curso, que adaptamos a partir de material utilizado em curso de

Leia mais

PROVA DE CONHECIMENTOS ESPECÍFICOS PROFESSOR MUNICIPAL II MATEMÁTICA

PROVA DE CONHECIMENTOS ESPECÍFICOS PROFESSOR MUNICIPAL II MATEMÁTICA 17 PROVA DE CONHECIMENTOS ESPECÍFICOS PROFESSOR MUNICIPAL II MATEMÁTICA QUESTÃO 21 De todos os empregados de uma firma, 40% optaram por um plano de assistência médica. A firma tem a matriz na capital e

Leia mais

5 AULA. Teorias Axiomáticas LIVRO. META: Apresentar teorias axiomáticas.

5 AULA. Teorias Axiomáticas LIVRO. META: Apresentar teorias axiomáticas. 1 LIVRO Teorias Axiomáticas 5 AULA META: Apresentar teorias axiomáticas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Criar teorias axiomáticas; Provar a independência dos axiomas de uma

Leia mais

PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA

PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA PROGRAMA DE NIVELAMENTO 0 MATEMÁTICA I - CONJUNTOS NUMÉRICOS Z {..., -, -, -, 0,,,,...} Não há números inteiros em fração ou decimais Q Racionais São os números que representam partes inteiras ou divisões,

Leia mais

Calendarização da Componente Letiva Ano Letivo 2016/2017

Calendarização da Componente Letiva Ano Letivo 2016/2017 AGRUPAMENTO DE ESCOLAS ANDRÉ SOARES (150952) Calendarização da Componente Letiva Ano Letivo 2016/2017 8º Ano Matemática Períodos 1º Período 2º Período 3º Período Número de aulas previstas (45 minutos)

Leia mais

Lista de Exercícios - Conjuntos

Lista de Exercícios - Conjuntos 01) (UFE) e e são dois conjuntos não vazios e é o conjunto vazio, é verdade que, das afirmações: I. = { } II. ( ) ( ) = ( ) ( ) III. { } = {} {} IV. {,, } são verdadeiras somente: a) I e II d) III e IV

Leia mais

8º ANO. Lista extra de exercícios

8º ANO. Lista extra de exercícios 8º ANO Lista extra de exercícios . Determine os valores de x que tornam as equações a seguir verdadeiras. a) (x + 4)(x ) = 0 b) (x + 6)(x ) = 0 c) (x + )(6x 9) = 0 d) 4x(x ) = 0 e) 7x(x ) = 0. Determine

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º e º SEMESTRE RESOLUÇÃO SEE Nº.197, DE 6 DE OUTUBRO DE 01 ANO 01 PROFESSOR

Leia mais

RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS

RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS Aula 02 TEORIA DOS CONJUNTOS 1. Definição de Conjuntos 2. Como se representa um Conjunto 3. Subconjunto, Pertinência e Continência 4. Conjunto das Partes 5. Operação com Conjuntos 1. União ou Reunião (Conjunção)

Leia mais

1 TEORIA DOS CONJUNTOS

1 TEORIA DOS CONJUNTOS 1 TEORIA DOS CONJUNTOS Definição de Conjunto: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. Em outras palavras,

Leia mais

CONCEITOS FUNDAMENTAIS

CONCEITOS FUNDAMENTAIS CONCEITOS FUNDAMENTAIS EXERCÍCIOS DE APLICAÇÃO 01 (UNIRIO-RJ) O átomo X é isóbaro do 40 Ca e isótopo do 36 Ar. Assinale o número de nêutrons do átomo X. Dados: Número atômicos: Ar = 18; Ca = 20 a) 4 b)

Leia mais

TÍTULO: Plano de Aula TIPOS DE CONJUNTOS. Ensino Fundamental/Anos Iniciais. 4 Ano. Matemática. Conjuntos e operações envolvendo conjuntos

TÍTULO: Plano de Aula TIPOS DE CONJUNTOS. Ensino Fundamental/Anos Iniciais. 4 Ano. Matemática. Conjuntos e operações envolvendo conjuntos Org.: Claudio André - 1 TÍTULO: TIPOS DE CONJUNTOS Nível de Ensino: Ensino Fundamental/Anos Iniciais Ano/Semestre de Estudo Componente Curricular: Tema: Duração da Aula: 4 Ano Matemática Conjuntos e operações

Leia mais

Exercícios de provas nacionais e testes intermédios

Exercícios de provas nacionais e testes intermédios Exercícios de provas nacionais e testes intermédios 1. Considera o conjunto A = [ π[ Qual é o menor número inteiro que pertence ao conjunto A (A) 3 (B) 4 (C) π (D) π 1 2. Qual dos conjuntos seguintes é

Leia mais

Prof. Luiz Felix. Unidade I MATEMÁTICA APLICADA

Prof. Luiz Felix. Unidade I MATEMÁTICA APLICADA Prof. Luiz Felix Unidade I MATEMÁTICA APLICADA Sistemas de numeração A vida do homem, há milhares de anos, era muito diferente da atual. Ele não tinha necessidade de contar, uma vez que não comprava, não

Leia mais

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes

Leia mais

A construção do Sistema de Numeração Decimal SND e Testagem com criança de 6 a 9 anos

A construção do Sistema de Numeração Decimal SND e Testagem com criança de 6 a 9 anos A construção do Sistema de Numeração Decimal SND e Testagem com criança de 6 a 9 anos *as idades são referências, podem variar conforme o contexto Curso Construção de jogos, materiais e atividades de Matemática

Leia mais

Bases Matemáticas. Aula 4 Conjuntos Numéricos. Rodrigo Hausen. v /9

Bases Matemáticas. Aula 4 Conjuntos Numéricos. Rodrigo Hausen. v /9 Bases Matemáticas Aula 4 Conjuntos Numéricos Rodrigo Hausen v. 2016-6-10 1/9 Números Naturais, Inteiros e Racionais naturais: inteiros: racionais: N = {0, 1, 2,...} Z = {... 2, 1, 0, 1, 2,...} { } p Q

Leia mais

Equação de 1º Grau. ax = -b

Equação de 1º Grau. ax = -b Introdução Equação é toda sentença matemática aberta que exprime uma relação de igualdade. A palavra equação tem o prefixo equa, que em latim quer dizer "igual". Exemplos: 2x + 8 = 0 5x - 4 = 6x + 8 3a

Leia mais

PARECER DOS RECURSOS

PARECER DOS RECURSOS Associação Catarinense das Fundações Educacionais ACAFE PROCESSO SELETIVO ADMISSÃO DE PROFESSORES EM CARÁTER TEMPORÁRIO EDITAL Nº 15/ 2012/ SED PARECER DOS RECURSOS CARGO: Professor de Matemática 11) São

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA APOSTILA 1 ARITMÉTICA PARTE I INTRODUÇÃO Durante muitos períodos da história

Leia mais

Lista de Exercícios Equações do 2º Grau

Lista de Exercícios Equações do 2º Grau Lista de Exercícios Equações do º Grau Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero. Aula Equações do Segundo Grau (Parte de ) Endereço: https://youtu.be/4r4rioccmm Gabaritos

Leia mais

Segmento: Pré-vestibular. Coleção: Alfa, Beta e Gama. Disciplina: Matemática. Unidade 1: Série 17. Conjuntos

Segmento: Pré-vestibular. Coleção: Alfa, Beta e Gama. Disciplina: Matemática. Unidade 1: Série 17. Conjuntos Segmento: Pré-vestibular Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: 1 Unidade 1: Série 17 Resoluções Conjuntos 1. A = {1, } O Conjunto A possui dois elementos: 1 e. O total de subconjuntos

Leia mais

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2016/

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2016/ DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2016/2017... 1º Período Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas Geometria

Leia mais