sistemas de cogeração

Tamanho: px
Começar a partir da página:

Download "sistemas de cogeração"

Transcrição

1 EFICIÊNCIA ENERGÉTICA E ENERGIAS RENOVÁVEIS 36 André Fernando Ribeiro de Sá Engenheiro Electrotécnico, Gestor de Energia do Grupo Têxtil Riopele sistemas de cogeração Sala dos motores da cogeração Saramagos (Grupo Têxtil Riopele) 1 PRINCÍPIOS A cogeração é um processo de produção combinada de energia térmica e de energia eléctrica, num sistema integrado, a partir de uma única fonte de combustível (fuelóleo, gás natural, biomassa, gás propano, resíduos industriais, etc.). O calor produzido pode ser utilizado directamente no processo industrial, bem como recuperado e convertido para utilização em aquecimento de espaços, aquecimento de água e em chillers de absorção para produção de frio (trigeração), em oposição de métodos tradicionais de produção de electricidade por via térmica, que desperdiçam todo o calor inerente ao processo. de combustível da produção separada de calor e electricidade, o consumo de combustível de uma central de cogeração, e o acréscimo no rendimento global do processo. Figura 2. Exemplo de comparação entre produção convencional vs cogeração (fonte: Castro, R.M.G., adaptado). Figura 1. Exemplo de diagrama de processo de uma cogeração. Pelo exemplo anterior, pode observar-se que, para obtenção do mesmo produto final, os sistemas de cogeração requerem apenas cerca de 65% da energia primária necessária num sistema tradicional. Como consequência deste ganho de eficiência, advêm benefícios ambientais significativos, decorrentes da diminuição das emissões poluentes por unidade de energia útil produzida. Um sistema de cogeração é mais eficiente do que um sistema tradicional alternativo para obtenção do mesmo serviço de electricidade e calor, composto por um sistema gerador eléctrico e por uma caldeira. Na figura seguinte podemos ver uma comparação entre o consumo Uma cogeração será mais sustentável que um sistema convencional. Ambientalmente melhor uma vez que para o mesmo consumo de energia eléctrica e térmica, emite menor emissão de gases e menor consumo de combustíveis. Economicamente melhor, uma vez que

2 EFICIÊNCIA ENERGÉTICA E ENERGIAS RENOVÁVEIS 37 Outro dos factores que privilegia a cogeração é minimizar as perdas eléctricas na rede de transporte e distribuição de electricidade. A produção, geralmente é consumida localmente, minimizando perdas. A figura 5 ilustra um exemplo de perdas. A figura 6 mostra um esquema típico de aproveitamento do calor num sistema de cogeração, usando permutadores de calor intercalados nos circuitos de arrefecicusta menos combustível para o mesmo consumo. Socialmente melhor, uma vez que optimiza a descentralização de produção, fomentando o emprego e a partilha de informação. Ambiental do energia eléctrica e térmica produzida: CHP E Q = C Num sistema com a produção separada de produção de electricidade e calor, o rendimento global é calculado da seguinte forma: Económico Social Figura 3. Triângulo da Sustentabilidade. A remuneração de electricidade produzida por cogeração poderá ser calculada: VRM = ( PF PV PA) 1 LEV ER VRM é o valor da remuneração mensal, em Euros; PF é a parcela fixa; PV é a parcela variável; PA é a parcela ambiental; LEV representa as perdas evitadas nas redes eléctricas; ER representa os serviços de sistema obrigatórios com a energia reactiva; Para a produção separada de energia eléctrica e de calor utilizamse parâmetros de rendimentos normalmente comparando a energia utilizada em relação à gasta no combustível, referida ao Poder Calorífico Inferior (PCI). SHP E Q = E Q E _ SHP Q _ SHP Assim, deste modo podemos calcular a Poupança de Energia Primária (PEP): PEP = CHP PEP = 1 E SHP E _ SHP E Q E Q = C E Q C Q Q _ SHP E _ SHP = 1 E _ CHP E _ SHP Q _ SHP 1 Q _ CHP Q _ SHP Uma das maneiras de optimizar a eficiência energética é através da cogeração. Conforme se pode ver na figura seguinte, a produção combinada de electricidade e calor é uma das maneiras mais eficientes de produção de energia. Tal como para os edifícios, os sistemas de produção de electricidade também tem uma etiquetagem do nível de eficiência energética, representada na figura seguinte. Tipo de Energia PCI Massa Específica CO 2 TEP Fuelóleo kj/kg 944,00 kg/m 3 76,63 kg/gj 0,969 tep/ton Gás Natural kj/kg 0,84 kg/m 3 55,82 kg/gj 0,820 tep/ton Gasóleo kj/kg 837,00 kg/m 3 73,36 kg/gj 1,045 tep/ton Electricidade ,29 tep/mwh Tabela 1. Algumas características de alguns tipos de combustível (Adaptado da fonte: Instituto do Ambiente, 2008). Rendimento eléctrico E _ CHP = E C Rendimento térmico Q _ CHP = Onde: E é a energia eléctrica produzida, em kwh; Q é a energia térmica produzida, em kwh; C é a energia disponível no combustível, em kwh. Como o sistema de cogeração envolve a produção de mais de uma forma de energia, pode-se definir um rendimento global, engloban- Q C Figura 4. Etiquetagem de sistemas de produção de electricidade (fonte: COGEN Europe, 2006).

3 EFICIÊNCIA ENERGÉTICA E ENERGIAS RENOVÁVEIS 38 mento e dos gases de exaustão da máquina térmica. Tecnologia Vantagens Desvantagens Turbinas a gás Fiabilidade elevada; Emissões poluentes baixas; Calor a temperaturas elevadas ( ºC); Não necessita de refrigeração. Operação com gás a alta pressão; Rendimento reduzido a carga parcial; Potência de saída diminui com o aumento da temperatura ambiente; Ineficiente em processos com poucas necessidades térmicas. Motores alternativos Rendimento eléctrico elevado; Bom desempenho com carga parcial; Arranque rápido; Energia térmica a dois níveis de temperatura gases de escape e arrefecimento do motor; Manutenção no local com pessoal não especializado; Operação com gás a baixa pressão. Custos de manutenção elevados; Calor de baixa temperatura; Emissões poluentes relativamente elevadas; Necessita de refrigeração; Ruído de baixa frequência. Figura 5. Comparação de eficiência de cogeração em comparação com centrais convencionais (fonte: Fernandes, E.O.). Turbinas a vapor Rendimento global elevado; Operação com diversos tipos de combustível; Grandes quantidades de calor disponíveis; Vida útil e fiabilidade elevadas; Vapor a alta pressão. Arranque lento; Rendimento eléctrico baixo. Microturbinas Dimensões compactas; Peso reduzido; Emissões poluentes baixas; Não necessita de refrigeração. Custos elevados; Calor de baixa temperatura; Tecnologia em maturação. Pilhas de Combustível Emissões poluentes baixas; Ruído baixo; Não tem peças rotativas; Modularidade. Custos elevados; Fiabilidade incerta; Tecnologia em maturação; Necessita de pré-processamento do combustível, excepto H puro. Tabela 2. Vantagens e desvantagens dos diferentes tipos de sistemas de cogeração (Fonte: Castro, R.M.G., 2006). Figura 6. Esquema do sistema de cogeração com motor de combustão interna (fonte: ADENE). 2 TIPOS DE SISTEMAS DE COGERAÇÃO Tecnologias convencionais: Turbinas a gás; Motores alternativos ou de combustão interna (explosão e de ignição por compressão); Turbinas de vapor de contra - pressão; Tecnologias emergentes: Microturbinas; Pilhas de Combustível. Tecnologias convencionais Nas centrais termoeléctricas convencionais (a carvão ou a fuel), a conversão de energia faz-se de acordo com o ciclo de Rankine, em que o fluído de trabalho (água) muda de fase ao longo do ciclo termodinâmico. Existem outros equipamentos de conversão, designadamente motores de explosão, motores diesel, turbinas a gás, que se caracterizam por possuir um gás como fluído de trabalho. Contudo, o fluído de trabalho vai sofrendo uma mudança na sua composição à medida que o ciclo vai sendo percorrido: o fluído de trabalho começa por ser o ar, ao qual, durante o processo de combustão, é adicionado combustível, transformando-se numa mistura de ar e combustível, designada por produto de combustão. Esta é a razão porque estes equipamentos de conversão se designam de combustão interna, enquanto as termoeléctricas convencionais se designam de combustão externa porque o calor é transferido dos produtos de combustão para o fluído de trabalho que é sempre o mesmo. Figura 7. Triângulo de fogo

4

5 EFICIÊNCIA ENERGÉTICA E ENERGIAS RENOVÁVEIS 40 Tecnologia Turbina a gás Motores de explosão a GN Motores de compressão interna Turbinas a vapor Microturbinas Pilhas de combustível Rendimento eléctrico 15% - 35 % 22% - 40% 25% - 45% 10% - 40% 18% - 27% 35% - 40% Rendimento térmico 40% - 60% 40% - 60% 40% - 60% 40% - 60% 40% - 60% 20% - 50% Rendimento global 60% - 85% 70% - 80% 70% - 85% 60% - 85% 55% - 75% 55% - 90% Potência típica (MWe) 0, ,05 5 0, , ,03 0,35 0,01 0,25 Relação Pt/Pe 1,25 2 0,4 1,7 0,4 1, ,5 1,1 Desempenho com carga parcial Mau Médio Bom Bom Médio Muito bom Investimento ( /kwe) > 2500 O&M ( /MWhe) (estimativa) 2 12 Disponibilidade 90% - 98% 92% - 97% 92% - 97% 99% 90% - 98% > 95% Revisões (h) > Arranque 10m 1h 10 s 10 s 1h 1 dia 1 m 3h 2 dias Pressão do combustível (bar) ,07 3,1 < 0,35 NA 3 7 0,03 3 Combustíveis GN, biogás, propano GN, biogás, propano Diesel, óleo residual Todos GN, biogás, propano Hidrogénio, GN, propano, metanol Ruído Médio Alto Alto Alto Médio Baixo Uso do Calor Água quente, vapor AP e BP Água quente, vapor BP Água quente, vapor BP Vapor AP e BP Água quente, vapor BP Água quente, vapor BP Densidade de potência (kw/m 2 ) > NOx (kg/mwh total) 0,2 2 0, ,9 0,07 0,01 Tabela 3. Características operacionais e custos típicos dos diferentes tipos de sistemas de cogeração (Fonte: Castro, 2006). Turbinas a Gás O processo teórico dos motores de turbinas a gás, conhecido pelo ciclo de Brayton, também denominado ciclo de Joule, é o princípio de funcionamento das turbinas de gás. A figura seguinte ilustra a operação de uma turbina a gás em ciclo aberto: como de explosão (ignição por faísca) ou de ignição por compressão. O motor de compressão é vulgarmente chamado motor diesel. Figura 8. Processo real de combustão interna de uma turbina a gás a operar em circuito aberto (fonte: Figura 9. Motor de combustão interna (fonte: Motor de Combustão Interna Os motores de combustão interna são máquinas térmicas alternativas, destinadas à produção de energia mecânica ou força motriz de accionamento. Os motores de combustão interna podem ser classificados Motor de 4 Tempos (Ciclo Otto) Também conhecido por motor de explosão ou motor de ignição por faísca, implementado com sucesso em 1876 pelo engenheiro alemão Nikolaus Otto. A câmara de combustão contêm um cilindro, duas

6 EFICIÊNCIA ENERGÉTICA E ENERGIAS RENOVÁVEIS 41 válvulas (uma de admissão e outra de escape) e uma vela de ignição. O pistão que se move no interior do cilindro é acoplado à biela que se articula com a cambota. A cambota transforma o movimento de vaivém num movimento rotativo. PRIMEIRO TEMPO SEGUNDO TEMPO Admissão Compressão Expansão Exaustão Figura 12. Esquema de funcionamento de um motor a dois tempos (fonte: www. perfectum.eng.br). Turbinas a Vapor As turbinas a vapor são elementos constituintes bem conhecidos do equipamento das centrais térmicas convencionais (a carvão ou a fuel), incluindo as de ciclo combinado (a gás natural). O seu funcionamento é descrito pelo ciclo de Rankine, ilustrado na figura seguinte. Figura 10. Principais componentes de um motor de combustão interna de quatro cilindros e ignição por faísca (fonte: CEEETA, 2002). O ciclo de trabalho de um motor de 4 tempos compreende duas voltas na cambota ou 4 cursos completos do êmbolo. Figura 13. Diagrama T,s do ciclo Rankine e esquema de uma central com turbina a vapor (fonte: Figura 11. Ciclo a quatro tempos (Otto) (fonte: Ramage, J., 2003). Motor de 2 Tempos (Ciclo Diesel) Em 1894, o engenheiro Rudolf Diesel, eliminou a necessidade de um circuito eléctrico para iniciar a combustão. Nasceu, assim, o motor diesel em que o combustível óleo diesel ou gasóleo é queimado por acção do calor libertado quando o ar é comprimido com uma taxa muito elevada. A taxa de compressão no ciclo Diesel é muito superior à do ciclo Otto. Isto porque no ciclo Diesel apenas o ar é comprimido, enquanto que no ciclo Otto é a mistura ar combustível que é comprimida, o que é especialmente problemático na fase de explosão; daí a necessidade de taxas de compressão sensivelmente mais baixas. Figura 14. Esquema do sistema de cogeração com turbina a vapor de ciclo combinado (fonte: US Dep. Energy, 2003). 3 TRIGERAÇÃO Trigeração implica a produção simultânea de energia mecânica (electricidade), calor e frio a partir de um único combustível. É um esquema de produção de energia em que se recupera calor desperdiçado para obter frio. Compreende sistemas CHP combinados com chillers de absorção.

7 EFICIÊNCIA ENERGÉTICA E ENERGIAS RENOVÁVEIS 42 Combustível 100% Figura 15. Esquema de princípio de um sistema de trigeração (fonte: Trigeração Perdas de Calor No sector terciário dos países do Sul, as necessidades de aquecimento são limitadas a alguns meses de Inverno. Há, contudo, necessidades de arrefecimento (ar condicionado) significativas durante os meses de Verão. Energia térmica proveniente de uma instalação de cogeração pode, neste caso, ser utilizada para produzir frio, através de um ciclo de absorção. Este processo alargado de cogeração é conhecido por trigeração ou produção combinada de electricidade, calor e frio (CHCP, combined heat, cooling and power production). 13% 30% Energia Eléctrica Energia Térmica 55% 2% Perdas em Linha Refrigeração Os chillers de absorção incluem um dispositivo de condensação e um outro de evaporação para produzir refrigeração. Tal como nas máquinas de refrigeração (chillers) que funcionam segundo o ciclo de compressão de vapor, têm um evaporador que expande o refrigerante para produzir frio. Em vez de um compressor mecânico, estes chillers utilizam uma fonte de calor, quer por combustão directa por recurso a um queimador ou por combustão indirecta, sendo alimentados por vapor, água quente ou energia térmica de desperdício. As máquinas de absorção que estão disponíveis comercialmente são alimentadas por vapor, por água quente ou por gases de combustão. 4 MICROTURBINAS O princípio de operação das microturbinas é muito semelhante ao das turbinas a gás, recorrendo ao ciclo de Brayton para caracterizar o seu funcionamento. A dimensão é a principal marca distintiva das duas tecnologias: as microturbinas situam-se na gama kw, enquanto as turbinas a gás ocupam uma gama desde 500 a kw. O compressor comprime ar, o qual é pré-aquecido usando um permutador de calor que recupera o calor dos gases de exaustão da turbina. O ar aquecido é, então, misturado com o combustível na câmara de combustão e os gases quentes resultante da combustão são expandidos na turbina. O calor remanescente dos gases de exaustão pode ser aproveitado para outros fins úteis. Figura 17. Esquema de um sistema de cogeração equipado com microturbina. Figura 16. Esquema de trigeração (fonte: STET, 2008). As microturbinas podem operar com uma grande variedade de combustíveis: principalmente gás natural, mas também combustíveis líquidos como gasolina, querosene e óleo diesel. A velocidade de rotação do veio é muito elevada (da ordem das a rpm), pelo que é necessária uma montagem do tipo rectificador inversor para injectar energia na rede. Frio por absorção O chiller de absorção, o aparelho que produz frio, utilizando a energia térmica do processo de cogeração, é a segunda parte mais importante de uma instalação de trigeração. Figura 18. Componentes típicos de uma microturbina.

8 PUB EFICIÊNCIA ENERGÉTICA E ENERGIAS RENOVÁVEIS 43 5 PILHAS DE COMBUSTÍVEL O processo de decomposição da água, mediante absorção de electricidade, é uma reacção electroquímica conhecida por Electrólise. Esta reacção pode-se estabelecer no sentido inverso, Hidrólise, gerando electricidade. A reacção electrólise em sentido inverso é o que se dá nas denominadas Pilhas de Combustível, que são uma tradução literal directa da sua denominação inglesa Fuel Cells. As pi- e lhas de combustível são O 2 H2 um conjunto empilhado ( stack ) de células H elementares nas quais se produz a reacção. Ânodo Cátodo Electrólito H 2 O As pilhas de combustível admitem o hidrogénio como combustível Figura 19. Esquema elementar de uma célula electroquímica de combustível. com o oxigénio do ar. No entanto, a disponibilidade do H 2 é muito escassa. Uma das formas mais eficientes de se obter H 2 poderá ser por um processo denominado Reformação. Este processo químico permite obter o hidrogénio através de outro combustível e de vapor de água. O 2 Combustível (CH 4) Reformador Convertidor H 2, CO, CO 2 Pilhas de células de combustível elementares Potência em DC Inversor DC/AC e equipamento de ligação à rede eléctrica Calor Calor Recuperação de calor Cogeração ou Ciclo Combinado Calor e água quente Figura 20. Esquema com os subsistemas principais para o funcionamento de uma pilha de combustível (fonte: Merino, J.M., adaptado). 5 CONCLUSÃO Um sistema de cogeração, bem explorado e optimizado, é um sistema mais sustentável: Ambientalmente mais limpo, com menores emissões de gases e consumos de combustíveis; Economicamente mais eficiente, com menor custo de combustível; e Socialmente mais equilibrado, pela promoção da descentralização da produção, fomentando o emprego, a partilha de informação e a segurança de aprovisionamento, através da diversificação de fontes de produção de energia térmica e eléctrica.

Centrais de cogeração em edifícios: o caso da Sonae Sierra

Centrais de cogeração em edifícios: o caso da Sonae Sierra Centrais de cogeração em edifícios: o caso da Sonae Sierra Miguel Gil Mata 29 Maio 2009 FEUP Semana da Energia e Ambiente 1 Centrais de Cogeração em edifícios o caso da Sonae Sierra 1. O conceito de Cogeração

Leia mais

MOTORES ALTERNATIVOS. Francisco Luís Rodrigues Fontinha Engenharia Mecânica 2º Ano 4466 JUNHO/07

MOTORES ALTERNATIVOS. Francisco Luís Rodrigues Fontinha Engenharia Mecânica 2º Ano 4466 JUNHO/07 MOTORES ALTERNATIVOS Francisco Luís Rodrigues Fontinha Engenharia Mecânica 2º Ano 4466 JUNHO/07 2 Índice - Motores Alternativos, Pag. 3 - Motor de Explosão, Pag. 3 - Ciclo de OTTO, Pag. 4 - Motor a dois

Leia mais

Introdução. Electricidad Térmica. e η =40% η =38% 40u. Cogeração Diesel. 100u

Introdução. Electricidad Térmica. e η =40% η =38% 40u. Cogeração Diesel. 100u Introdução ntende-se por cogeração processos em que há produção simultânea de energia térmica e energia mecânica (normalmente convertida em energia eléctrica), destinados a consumo próprio ou de terceiros,

Leia mais

Cogeração e Trigeração Um caso prático

Cogeração e Trigeração Um caso prático Alfredo Verónico da Silva Pedro Manuel Pereira Costa Instituto Superior de Engenharia do Porto Cogeração e Trigeração Um caso prático 1 Introdução A necessidade de diminuir os consumos de energia, não

Leia mais

COGERAÇÃO = CHP COMBINED HEAT AND POWER

COGERAÇÃO = CHP COMBINED HEAT AND POWER COGERAÇÃO = CHP COMBINED HEAT AND POWER DIREITO DA ENERGIA DOCENTE: SUZANA TAVARES DA SILVA REALIZADO POR: ANDREIA CATARINA ALMEIDA ANO 2015/2016 FACULDADE DE DIREITO DA UNIVERSIDADE DE COIMBRA Evolução

Leia mais

Combustível adicional se necessário 10

Combustível adicional se necessário 10 Esta colecção contem enunciados de problemas utilizados na avaliação da disciplina Termotecnia da licenciatura de Eng. Electrotécnica entre e 000. Nos enunciados existem por vezes mais dados do que os

Leia mais

MÁQUINAS TÉRMICAS AT-101

MÁQUINAS TÉRMICAS AT-101 Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS TÉRMICAS AT-101 Dr. Alan Sulato de Andrade alansulato@ufpr.br 1 HISTÓRICO: O desenvolvimento da tecnologia de cogeração

Leia mais

Cogeração na indústria: os benefícios e os ganhos energéticos

Cogeração na indústria: os benefícios e os ganhos energéticos Cogeração na indústria: os benefícios e os ganhos energéticos Grupo Light Distribuição Geração Serviços de Energia Restrita a parte do estado do RJ (incluindo a Grande Rio) Light Energia Itaocara Paracambi

Leia mais

Energética Industrial

Energética Industrial Universidade do Minho Departamento de Engenharia Mecânica Energética Industrial Problemas propostos José Carlos Fernandes Teixeira 1) 1.5 kg de gelo à temperatura de 260 K, funde-se, à pressão de 1 bar,

Leia mais

MÁQUINAS TÉRMICAS

MÁQUINAS TÉRMICAS UNIVERSIDADE DE AVEIRO DEPARTAMENTO DE ENGENHARIA MECÂNICA EXERCÍCIOS DAS AULAS PRÁTICAS MÁQUINAS TÉRMICAS 2010-2011 DOCENTES RESPONSÁVEIS DEM Fernando Neto DEM João Oliveira DISCIPLINA Código 40544 Ano

Leia mais

Motores Térmicos. 8º Semestre 4º ano. Prof. Jorge Nhambiu

Motores Térmicos. 8º Semestre 4º ano. Prof. Jorge Nhambiu Motores Térmicos 8º Semestre 4º ano Aula 2 - Tópicos Definição Objectivo e Divisão dos Motores de Combustão Interna; Motor Wankel; Motor de êmbolo; Bases utilizadas para a classificação dos motores; Valores

Leia mais

O Futuro da Cogeração 10 de Maio de 2004

O Futuro da Cogeração 10 de Maio de 2004 O Futuro da Cogeração 10 de Maio de 2004 Álvaro Brandão Pinto Índice 1. O Conceito 2. Os sistemas mais representativos 3. As aplicações sectoriais 4. Os parâmetros caracterizadores 5. As vantagens 6. A

Leia mais

Termodinâmica 12. Alexandre Diehl. Departamento de Física - UFPel

Termodinâmica 12. Alexandre Diehl. Departamento de Física - UFPel Termodinâmica 12 Alexandre Diehl Departamento de Física - UFPel Ciclo termodinâmico Definição Sequência de processos termodinâmicos aplicados sobre um sistema, tal que o mesmo é levado desde o seu estado

Leia mais

Cogeração em Centros. A Eficiência de Recursos Energéticos na Saúde Desenvolvimentos e Oportunidades 18 setembro 2015

Cogeração em Centros. A Eficiência de Recursos Energéticos na Saúde Desenvolvimentos e Oportunidades 18 setembro 2015 Cogeração em Centros Hospitalares Projeto CHSJ A Eficiência de Recursos Energéticos na Saúde Desenvolvimentos e Oportunidades 18 setembro 2015 Caracterização infraestrutura Hospital 1100 camas Área de

Leia mais

PRINCÍPIOS BÁSICOS DA TERMODINÂMICA

PRINCÍPIOS BÁSICOS DA TERMODINÂMICA PRINCÍPIOS BÁSICOS DA TERMODINÂMICA... 1 1.1 Variáveis e Transformações Termodinâmicas... 1 1.2 Primeiro Princípio da Termodinâmica... 1 1.3 Segundo Princípio da Termodinâmica... 2 1.4 Expressões das Variáveis

Leia mais

Geração de energia elétrica a partir de biogás proveniente do tratamento de esgoto utilizando microturbina a gás

Geração de energia elétrica a partir de biogás proveniente do tratamento de esgoto utilizando microturbina a gás 4º Congresso de Cogeração de Energia Geração de energia elétrica a partir de biogás proveniente do tratamento de esgoto utilizando microturbina a gás Vanessa Pecora Garcilasso Edgardo Vescovo São Paulo,

Leia mais

Processamento da Energia de Biocombustíveis

Processamento da Energia de Biocombustíveis Processamento da Energia de Biocombustíveis Professor: Marcello Mezaroba Dr. Email: marcello.mezaroba@udesc.br Junho de 2016 Sumário I. Biomassa II. Cogeração de energia a partir de biocombustíveis III.

Leia mais

COGERAÇÃO: BENEFÍCIOS em que CONDIÇÕES?

COGERAÇÃO: BENEFÍCIOS em que CONDIÇÕES? Nº 32 COGERAÇÃO: BENEFÍCIOS em que CONDIÇÕES? Clito Afonso 1(*), Tiago Moutinho 2, Carlos Guimarães 2, Trigo Moutinho 2 1 Universidade do Porto, Faculdade de Engenharia, Depart. Engª Mecânica - Porto,

Leia mais

Geração Elétrica Centrais Termoelétricas

Geração Elétrica Centrais Termoelétricas Geração Elétrica Centrais Termoelétricas Prof. Dr. Eng. Paulo Cícero Fritzen 1 GERAÇÃO TERMOELÉTRICA Introdução O processo fundamental de funcionamento das centrais termelétricas baseia-se na conversão

Leia mais

Trigeração em Edifícios

Trigeração em Edifícios Trigeração em Edifícios João Farinha Mendes farinha.mendes@ineti.pt Unidade de Energia Solar, Eólica e dos Oceanos LNEG Lisboa, PORTUGAL Porquê utilizar sistemas de trigeração em edifícios? Aproveitamento

Leia mais

Máquinas Térmicas Turbinas a Gas. Jurandir Itizo Yanagihara

Máquinas Térmicas Turbinas a Gas. Jurandir Itizo Yanagihara Máquinas Térmicas Turbinas a Gas 1 Vantagens da Vantagens Turbinas a gás tendem a ser mais compactas, isto é, tem uma maior razão potência/peso (até 70% em relação a outros motores). Por isso, elas são

Leia mais

Principio de Funcionamento de um Sistema de Refrigeração

Principio de Funcionamento de um Sistema de Refrigeração Principio de Funcionamento de um Sistema de Refrigeração APLICAÇÃO DO FRIO NA CADEIA ALIMENTAR CTeSP em GASTRONOMIA, TURISMO E BEM-ESTAR Introdução 1ª Lei da Termodinâmica Nada se perde, nada se cria,

Leia mais

Sumário. Capítulo 1 Introdução... 1 Referências... 8

Sumário. Capítulo 1 Introdução... 1 Referências... 8 Sumário Capítulo 1 Introdução... 1 Referências... 8 Capítulo 2 Exergia A Qualidade da Energia... 9 2.1 Conceito de Exergia... 9 2.1.1 Análise Exergética... 15 2.1.2 Método de Análise... 16 Capítulo 3 Eficiência

Leia mais

Cogeração em ambiente urbano

Cogeração em ambiente urbano Cogeração em ambiente urbano MAIO 2010 Miguel Gil Mata 1 Índice Cogeração Conceito Energia térmica vs energia eléctrica Estratégia energética Regulamentação nacional Externalidades Cogeração em ambiente

Leia mais

Motores Térmicos. Objectivos

Motores Térmicos. Objectivos Motores Térmicos Objectivos Objectivo de ordem geral: sendo uma cadeira de cúpula, pretende-se que os alunos apliquem, de uma forma integrada, conhecimentos adquiridos (termodinâmica, mecânica de fluidos,

Leia mais

PEA 2200/3100 ENERGIA, MEIO AMBIENTE E SUSTENTABILIDADE. 2ª Prova

PEA 2200/3100 ENERGIA, MEIO AMBIENTE E SUSTENTABILIDADE. 2ª Prova PEA 2200/3100 ENERGIA, MEIO AMBIENTE E SUSTENTABILIDADE 2ª Prova 16.05.2014 Instruções: Responda as questões nos espaços reservados para as respostas, caso necessário, utilize o verso da folha que contém

Leia mais

Motores Térmicos. Objectivos

Motores Térmicos. Objectivos Motores Térmicos Objectivos Objectivo de ordem geral: sendo uma cadeira de cúpula, pretende-se que os alunos apliquem, de uma forma integrada, conhecimentos adquiridos (termodinâmica, mecânica de fluidos,

Leia mais

B&R. Efficiência Energética na Automação da Indústria e de Edifícios

B&R. Efficiência Energética na Automação da Indústria e de Edifícios B&R Efficiência Energética na Automação da Indústria e de Edifícios B&R: Seu Parceiro para a Automação Integrada Empresa privada, fundada 1979 Soluções de Automação para a construção de máquinas e instalações

Leia mais

Gestão de energia : 2010/2011

Gestão de energia : 2010/2011 Gestão de energia : 2010/2011 Aula # P1 Balanços de energia Prof. Miguel Águas miguel.aguas@ist.utl.pt PROBLEMA 1 - Permutador Uma fábrica textil tem um efluente resultante de águas sujas quentes cujo

Leia mais

Programa de Unidade Curricular

Programa de Unidade Curricular Programa de Unidade Curricular Faculdade Engenharia Licenciatura Engenharia e Gestão Industrial Unidade Curricular Termodinâmica Semestre: 3 Nº ECTS: 6,0 Regente Professor Doutor Manuel Alves da Silva

Leia mais

Motores Térmicos. Programa

Motores Térmicos. Programa Motores Térmicos Programa I II Introdução aos diversos tipos de motores 1 Generalidades 2 Funcionamento dos motores de Explosão 3 Funcionamento dos motores Diesel 4 Funcionamento dos motores a Dois Tempos

Leia mais

Microgeração em ambiente urbano (habitacional, serviços)

Microgeração em ambiente urbano (habitacional, serviços) Microgeração em ambiente urbano (habitacional, serviços) Carlos Leandro Fraga de Almeida Rocha Relatório do Projecto Final / Dissertação do MIEM Orientador na Protermia: Eng. Jorge Neves Orientador na

Leia mais

Introdução cogeração

Introdução cogeração Introdução ntende-se por cogeração processos em que há produção simultânea de energia térmica e energia mecânica (normalmente convertida em energia eléctrica), destinados a consumo próprio ou de terceiros,

Leia mais

Abrisntal. Eficiência Energética

Abrisntal. Eficiência Energética Abrisntal Eficiência Energética 01.03.2019 Agenda Geração de Energia Climatização CHP Cogeração Segmento Residencial Geradores Geradores standby Residenciais O que é? Fonte de energia secundária sendo

Leia mais

Motores Térmicos. Programa

Motores Térmicos. Programa Motores Térmicos Programa I Introdução aos diversos tipos de motores IV Combustão e câmaras de combustão em motores de Explosão II 1 Generalidades 2 Funcionamento dos motores de Explosão 3 Funcionamento

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 11) Ciclos motores a vapor 1 v. 2.0 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil,

Leia mais

Cogeração e Trigeração

Cogeração e Trigeração Planeamento e Produção de Electricidade Engª. Electrotécnica e de Computadores 2007-2008 Cogeração e Trigeração Trabalho realizado por: Ana Filipa Ribeiro Tavares França Luís Pedro Venâncio da Costa Caseiro

Leia mais

MOTORES DE COMBUSTÃO INTERNA I

MOTORES DE COMBUSTÃO INTERNA I Departamento de Engenharia de Biossistemas ESALQ/USP MOTORES DE COMBUSTÃO INTERNA I LEB0332 Mecânica e Máquinas Motoras Prof. Leandro M. Gimenez 2017 TÓPICOS Motores de combustão interna I Aspectos teóricos,

Leia mais

Recursos Energéticos e Meio Ambiente. Professor Sandro Donnini Mancini. 8 Motores e Turbinas. Sorocaba, Março de 2016.

Recursos Energéticos e Meio Ambiente. Professor Sandro Donnini Mancini. 8 Motores e Turbinas. Sorocaba, Março de 2016. Instituto de Ciência e Tecnologia de Sorocaba Recursos Energéticos e Meio Ambiente Professor Sandro Donnini Mancini 8 Motores e Turbinas Sorocaba, Março de 2016. Motor: transforma energia de combustíveis

Leia mais

Energia e Ambiente. Desenvolvimento sustentável; Limitação e redução dos gases de efeito de estufa; Estímulo da eficiência energética;

Energia e Ambiente. Desenvolvimento sustentável; Limitação e redução dos gases de efeito de estufa; Estímulo da eficiência energética; Energia e Ambiente Desenvolvimento sustentável; Limitação e redução dos gases de efeito de estufa; Estímulo da eficiência energética; Investigação de formas novas e renováveis de energia; Potenciar as

Leia mais

MOTORES TÉRMICOS AULA MCI: NOMENCLATURA E CLASSIFICAÇÃO PROF.: KAIO DUTRA

MOTORES TÉRMICOS AULA MCI: NOMENCLATURA E CLASSIFICAÇÃO PROF.: KAIO DUTRA MOTORES TÉRMICOS AULA 18-19 MCI: NOMENCLATURA E CLASSIFICAÇÃO PROF.: KAIO DUTRA Motores As máquinas térmicas são dispositivos que permitem transformar calor em trabalho. A obtenção de trabalho é ocasionada

Leia mais

Caldeiras. Notas das aulas da disciplina de EQUIPAMENTOS INDUSTRIAIS. Equipamentos Industriais 1

Caldeiras. Notas das aulas da disciplina de EQUIPAMENTOS INDUSTRIAIS. Equipamentos Industriais 1 Caldeiras Notas das aulas da disciplina de EQUIPAMENTOS INDUSTRIAIS Equipamentos Industriais 1 Geradores com câmara de combustão Caldeiras Tipo de combustível sólido, líquido, gasoso, misto Fluido quente

Leia mais

Termodinâmica e Estrutura da Matéria (MEFT)

Termodinâmica e Estrutura da Matéria (MEFT) Termodinâmica e Estrutura da Matéria (MEFT) 2014-2015 Vasco Guerra Carlos Augusto Santos Silva carlos.santos.silva@tecnico.ulisboa.pt Versão 1.0 24-1-2014 1. Um inventor diz que desenvolveu uma máquina

Leia mais

TE T R E M R O M D O I D NÂ N M Â I M CA C Prof. Rangel

TE T R E M R O M D O I D NÂ N M Â I M CA C Prof. Rangel TERMODINÂMICA Prof. Rangel Conceito de termodinâmica É a área da física que estuda as causas e os efeitos das mudanças de temperaturas (volume e pressão) em sistemas termodinâmicos. Termodinâmica Termo

Leia mais

Máquinas Térmica Introdução. Jurandir Itizo Yanagihara

Máquinas Térmica Introdução. Jurandir Itizo Yanagihara Máquinas Térmica Introdução Jurandir Itizo Yanagihara Origem de nossa energia Usinas hidrelétricas 2 Origem de nossa energia Usinas termoelétricas 3 Origem de nossa energia Usinas nucleares 4 Qual o impacto?

Leia mais

SISTEMAS TÉRMICOS DE POTÊNCIA

SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS TÉRMICOS DE POTÊNCIA PROF. RAMÓN SILVA Engenharia de Energia Dourados MS - 2013 TURBINAS A GÁS TURBINAS A GÁS Turbogeradores são sistemas de geração de energia onde o acionador primário é uma

Leia mais

Disciplina: Motores a Combustão Interna. Ciclos e Processos Ideais de Combustão

Disciplina: Motores a Combustão Interna. Ciclos e Processos Ideais de Combustão Disciplina: Motores a Combustão Interna Ciclos e Processos Ideais de Combustão Ciclos de Potência dos Motores a Pistão Aqui serão apresentados ciclos ideais de potência a ar para ciclos onde o trabalho

Leia mais

PEA 2200 Energia, Meio Ambiente e Sustentabilidade

PEA 2200 Energia, Meio Ambiente e Sustentabilidade PEA 2200 Energia, Meio Ambiente e Sustentabilidade Profa. Eliane Fadigas Prof. Alberto Bianchi Aula 7 Usinas termelétricas slide 1 / 31 Geração Termelétrica Renovável e Não-renovável Não renovável Diesel

Leia mais

Tratamento de Esgoto

Tratamento de Esgoto Geração de Energia a partir de Biogás s em Estações de Tratamento de Esgoto Suani Teixeira Coelho Recife, 19 de maio de 2010 Resíduos Urbanos e Agrícolas Briquetes Óleos Vegetais Cana-de-açúcar Carvão

Leia mais

Lista de Exercícios - Máquinas Térmicas

Lista de Exercícios - Máquinas Térmicas DISCIPLINA: MÁQUINAS TÉRMICAS - 2017/02 PROF.: MARCELO COLAÇO PREPARADO POR GABRIEL ROMERO (GAROMERO@POLI.UFRJ.BR) 4. Motores de combustão interna: Os calores específicos são constantes para todos os exercícios

Leia mais

Módulo I Motores de Combustão Interna e Ciclo Otto

Módulo I Motores de Combustão Interna e Ciclo Otto Módulo I Motores de Combustão Interna e Ciclo Otto Motores de Combustão Interna. Apesar de serem ciclos de potência como os estudados em todas as disciplinas anteriores que envolvem os conceitos de Termodinâmica

Leia mais

PEA 3496 Energia e Meio Ambiente: Sistemas Energéticos e seus Efeitos Ambientais. Prof. Marco Saidel. Centrais Termelétricas

PEA 3496 Energia e Meio Ambiente: Sistemas Energéticos e seus Efeitos Ambientais. Prof. Marco Saidel. Centrais Termelétricas PEA 3496 Energia e Meio Ambiente: Sistemas Energéticos e seus Efeitos Ambientais Prof. Marco Saidel Centrais Termelétricas Termelétrica Princípio de funcionamento energia térmica energia mecânica energia

Leia mais

Ships. Instituto Superior TécnicoT

Ships. Instituto Superior TécnicoT Energy in Transports Ships Instituto Superior TécnicoT Objectivo do Navio Cada navio tem uma missão, ou função, e é concebido, construído, equipado e de modo específico e bem caracterizado. Exemplos de

Leia mais

Módulo I Ciclo Rankine Ideal

Módulo I Ciclo Rankine Ideal Módulo I Ciclo Rankine Ideal Sistema de Potência a Vapor As usinas de potência a vapor são responsáveis pela produção da maior parte da energia elétrica do mundo. Porém, para o estudo e desenvolvimento

Leia mais

Energy Management :: 2007/2008

Energy Management :: 2007/2008 :: 2007/2008 Class # T2 Energy Transformation Prof. João Parente joao.parente@dem.ist.utl.pt Formas de Energia Formas de Energia Os processos de transformação de energia são inúmeros, assim como são variadas

Leia mais

cogeração - a escolha da tecnologia

cogeração - a escolha da tecnologia 102 João Francisco Palmeiro (Eng.º), Sonae Capital Miguel Mata (Eng.º), Sonae Capital José Armando Marques (Eng.º), Microprocessador cogeração - a escolha da tecnologia Muitas vezes se ouve falar em cogeração,

Leia mais

Mestrado Integrado em Engenharia Mecânica Unidade Curricular: Projeto FEUP Equipa: 1M06_01

Mestrado Integrado em Engenharia Mecânica Unidade Curricular: Projeto FEUP Equipa: 1M06_01 Mestrado Integrado em Engenharia Mecânica Unidade Curricular: Projeto FEUP Equipa: 1M06_01 Eduardo Miranda Moreira da Silva João Diogo de Oliveira Dias Boavida Barroso Marco Samuel Carvalho Ribeiro Sara

Leia mais

SISTEMA DE COGERAÇÃO. Figura 1 Diagrama de um sistema de cogeração

SISTEMA DE COGERAÇÃO. Figura 1 Diagrama de um sistema de cogeração 1 Introdução Perante aos diversos avanços e aprimoramentos tecnológicos e das perspectivas em relação ao setor energético, os sistemas de cogeração vêm ganhando uma atenção especial nos diferentes setores

Leia mais

Refrigeração e Ar Condicionado

Refrigeração e Ar Condicionado Refrigeração e Ar Condicionado Introdução aos Ciclos Refrigeração por Compressão de Vapor Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade

Leia mais

Curso Engenharia de Energia

Curso Engenharia de Energia UNIVERSIDADE FEDERAL DA GRANDE DOURADOS - UFGD FACULDADE DE ENGENHARIA Curso Engenharia de Energia Prof. Dr. Omar Seye omarseye@ufgd.edu.br Disciplina: COMBUSTÃO E COMBUSTÍVEIS A analise energética é fundamental

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos motores a vapor

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos motores a vapor Termodinâmica Ciclos motores a vapor 1 v. 1.1 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil, operando segundo

Leia mais

Simulação numérica de MCI usando AVL-BOOST

Simulação numérica de MCI usando AVL-BOOST Universidade Federal de Santa Catarina Campus Joinville Simulação numérica de MCI usando AVL-BOOST UNIDADE 1 INTRODUÇÃO Prof. Leonel R. Cancino, Dr. Eng. l.r.cancino@ufsc.br Engenharia Automotiva CTJ -

Leia mais

Máquinas Térmicas: Cogeração

Máquinas Térmicas: Cogeração Máquinas Térmicas: Conceitos Básicos 1 Geração Distribuída Usina Usina Eólica MCI Área Rural Consumidores Célula Comb. Conservação de Energia Bateria Microturbina CF Geração Distribuída Geração distribuída

Leia mais

MÁQUINAS E EQUIPAMENTOS TÉRMICOS

MÁQUINAS E EQUIPAMENTOS TÉRMICOS MÁQUINAS E EQUIPAMENTOS TÉRMICOS MOTORES ALTERNATIVOS DE COMBUSTÃO INTERNA Prof. Dr. Ramón Silva - 2015 MACI Ciclo Otto Em 1862, Beau de Rochas enunciou o ciclo de quatro tempos que, primeiramente, o alemão

Leia mais

Geração de Energia Elétrica

Geração de Energia Elétrica Geração de Energia Elétrica Geração Termoelétrica Ciclo Joinville, 09 de Maio de 2012 Escopo dos Tópicos Abordados Conceitos básicos de termodinâmica; Centrais Térmicas Ciclo : Descrição de Componentes;

Leia mais

CALDEIRAS DE CONDENSAÇÃO A GÁS FIABILIDADE E TRANQUILIDADE

CALDEIRAS DE CONDENSAÇÃO A GÁS FIABILIDADE E TRANQUILIDADE CALDEIRAS DE CONDENSAÇÃO A GÁS FIABILIDADE E TRANQUILIDADE CALDEIRAS DE CONDENSAÇÃO A GÁS DAIKIN: UMA NOVA GERAÇÃO DE CALDEIRAS DE ALTA EFICIÊNCIA PARA UM CONFORTO SUPERIOR E BAIXA FATURA ENERGÉTICA A

Leia mais

TRANSFORMAÇÕES TERMODINÂMICAS. Alterações das grandezas termodinâmicas.

TRANSFORMAÇÕES TERMODINÂMICAS. Alterações das grandezas termodinâmicas. CAPÍTULO 2 - CICLOS DE AR/COMBUSTÍVEL Um ciclo de A/C é definido aqui como um processo termodinâmico idealizado, assemelhando-se ao que ocorre em algum tipo particular de motor usando como meio de trabalho

Leia mais

Prof. Luís Fernando Pagotti

Prof. Luís Fernando Pagotti Laboratório de Qualidade e Racionalização da Energia Elétrica Prof. Luís Fernando Pagotti energia não pode ser criada nem destruída, só pode ser transformada! Como Converter Energia? Combustores;

Leia mais

UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 11: Máquinas de combustão interna

UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 11: Máquinas de combustão interna UFABC Fenômenos Térmicos Prof. Germán Lugones Aula 11: Máquinas de combustão interna Máquinas de combustão interna O motor a gasolina usado em automóveis e em outras máquinas é um tipo familiar de máquina

Leia mais

Gestão de energia : 2009/2010

Gestão de energia : 2009/2010 Gestão de energia : 009/010 Aula # P3 SGCIE Prof. Miguel Águas miguel.aguas@ist.utl.pt Prof.ª Tânia Sousa taniasousa@ist.utl.pt Enunciado Produção de óleo vegetal refinado Pretende-se desenvolver uma análise

Leia mais

FÍSICA - Lucas SALA DE ESTUDOS 2º EM Ensino Médio 2º ano classe: Prof.LUCAS MUNIZ Nome: nº

FÍSICA - Lucas SALA DE ESTUDOS 2º EM Ensino Médio 2º ano classe: Prof.LUCAS MUNIZ Nome: nº FÍSICA - Lucas SALA DE ESTUDOS 2º EM Ensino Médio 2º ano classe: Prof.LUCAS MUNIZ Nome: nº Sala de Estudos Termodinâmica 1. (Uel 2015) Analise o gráfico a seguir, que representa uma transformação cíclica

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 10) Ciclos motores a vapor 1 v. 2.0 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil,

Leia mais

NUOS: A SUA BOMBA DE CALOR PARA AQS

NUOS: A SUA BOMBA DE CALOR PARA AQS NUOS: A SUA BOMBA DE CALOR PARA AQS A TECNOLOGIA SUSTENTÁVEL As bombas de calor são uma solução sustentável e inovadora para a produção de água quente para a lar. As mesmas utilizam uma fonte de energia

Leia mais

COGERAÇAO. Professor: José R. Simões-Moreira ESPECIALIZAÇÃO EM ENERGIAS RENOVÁVEIS, GERAÇÃO DISTRIBUÍDA E EFICIÊNCIA ENERGÉTICA

COGERAÇAO. Professor: José R. Simões-Moreira ESPECIALIZAÇÃO EM ENERGIAS RENOVÁVEIS, GERAÇÃO DISTRIBUÍDA E EFICIÊNCIA ENERGÉTICA COGERAÇAO Professor: José R. Simões-Moreira e-mail: jrsimoes@usp.br ESPECIALIZAÇÃO EM ENERGIAS RENOVÁVEIS, GERAÇÃO DISTRIBUÍDA E EFICIÊNCIA ENERGÉTICA ERG-003 - COGERAÇÃO Programa Resumido Teoria dos Sistemas

Leia mais

MOTORES DE COMBUSTÃO INTERNA JONEY CAPELASSO-TLJH GE-OPE/OAE-UTE-LCP/O&M

MOTORES DE COMBUSTÃO INTERNA JONEY CAPELASSO-TLJH GE-OPE/OAE-UTE-LCP/O&M MOTORES DE COMBUSTÃO INTERNA JONEY CAPELASSO-TLJH GE-OPE/OAE-UTE-LCP/O&M 853-3275 Histórico O princípio de funcionamento das máquinas motoras de combustão interna é conhecido a cerca de mais de 300 anos.

Leia mais

Investigação desenvolvida. Biocombustíveis. Universidade de Trás os Montes e Alto Douro Workshop sobre Biocombustíveis Sustentáveis

Investigação desenvolvida. Biocombustíveis. Universidade de Trás os Montes e Alto Douro Workshop sobre Biocombustíveis Sustentáveis Universidade de Trás os Montes e Alto Douro Workshop sobre Biocombustíveis Sustentáveis Investigação desenvolvida Vila Real 8 junho 2016 Biocombustíveis OBJETIVOS E MOTIVAÇÃO Redução das emissões de gases

Leia mais

BOMBA DE CALOR INVERTER AQUAPURA A++ IDEAL PARA PAVIMENTO RADIANTE CLIMATIZAÇÃO COM VENTILOCONVECTORES AQUECIMENTO COM RADIADORES

BOMBA DE CALOR INVERTER AQUAPURA A++ IDEAL PARA PAVIMENTO RADIANTE CLIMATIZAÇÃO COM VENTILOCONVECTORES AQUECIMENTO COM RADIADORES W W W E N E R G I E P T A Q U A P U R A C L I M A T I Z A Ç Ã O BOMBAS DE CALOR - AEROTERMIA BOMBA DE CALOR AQUAPURA INVERTER IDEAL PARA PAVIMENTO RADIANTE CLIMATIZAÇÃO COM VENTILOCONVECTORES AQUECIMENTO

Leia mais

Refrigeração e Ar Condicionado

Refrigeração e Ar Condicionado Refrigeração e Ar Condicionado Ciclo de Refrigeração por Compressão de Vapor Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia

Leia mais

Profa.. Dra. Ana Maria Pereira Neto

Profa.. Dra. Ana Maria Pereira Neto Universidade Federal do ABC BC1309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Segunda ei da Termodinâmica 1 Segunda ei da Termodinâmica Comparação com a 1ª ei da Termodinâmica;

Leia mais

SECTOR DA INDÚSTRIA DO COURO E DOS PRODUTOS DO COURO

SECTOR DA INDÚSTRIA DO COURO E DOS PRODUTOS DO COURO #6 SECTOR DA INDÚSTRIA DO COURO E DOS PRODUTOS DO COURO INTERVENÇÕES E CASOS DE SUCESSO Intervenções Durante o período de intervenção do projeto efinerg II, constatou-se que as empresas do sector da indústria

Leia mais

PME 3344 Exercícios - Ciclos

PME 3344 Exercícios - Ciclos PME 3344 Exercícios - Ciclos 13) Exercícios sobre ciclos 1 v. 2.0 Exercício 01 Água é utilizada como fluido de trabalho em um ciclo Rankine no qual vapor superaquecido entra na turbina a 8 MPa e 480 C.

Leia mais

TURBINAS. Engenharia Elétrica Especializada. Eng. Vlamir Botelho Ferreira 1 INTRODUÇÃO

TURBINAS. Engenharia Elétrica Especializada. Eng. Vlamir Botelho Ferreira 1 INTRODUÇÃO 1 TURBINAS Eng. Vlamir Botelho Ferreira 1 INTRODUÇÃO Turbinas são equipamentos mecânicos que transformam energia de algum fluido (água, vento, gás, etc) que se move através dela, convertendo ou a energia

Leia mais

Escola Politécnica da Universidade de São Paulo. Aula 12 Ciclo Otto e Ciclo Diesel

Escola Politécnica da Universidade de São Paulo. Aula 12 Ciclo Otto e Ciclo Diesel Escola Politécnica da Universidade de São Paulo Aula 12 Ciclo Otto e Ciclo Diesel Ciclo de Potência dos Motores Alternativos Deslocamento de todos cilindros: V desl =N ciclo (V max V min )=N ciclo A ciclo

Leia mais

NUOS: A SUA BOMBA DE CALOR PARA AQS

NUOS: A SUA BOMBA DE CALOR PARA AQS NUOS: A SUA BOMBA DE CALOR PARA AQS A TECNOLOGIA SUSTENTÁVEL A bomba de calor NUOS é uma solução sustentável e inovadora para a produção de água quente para a lar. NUOS utiliza uma fonte de energia natural

Leia mais

ARMAK Ltd Fabricante Britânico da ATEX Air Motors

ARMAK Ltd Fabricante Britânico da ATEX Air Motors M O T O R E S E Q U I PA D O S C O M P I S T O N S D E A R ARMAK Ltd Fabricante Britânico da ATEX Air Motors A Armak Ltd foi fundada em 2007 em parceria com a Krisch-Dienst GmbH e a The Water Hydraulics

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TURBINAS A VAPOR

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TURBINAS A VAPOR UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TURBINAS A VAPOR Prof. FERNANDO BÓÇON, Dr.Eng. Curitiba, setembro de 2015 IV - TURBINAS A VAPOR 1. GENERALIDADES 1.1

Leia mais

de Combustív

de Combustív Embora seja o elemento mais abundante no Universo, na Terra o hidrogénio não existe no seu estado puro, podendo ser gerado através de uma grande diversidade de processos e de fontes de energia. Na Terra

Leia mais

Melhorar a Competitividade do Aparelho Refinador. Janeiro 2007

Melhorar a Competitividade do Aparelho Refinador. Janeiro 2007 Melhorar a Competitividade do Aparelho Refinador Janeiro 2007 Disclaimer Esta apresentação contém declarações prospectivas ( forward looking statements ), no que diz respeito aos resultados das operações

Leia mais

1 Introdução 1.1 Contexto geral

1 Introdução 1.1 Contexto geral 1 Introdução 1.1 Contexto geral O presente trabalho aborda o tema da produção simultânea de frio, calor e energia elétrica. Usando a simulação, investiga as relações entre os diferentes tipos de energia,

Leia mais

GEOTERMIA SISTEMAS GEOTÉRMICOS DE BAIXA ENTALPIA E SUA APLICAÇÃO

GEOTERMIA SISTEMAS GEOTÉRMICOS DE BAIXA ENTALPIA E SUA APLICAÇÃO GEOTERMIA SISTEMAS GEOTÉRMICOS DE BAIXA ENTALPIA E SUA APLICAÇÃO O que é a Geotermia? Geotermia é o aproveitamento da energia térmica da terra através da sua captação Energia Geotérmica Geotermia Calor

Leia mais

Prof. Delly Oliveira Filho Departamento de Engenharia Agrícola

Prof. Delly Oliveira Filho Departamento de Engenharia Agrícola Prof. Delly Oliveira Filho Departamento de Engenharia Agrícola Viçosa, MG, 27 de agosto de 2009 Matriz Energética Primária Brasileira No Brasil, 41% da oferta interna de energia provém de fontes renováveis,

Leia mais

CALOR & FRIO ALFÉA & PANAMÁ POUPANÇA & CONFORTO

CALOR & FRIO ALFÉA & PANAMÁ POUPANÇA & CONFORTO CALOR & FRIO ALFÉA & PANAMÁ POUPANÇA & CONFORTO APRESENTAMOS UMA SOLUÇÃO IDEAL PARA DESFRUTAR DO MÁXIMO CONFORTO TODO O ANO. E COM UMA POUPANÇA MÁXIMA. ALFÉA & PANAMÁ A COMBINAÇÃO PERFEITA PARA DESFRUTAR

Leia mais

Módulo I Motores de Combustão Interna e Ciclo Otto

Módulo I Motores de Combustão Interna e Ciclo Otto Módulo I Motores de Combustão Interna e Ciclo Otto Motores de Combustão Interna. Apesar de serem ciclos de potência como os estudados em todas as disciplinas anteriores que envolvem os conceitos de Termodinâmica

Leia mais

Máquinas térmicas. Máquina térmica Dispositivo que converte calor em energia mecânica (trabalho) Reservatório a alta temperatura T H

Máquinas térmicas. Máquina térmica Dispositivo que converte calor em energia mecânica (trabalho) Reservatório a alta temperatura T H 9/Mar/208 ula 5 Segunda lei da termodinâmica Máquinas térmicas; eficiência. Formulação de Kelvin Máquinas frigoríficas (e bombas de calor): princípio de funcionamento e eficiência Formulação de lausius

Leia mais

3. Revisão bibliográfica

3. Revisão bibliográfica 40 3. Revisão bibliográfica 3.1. O ciclo de refrigeração por compressão de vapor Um dos métodos mais usados para se retirar calor de um ambiente a ser refrigerado é a utilização do sistema de compressão

Leia mais

!*+%,"##$ $%!*+"!%&'(!) $! -.%,*'+ %!,,#,-# $./

!*+%,##$ $%!*+!%&'(!) $! -.%,*'+ %!,,#,-# $./ !!"# $%&'(%)!!*+%,"##$ $%!*+"!%&'(!) $! -.%,*'+ %!,,#,-# $./ ÍNDICE Introdução... 3 1. Geração Solar Fotovoltaica... 4 2. Geração Solar por Espelhos Parabólicos... 4 3. Geração Eólica... 5 4. Geração Hidrelétrica...

Leia mais

Nova Gama de Esquentadores Estanques CELSIUSPUR e CELSIUSNEXT

Nova Gama de Esquentadores Estanques CELSIUSPUR e CELSIUSNEXT Nova Gama de Esquentadores Estanques CELSIUSPUR e CELSIUSNEXT Outubro 008 Esquentadores Estanques CELSIUSPUR (Condensação) e CELSIUSNEXT Os Novos Esquentadores CELSIUSPUR e CELSIUSNEXT da Junkers proporcionam

Leia mais

Geração Termelétrica

Geração Termelétrica Geração Termelétrica Prof. José Antônio Perrella Balestieri (perrella@feg.unesp.br) Departamento de Energia Faculdade de Engenharia Campus de Guaratinguetá/UNESP Versão Set/2015 Perfil da geração elétrica

Leia mais

Máquinas Térmicas I Prof. Eduardo Loureiro. O Ciclo Ideal OTTO

Máquinas Térmicas I Prof. Eduardo Loureiro. O Ciclo Ideal OTTO O Ciclo Ideal OO Máquinas érmicas I Prof. Eduardo Loureiro Um ciclo é uma idealização do que acontece em equipamentos que os termodinamicistas chamam de máquinas térmicas (motores de combustão interna,

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. 10) Ciclos motores a vapor. v. 2.5

Escola Politécnica da Universidade de São Paulo. Termodinâmica. 10) Ciclos motores a vapor. v. 2.5 Termodinâmica 10) Ciclos motores a vapor 1 v. 2.5 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil, operando segundo

Leia mais