GASES E TERMODINÂMICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "GASES E TERMODINÂMICA"

Transcrição

1 GASES E TERMODINÂMICA 1. Gases 1.1. Generalidades Num gás a densidade é baixa e, portanto, as moléculas estão em média muito afastadas umas das outras. As suas interações são muito fracas, porque as forças entre moléculas decrescem muito rapidamente com a distância. As densidades suficientemente baixas, todos os gases se comportam da mesma forma, isto é, o volume V que ocupam é inversamente proporcional à pressão p e diretamente proporcional à temperatura T e à quantidade de substância n. Estas relações constituem as conhecidas leis dos gases, que foram muito importantes no desenvolvimento da Química. A relação entre V e p, a chamada lei de Boyle, é conhecida há muito mais tempo que as outras duas. Ao contrário de quantidade de substância e temperatura, pressão e volume são grandezas de que temos uma noção intuitiva e que foi, portanto, possível medir muito antes daquelas Lei dos Gases Lei de Boyle A primeira destas leis foi estabelecida por Robert Boyle em 1662 e diz que "o volume de uma dada massa de gás mantida a temperatura constante é inversamente proporcional à pressão" Volume 1 Pressão PV = Constante Ou simplesmente V 1 P P = Constante V A força total (ou resultante) exercida pelas moléculas do gás, num instante t, sobre a unidade de área do recipiente, é a pressão P. Ou seja, P = F/A, em que F é a força resultante agindo sobre uma área macroscópica A. Aumentando-se o volume V do sistema o percurso que cada molécula deve efetuar, até chocar-se com a parede do recipiente, aumenta, diminuindo o número de colisões na unidade de tempo e, consequentemente, diminuindo a pressão p, o que está em acordo com a equação Lei de Charles A lei de Charles (1781) diz que "o volume de uma massa fixa de um gás, mantido a pressão constante, é diretamente proporcional à temperatura absoluta": Volume Temperatura ou Simplismente V T A lei de Charles, da luz a teoria cinética dos gases, permite-nos conceituar a temperatura de uma forma diferente da tradicional ou clássica. Pela lei de Charles, mantendo-se a massa, a espécie química, o estado gasoso e a pressão, e aumentando-se o volume, a temperatura deve aumentar. Mantendo-se a massa, o número de moléculas (ou de moles) permanece constante. Aumentando-se o volume, o percurso que cada molécula deve efetuar até chocar-se com a parede do recipiente aumenta. Se a velocidade molecular permanecesse constante, o número de colisões por unidade de tempo diminuiria e seria de se esperar uma queda de pressão. Como a pressão permanece constante admitimos que a velocidade molecular aumenta. Percebemos aí uma relação entre velocidade molecular e temperatura, o que nos induz a pensar em temperatura absoluta como uma medida da energia cinética molecular média de um conjunto de moléculas. O conceito de temperatura absoluta torna-se claro e o zero absoluto representaria o repouso molecular (translacional). Tanto a lei de Boyle quanto a lei de Charles referem-se a transformações que ocorrem em um sistema gasoso fechado, ou seja, no qual a massa não atravessa as fronteiras do mesmo Lei de Avogadro A lei de Avogadro (1811) diz que "volumes iguais de gases de natureza diversa, nas mesmas condições de pressão e temperatura, contém o mesmo número de moléculas". Da forma como está exposta, a lei de Avogadro refere-se à comparação entre sistemas gasosos. Interessa-nos explorá-la de uma forma mais ampla, qual seja, adaptá-la a determinadas transformações que possam ocorrer num sistema gasoso constituído por um componente (não obrigatoriamente fixo). Essa lei está relacionada ao volume molar de gases. Conceito de volume molar de gases: volume ocupado por um mol de qualquer gás, a uma determinada pressão e temperatura. Considerando que o volume molar para qualquer gás seja de 22,4 L/mol, temos que a relação entre o volume e número de mol é constante: V n = K A equação expressa que 22,4 litros de qualquer gás possuem 6,02 x 1023 moléculas (condições de 1 atm e 0 C) A Equação de Clapeyron

2 Vimos através das três leis anteriores como um gás perfeito se comporta quando mantemos uma variável constante e variamos as outras duas. A equação de Clapeyron pode ser entendida como uma síntese dessas três leis, relacionando pressão, temperatura e volume. Em uma transformação isotérmica, pressão e volume são inversamente proporcionais e em uma transformação isométrica, pressão e temperatura são diretamente proporcionais. Dessas observações, podemos concluir que a pressão é diretamente proporcional à temperatura e inversamente proporcional ao volume. É importante também salientar que o número de moléculas influencia na pressão exercida pelo gás, ou seja, a pressão também depende diretamente da massa do gás. Considerando esses resultados, Paul Emile Clapeyron ( ) estabeleceu uma relação entre as variáveis de estado com a seguinte expressão matemática: PV nt = R Onde n é o número de mols e R é a constante universal dos gases perfeitos. Essa constante pode assumir os seguintes valores: atm. L R = 0,082 mol. K = 8,31 J mol. K 1.4. Equação de Van der Waals A equação de estado de um gás ideal não tem em consideração dois factos que estão presentes em sistemas constituídos por gases reais (como o oxigénio, o azoto, entre outros): As moléculas formam o gás e têm volume, por isso ocupam espaço; As moléculas possuem forças de interação entre elas, sendo essencialmente forças atrativas. Sendo assim, com o objetivo de corrigir a equação de estado de um gás ideal, surge a equação de estado de Van der Waals Transformações Gasosas Transformação isobárica Acontece quando a pressão é constante e o volume e a temperatura variam. Se aumentarmos a temperatura de um gás e mantivermos constante sua pressão, observaremos um aumento do volume ocupado pelo gás. V T = K A relação entre volume e temperatura pode ser demonstrada pela fórmula: V 1 T 1 = V 2 T Transformação isovolumétrica: Nesse caso o volume permanece constante e a pressão e temperatura é que variam. Um aumento na temperatura de um gás influi no aumento da pressão por ele exercida, de forma que o quociente seja constante. P T = K Logo se estabelece a relação: P 1 T 1 = P 2 T Transformação isotérmica: A temperatura permanece constante e as variáveis são a pressão e o volume. Quando aumentamos a pressão sobre um gás, o volume ocupado por ele diminui, o que faz com que o produto dessas grandezas seja constante: K= constante PV = K Logo se estabelece a relação: 2. Termoquímica 2.1. Caloria P 1 V 1 = P 2 V 2 É a quantidade de calor necessária para aquecer 1,0 grama de água pura em 1 C [1caloria = 4,18400 joules] 2.2. Entalpia (H) e variação de entalpia ( H) Entalpia é uma grandeza física que mede a energia térmica de um sistema. Essa energia está presente nas ligações internas das substâncias. Nas reações químicas essas ligações se rompem para se reagrupar, podendo, nesse processo, ceder ou receber energia térmica. Não existe uma maneira de se determinar a entalpia H de uma substância, mas existem métodos seguros de medir a variação de entalpia H 2.3. Entalpia Padrão (H )

3 Como a determinação da entalpia da substância é impossível, determina-se uma entalpia padrão igual a zero como referência. Logo a entalpia padrão de uma substância corresponde à sua forma mais estável à pressão de 1 atm e a 25 C de temperatura, sendo indicada por H. Todas as substâncias simples no estado padrão e na sua forma mais estável (mais comum) tem entalpia igual a Zero 2.4. Reações Exotérmicas São as reações químicas que liberam calor. Neste caso, a entalpia dos Produtos (HP) é menor do que a entalpia dos reagentes (HR), ou seja, a variação da entalpia é negativa ( H < 0) 2.5. Reações Endotérmicas São as reações químicas que absorvem calor. Neste caso, a entalpia dos produtos (HP) é maior que a entalpia dos reagentes (HR), ou seja, a variação da entalpia é positiva ( H > 0) 3. Termodinâmica 3.1. Introdução A Termodinâmica é a ciência que estuda as trocas de energia que ocorrem entre o sistema e as vizinhanças durante uma mudança de estado. Está baseada em quatro generalizações, conhecidas como Princípios ou Leis da Termodinâmica, que governam as transformações de um tipo de energia em outro Conceitos Básicos Antes de estudar a Termodinâmica propriamente dita, é necessário compreender os seus termos mais usuais, definidos a seguir: Sistema: é a parte do universo que está sob investigação; pode ser, por exemplo, um tubo de ensaio, uma garrafa térmica. Quanto à classificação, o sistema pode ser: Sistema Aberto quando há troca de matéria com a vizinhança. Sistema Fechado quando não há troca de matéria com a vizinhança. Sistema Isolado quando não há nenhum tipo de interação com a Nos dois primeiros casos, pode haver troca de Energia com a vizinhança. Vizinhança: é o restante do universo, onde os efeitos das trocas de energia são observados. Fronteira: é o espaço que separa o sistema da vizinhança. Nos dois primeiros casos, pode haver troca de Energia com a vizinhança. Propriedades do sistema: são atributos físicos percebidos pelos sentidos ou por métodos experimentais de investigação. Podem ser mensuráveis e não mensuráveis. Mudança de estado: é a transformação sofrida pelo sistema ao passar de um estado inicial para um estado final, ambos bem definidos. Caminho: é o percurso realizado pelo sistema durante a mudança de estado, ou seja, compreende o estado inicial, os estados intermediários e o estado final. Processo: é o método pelo qual a mudança de estado é efetuada. A descrição do processo consiste em estabelecer as condições das mudanças de estado: sistema, vizinhanças, fronteiras, estado inicial, estado final, caminho, efeitos produzidos nas vizinhanças, entre outros. Ciclo: é o caminho que o sistema percorre quando, ao sofrer uma mudança de estado, retorna ao estado inicial. Variável de estado: é uma grandeza que não depende do caminho, mas somente dos estados inicial e final. Equação termodinâmica Em uma equação termodinâmica devemos indicar: A variação de entalpia O estado físico de cada participante As variedades alotrópicas de cada participante A temperatura e pressão em que ocorrem as transformações Os números de mol de cada participante Por exemplo: C graf + O 2(g) CO 2(g) H = 394 kj a 25 C e 1 atm Estes conceitos básicos devem ser bem assimilados a fim de que se possa iniciar um estudo termodinâmico Lei Zero da Termodinâmica Se dois sistemas estão em equilíbrio entre si e em equilíbrio térmico com um terceiro sistema,

4 consequentemente os três sistemas se encontrarão em equilíbrio térmico. R. H. FOWLER A importância da Lei Zero da Termodinâmica para o conceito da temperatura não foi completamente compreendida até que a Termodinâmica tivesse atingido certo grau de desenvolvimento. A igualdade de temperatura entre dois sistemas em equilíbrio térmico constitui o postulado básico para que se disponha de uma definição desta grandeza. A lei zero define temperatura sem depender da sensação fisiológica de quente e frio Primeira Lei da Termodinâmica na variação da altura de uma massa nas das vizinhanças. Conclusões importantes sobre a definição de W: W aparece apenas nas fronteiras do sistema; W aparece apenas nas mudanças de estado; Os efeitos do W são observados na vizinhança; W = m.g.h (Gravitacional; h = Altura); W = F. L (Mecânico; F = força; L = Comprimento); W = P. V (Expansão / Compressão Volumétrica; V = variação de volume); Quantidade algébrica: (+ ou ); Introdução Chamamos de 1ª Lei da Termodinâmica, o princípio da conservação de energia aplicada à termodinâmica, o que torna possível prever o comportamento de um sistema gasoso ao sofrer uma transformação termodinâmica. Analisando o princípio da conservação de energia ao contexto da termodinâmica: Um sistema não pode criar ou consumir energia, mas apenas armazená-la ou transferi-la ao meio onde se encontra, como trabalho, ou ambas as situações simultaneamente, então, ao receber uma quantidade Q de calor, esta poderá realizar um trabalho τ e aumentar a energia interna do sistema ΔU, ou seja, expressando matematicamente: Calor Trabalho Energia Interna U Recebe Realiza Aumenta >0 Cede Recebe Diminui <0 Não troca Não realiza e nem recebe Não varia =0 Exemplo: Ao receber uma quantidade de calor Q=50J, um gás realiza um trabalho igual a 12J, sabendo que a Energia interna do sistema antes de receber calor era U=100J, qual será esta energia após o recebimento? Calor Q é qualquer quantidade que escoa através das fronteiras de um sistema, durante uma mudança de estado, devido à diferença de temperatura entre o sistema e as vizinhanças. Fluxo: Maior temperatura para menor temperatura. Conclusões importantes sobre a definição de Q: Q aparece somente na fronteira do sistema; Q aparece somente durante a mudança de estado; Q se manifesta através dos efeitos nas vizinhanças; Q = m. c. T é a quantidade em gramas de água nas vizinhanças que sofre aumento de 1ºC em condições iniciais de pressão e temperatura bem definidas; É uma quantidade algébrica (positiva ou negativa); 3.5. Trabalho e Calor São conceitos de fundamental importância na termodinâmica e que precisam ser completamente entendidos, uma vez que têm significados mais restritos (são quantidades que podem assumir valores positivos ou negativos). Trabalho (W) É qualquer quantidade que escoa através das fronteiras de um sistema durante uma mudança de estado e é completamente conversível

5 3.6. Entalpia É uma função de estado de um sistema que reflete a capacidade de troca de calor do sistema com a vizinhança, durante mudança de estado a pressão constante. É uma consequência da Primeira Lei da Termodinâmica e surge como combinação de duas outras funções de estado. H = U + PV; H = U + PV Exemplo: Quando a reação se processar em um recipiente aberto (pressão constante) e o volume final for maior que o volume inicial, tem-se: 1ª Lei U = Q W ; Sabendo-se que W = P V H = U + P V Substituindo em U = Q W: U = H P V Logo H P V = Q P V H = Q; Fluxo de calor entre o sistema e as vizinhanças durante mudança de estado a pressão constante. Isto implica que: igual a zero. Por exemplo, para descobrir a entalpia da molécula de água é só usar o valor da entalpia da reação de formação dessa molécula: o Entalpia de Combustão: CH4(g) + ½ O2 1CO2(g) + 2 H2O ΔH = -890,4 kj/mol o Entalpia de Neutralização: HCl(aq) + NaOH(aq) NaCl(aq) + H2O(l) ΔH = -57,7 kj/mol o Entalpia de Solução: KI(s) K + (g) + I - (g) ΔHret = +623 kj/mol K + (g) + I - (g) K + (aq) + I - (aq) ΔHhid = -611 kj/mol KI(s) K + (aq) + I -( aq) ΔHsol = ΔHret + ΔHhid ΔHsol = ( (-611)) kj/mol ΔHsol = + 21 kj/mol 3.7. Lei de Hess A variação de entalpia (quantidade de calor liberada ou absorvida) em uma reação química depende apenas dos estados inicial e final da reação. H > 0; Q > 0: Calor absorvido pelo sistema e resfriamento das massas nas vizinhanças. H < 0; Q < 0: Calor é liberado pelo sistema e aquecimento nas vizinhanças. Da mesma forma, a variação de energia interna pode ser associada a QV. Sinal de H H > 0 Processo Endotérmico Resfriamento das vizinhanças. H < 0 Processo Exotérmico Aquecimento nas vizinhanças. Existem vários tipos de reações e mudanças de estado físico, existem também vários tipos de entalpia. A esses dois caminhos correspondem dois valores experimentais, para as variações de entalpia, supondo pressão e temperatura constantes. Entalpia de Mudança de Estado Físico: como o próprio nome diz, ela designa a energia necessária para que 1 mol de substância, nas condições-padrão de temperatura e pressão, mude de estado físico. Dentro desse tipo de entalpia, temos: o Entalpia de Vaporização: H2O(l) H2O(v) ΔH vaporização = +44 kj/mol o Entalpia de Fusão: H2O(s) H2O(l) ΔH fusão = +7,3 kj o Entalpia de Liquefação: H2O(v) H2O(l) ΔH liquefação = -44 kj/mol o Entalpia de Solidificação: H2O(l) H2O(s) ΔH solidificação = -7,3 kj/mol Entalpia de Formação: calor liberado ou absorvido na formação de 1 mol de uma substância a partir de seus elementos constituintes, que são substâncias simples, no estado padrão, com a entalpia Primeiro caminho: C(grafite) + O2(g) CO2(g) ΔH = -393,3 kj Segundo caminho: C(grafite) + 1/2O2(g) CO(g) ΔH1 = -110,3 kj CO(g) + 1/2O2(g) CO2(g) ΔH2 = -283,0 kj Somando: ΔH1 + ΔH2 = -110,3 + (-283,0) = -393,3 Portanto: ΔH = ΔH1 + ΔH2 Conclusão

6 Partindo-se sempre de um mesmo estado inicial e chegando-se sempre a um mesmo estado final, o ΔH será sempre o mesmo, quer a reação seja direta, quer ela se efetue em várias etapas. As equações termoquímicas podem sofrer tratamentos matemáticos desde que esses tratamentos sejam feitos também com os valores de ΔH. O ΔH independe do caminho percorrido durante a reação. Cada estado tem uma entalpia ou conteúdo de calor (H) fixo e bem definido: no estado inicial: H inicial tem valor fixo; no estado final: H final também tem valor fixo. A entalpia é função de estado, ou seja, o valor de ΔH é fixo e bem definido, não dependendo dos estados intermediários. Por isso, a lei de Hess é também conhecida como a lei dos estados inicial e final Consequências da lei de Hess 1ª As equações termoquímicas podem ser somadas como se fossem equações matemáticas, daí a lei de Hess ser também chamada de lei da soma dos calores de reação. 2ª Invertendo uma equação termoquímica, devemos trocar o sinal de ΔH. Isso representa a conservação de energia entre os estados inicial e final. 3ª Multiplicando (ou dividindo) uma equação termoquímica por um número diferente de zero, o valor de ΔH será também multiplicado (ou dividido) por esse número.

Termoquímica Entalpia e Lei de Hess

Termoquímica Entalpia e Lei de Hess Química Geral e Inorgânica QGI0001 Eng a. de Produção e Sistemas Prof a. Dr a. Carla Dalmolin Termoquímica Entalpia e Lei de Hess Sistemas a Pressão Constante Quando o volume do sistema não é constante,

Leia mais

- Exotérmico: ocorre com liberação de calor - Endotérmico: ocorre com absorção de calor

- Exotérmico: ocorre com liberação de calor - Endotérmico: ocorre com absorção de calor Fala gás nobre! Tudo bem? Hoje vamos para mais um assunto de química: A termoquímica. Você sabia que as reações químicas absorvem ou liberam calor, e desta forma, ocorre uma troca de energia? Pois é, a

Leia mais

Apostila de Química 02 Termoquímica

Apostila de Química 02 Termoquímica Apostila de Química 02 Termoquímica 1.0 Introdução A Termoquímica tem como objetivo o estudo das variações de energia que acompanham as reações químicas; Não há reação química que ocorra sem variação de

Leia mais

FCAV/ UNESP NOÇÕES DE TERMODINÂMICA

FCAV/ UNESP NOÇÕES DE TERMODINÂMICA FCAV/ UNESP NOÇÕES DE TERMODINÂMICA Profa. Dra. Luciana Maria Saran 1 1.TERMODINÂMICA Compreende o estudo da energia e suas transformações. Em grego, thérme-; calor, dy namis, energia. Termoquímica: área

Leia mais

Quase toda reação química é acompanhada de liberação ou absorção de calor (queima da gasolina, queima do etanol,

Quase toda reação química é acompanhada de liberação ou absorção de calor (queima da gasolina, queima do etanol, TERMOQUÍMICA TERMOQUÍMICA Quase toda reação química é acompanhada de liberação ou absorção de calor (queima da gasolina, queima do etanol, queima do GLP). A termoquímica estuda as quantidades de calor

Leia mais

Prof. Rodrigo Bandeira. Termoquímica. Rodrigo. Química

Prof. Rodrigo Bandeira. Termoquímica. Rodrigo. Química Prof. Bandeira Termoquímica Termoquímica Chamamos de Termoquímica é a parte da Termodinâmica que estuda as quantidades de calor envolvidas durante as reações químicas e mudanças de estado físico. Conceitos

Leia mais

TERMODINÂMICA (Parte 1)

TERMODINÂMICA (Parte 1) TERMODINÂMICA (Parte 1) Estudo das transformações da energia. Baseia-se em duas leis: 1ª Lei: acompanha as variações de energia e permite o cálculo da quantidade de calor produzida numa reação. 2ª Lei:

Leia mais

ENSINO MÉDIO QUÍMICA

ENSINO MÉDIO QUÍMICA ENSINO MÉDIO QUÍMICA TERMOQUÍMICA TERMOQUÍMICA Termoquímica é a parte da química que estuda o calor associado a uma reação química. A unidade usada para medir a energia liberada ou absorvida por um sistema

Leia mais

TERMODINÂMICA TERMOQUÍMICA

TERMODINÂMICA TERMOQUÍMICA TERMODINÂMICA TERMOQUÍMICA Termodinâmica é a ciência que estuda as transformações de energia nas quais as variações de temperatura são importantes. A maioria das transformações químicas resulta em alterações

Leia mais

TERMODINÂMICA TERMOQUÍMICA

TERMODINÂMICA TERMOQUÍMICA Termodinâmica é a ciência que estuda as transformações de energia nas quais as variações de temperatura são importantes. A maioria das transformações químicas resulta em alterações nas temperaturas e,

Leia mais

PROFª. KAÍZA CAVALCANTI

PROFª. KAÍZA CAVALCANTI Processos Químicos Quando ocorre uma alteração qualitativa do sistema, dos tipos de substâncias presentes ou de suas proporções. Processos Físicos Quando ocorre uma alteração qualitativa do sistema, dos

Leia mais

TERMODINÂMICA TERMOQUÍMICA

TERMODINÂMICA TERMOQUÍMICA TERMODINÂMICA TERMOQUÍMICA Termodinâmica é a ciência que estuda as transformações de energia nas quais as variações de temperatura são importantes. A maioria das transformações químicas resulta em alterações

Leia mais

Primeira Lei da Termodinâmica Trabalho, Calor e Energia Entalpia

Primeira Lei da Termodinâmica Trabalho, Calor e Energia Entalpia Química Geral e Inorgânica QGI0001 Eng a. de Produção e Sistemas Prof a. Dr a. Carla Dalmolin Primeira Lei da Termodinâmica Trabalho, Calor e Energia Entalpia Sistemas Em termodinâmica, o universo é formado

Leia mais

Termoquímica. Trabalho, calor e energia interna. Leis da Termodinâmica. Entalpia. Lei de Hess. Entropia. Energia livre

Termoquímica. Trabalho, calor e energia interna. Leis da Termodinâmica. Entalpia. Lei de Hess. Entropia. Energia livre Termoquímica IV Trabalho, calor e energia interna Leis da Termodinâmica Entalpia Lei de Hess Entropia Energia livre Trabalho, calor e energia interna Cada reação química obedece a duas leis fundamentais:

Leia mais

TERMOQUÍMICA- 3C13. As transformações físicas também são acompanhadas de calor, como ocorre na mudanda de estados físicos da matéria.

TERMOQUÍMICA- 3C13. As transformações físicas também são acompanhadas de calor, como ocorre na mudanda de estados físicos da matéria. TERMOQUÍMICA- 3C13 As transformações físicas e as reações químicas quase sempre estão envolvidas em perda ou ganho de calor. O calor é uma das formas de energia mais comum que se conhece. A Termoquimica

Leia mais

Determinaçao Indireta do Calor De Reaçao

Determinaçao Indireta do Calor De Reaçao Box 6 Determinaçao Indireta do Calor De Reaçao Vimos anteriormente que a variação de entalpia de uma reação é determinada experimentalmente no calorímetro. Existem, no entanto, maneiras indiretas de determinação

Leia mais

Fotossíntese das plantas, o sol fornece energia

Fotossíntese das plantas, o sol fornece energia Unidade 6 - Conteúdo 13 - Termoquímica As transformações físicas e as reações químicas quase sempre estão envolvidas em perda ou ganho de calor. O calor é uma das formas de energia mais comum que se conhece.

Leia mais

Um dos grandes problemas mundiais é constante necessidade de geração de energia.

Um dos grandes problemas mundiais é constante necessidade de geração de energia. Termoquímica 1 2 Introdução Um dos grandes problemas mundiais é constante necessidade de geração de energia. A Termoquímica possibilita uma solução viável (econômica e ecológica) para esta crescente demanda.

Leia mais

CURSO: ENGENHARIA CIVIL FÍSICA GERAL E EXPERIMENTAL II 2º Período Prof.a: Érica Muniz UNIDADE 2. Propriedades Moleculares dos Gases

CURSO: ENGENHARIA CIVIL FÍSICA GERAL E EXPERIMENTAL II 2º Período Prof.a: Érica Muniz UNIDADE 2. Propriedades Moleculares dos Gases CURSO: ENGENHARIA CIVIL FÍSICA GERAL E EXPERIMENTAL II 2º Período Prof.a: Érica Muniz UNIDADE 2 Propriedades Moleculares dos Gases Estado Gasoso Dentre os três estados de agregação, apenas o estado gasosos

Leia mais

Termoquímica: calor e os processos químicos. Profa. Claudia

Termoquímica: calor e os processos químicos. Profa. Claudia Termoquímica: calor e os processos químicos Profa. Claudia Termoquímica: 1)calor e unidades para expressá-lo 2)Entalpia e variação de entalpia 3)A lei de Hess 4)Estado-padrão 5)Entalpia padrão de combustão

Leia mais

CAPITULO 2 A Primeira lei da termodinâmica

CAPITULO 2 A Primeira lei da termodinâmica Neste capítulo são introduzidos alguns dos conceitos fundamentais da termodinâmica. O foco da exposição é a conservação de energia a observação experimental de que a energia não pode ser destruída nem

Leia mais

Universidade Federal do Pampa UNIPAMPA. Teoria Cinética do Gases

Universidade Federal do Pampa UNIPAMPA. Teoria Cinética do Gases Universidade Federal do Pampa UNIPAMPA Teoria Cinética do Gases Introdução A descrição de um gás por inteiro (descrição macroscópica) pode ser feito estabelecendo as grandezas macroscópicas que caracterizam

Leia mais

Diagramas de Energia

Diagramas de Energia Diagramas de Energia 1.1- Análise Gráfica Reação exotérmica Reação endotérmica (a) Energia de ativação (Ea) para a reação inversa (b) Energia de ativação (Ea) para a reação direta (c) ΔH 1.2- Entropia

Leia mais

ENERGIA INTERNA SISTEMA ISOLADO. Quando ocorre uma reação química num sistema isolado podem existir três situações:

ENERGIA INTERNA SISTEMA ISOLADO. Quando ocorre uma reação química num sistema isolado podem existir três situações: ENERGI INTERN energia interna, cujo símbolo é U, define-se como sendo a soma das energias cinéticas dos átomos e moléculas que se encontram no interior de um sistema e das energias potenciais associadas

Leia mais

Gás Ideal (1) PMT2305 Físico-Química para Metalurgia e Materiais I César Yuji Narita e Neusa Alonso-Falleiros 2012

Gás Ideal (1) PMT2305 Físico-Química para Metalurgia e Materiais I César Yuji Narita e Neusa Alonso-Falleiros 2012 Gás Ideal (1) Para um gás, uma equação de estado é uma relação entre pressão (P), volume (V), temperatura (T) e composição ou número de mols (n). O primeiro passo para a determinação de uma equação de

Leia mais

TERMOQUÍMICA EXERCÍCIOS PARA TREINO

TERMOQUÍMICA EXERCÍCIOS PARA TREINO TERMOQUÍMICA EXERCÍCIOS PARA TREINO 1 - Considere a seguinte reação termoquímica: 2NO(g) + O 2 (g) 2NO 2 (g) H = -13,5 kcal / mol de NO e assinale a alternativa falsa. a) A reação é exotérmica. b) São

Leia mais

As moléculas se encontram em movimento desordenado, regido pelos princípios fundamentais da Mecânica newtoniana.

As moléculas se encontram em movimento desordenado, regido pelos princípios fundamentais da Mecânica newtoniana. Estudo dos gases Gás Ideal As moléculas se encontram em movimento desordenado, regido pelos princípios fundamentais da Mecânica newtoniana. As moléculas não exercem força uma sobre as outras, exceto quando

Leia mais

Unidade 11 - Termodinâmica

Unidade 11 - Termodinâmica Unidade 11 - Termodinâmica 1ª Lei da Termodinâmica 1ª Lei da Termodinâmica É simplesmente uma extensão do Princípio da Conservação da Energia, envolvendo transformações gasosas. Para podermos compreender

Leia mais

Colégio Estadual Professor Ernesto Faria. Subprojeto Pibid - Química UERJ. Termoquímica

Colégio Estadual Professor Ernesto Faria. Subprojeto Pibid - Química UERJ. Termoquímica Colégio Estadual Professor Ernesto Faria Subprojeto Pibid - Química UERJ Termoquímica REAÇÕES ENDOTÉRMICAS E EXOTÉRMICAS Processo Exotérmico Libera calor para ambiente (vizinhança) Transmite sensação de

Leia mais

Apostila de Química 01 Estudo dos Gases

Apostila de Química 01 Estudo dos Gases Apostila de Química 01 Estudo dos Gases 1.0 Conceitos Pressão: Número de choques de suas moléculas contra as paredes do recipiente. 1atm = 760mHg = 760torr 105Pa (pascal) = 1bar. Volume 1m³ = 1000L. Temperatura:

Leia mais

Processo exotérmico: Ocorre com liberação de calor

Processo exotérmico: Ocorre com liberação de calor Disciplina: Química (Turmas T e R); Data: 10/10/16 Aula: Termoquímica 1: Reações exotérmicas e endotérmicas Professora Ana (anaflaviasuzana@yahoo.com.br) A Termoquímica é parte de uma ciência determinada

Leia mais

Conceitos Básicos sobre gases

Conceitos Básicos sobre gases Conceitos Básicos sobre gases ara este estudo não vamos fazer distinção entre gás e vapor, desta forma neste capítulo, o estado gasoso (gás ou vapor) será sempre referido como gás... ressão dos gases Suponha

Leia mais

Vejamos agora alguns casos particulares dessas transformações com quantidade de gás constante.

Vejamos agora alguns casos particulares dessas transformações com quantidade de gás constante. Setor 2306 Aula 06 Transformações Gasosas em sistemas fechados Complemento. Como vimos em aula, as transformações realizadas em sistemas fechados tem sua quantidade de gás constante. Nessa situação, a

Leia mais

Energia, calor, entalpia e variação de entalpia.

Energia, calor, entalpia e variação de entalpia. Combustíveis Energia e Ambiente De onde vem a energia dos combustíveis? Energia, calor, entalpia e variação de entalpia. Sistema; Universo; Sistema Aberto, Fechado e Isolado; Estado final e Inicial; Energia

Leia mais

P4 - PROVA DE QUÍMICA GERAL 03/07/10

P4 - PROVA DE QUÍMICA GERAL 03/07/10 P4 - PROVA DE QUÍMICA GERAL 0/07/10 Nome: Nº de Matrícula: GABARITO Turma: Assinatura: Questão Valor Grau Revisão 1 a,5 a,5 a,5 4 a,5 Total 10,0 Constantes e equações: R = 0,08 atm L mol -1 K -1 = 8,14

Leia mais

Aula 7 Entalpia e Lei de Hess

Aula 7 Entalpia e Lei de Hess Universidade Tecnológica Federal do Paraná Departamento Acadêmico de Química e Biologia Aula 7 Entalpia e Lei de Hess Dr. Tiago P. Camargo Entalpia Termodinâmica Num sistema de paredes rígidas V const.

Leia mais

Um dos componentes do GLP (gás liquefeito do petróleo) é o propano (C3H8). A sua combustão pode ser representada pela seguinte equação química:

Um dos componentes do GLP (gás liquefeito do petróleo) é o propano (C3H8). A sua combustão pode ser representada pela seguinte equação química: Atividade extra Exercício 1 Cecierj 2013 Um dos componentes do GLP (gás liquefeito do petróleo) é o propano (C3H8). A sua combustão pode ser representada pela seguinte equação química: C3H8(ℓ) + 5 O2 6

Leia mais

Professora : Elisângela Moraes

Professora : Elisângela Moraes UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA -EEL Professora : Elisângela Moraes 02/03/2012 PROGRAMA RESUMIDO 1. Gases Ideais; 2. Gases Reais; 3. Termodinâmica; 4. Termoquímica; 5. Entropia;

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO UFRJ INSTITUTO DE QUÍMICA IQG127. Termodinâmica

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO UFRJ INSTITUTO DE QUÍMICA IQG127. Termodinâmica UNIVERSIDADE FEDERAL DO RIO DE JANEIRO UFRJ INSTITUTO DE QUÍMICA IQG127 Termodinâmica Prof. Antonio Guerra Departamento de Química Geral e Inorgânica - DQI Energia e Trabalho Energia A capacidade de realizar

Leia mais

Química Monitores: Luciana Lima e Rafael França 06, 07, 08 e 11/07/2015. Material de Apoio para Monitoria

Química Monitores: Luciana Lima e Rafael França 06, 07, 08 e 11/07/2015. Material de Apoio para Monitoria Termoquímica II 1.. (BRASÍLIA) A energia de ligação média para a ligação C H no metano CH4(g) é aproximadamente: Dados: ΔHf 0 (entalpia de formação-padrão) CH4(g) = -17,9 kcal/mol H(g) = +52,1 kcal/mol

Leia mais

FÍSICO-QUÍMICA GASES IDEAIS E GASES REAIS. Prof. MSc. Danilo Cândido

FÍSICO-QUÍMICA GASES IDEAIS E GASES REAIS. Prof. MSc. Danilo Cândido FÍSICO-QUÍMICA GASES IDEAIS E GASES REAIS Prof. MSc. Danilo Cândido CONCEITOS DE GASES Um gás representa a forma mais simples da matéria, de baixa densidade e que ocupa o volume total de qualquer recipiente

Leia mais

Universidade Federal do Acre Engenharia Agronômica PET- Programa de Ensino Tutorial. Termoquímica

Universidade Federal do Acre Engenharia Agronômica PET- Programa de Ensino Tutorial. Termoquímica Universidade Federal do Acre Engenharia Agronômica PET- Programa de Ensino Tutorial Termoquímica Bolsista: Joyce de Q. Barbosa Tutor: Dr. José Ribamar Silva Termodinâmica Conceitos Básicos Termoquímica

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba Lista de Exercícios Termodinâmica Curso: Data: / / Nome: Turma: Disciplina: Química (QB70D) - Profª Loraine 1. Defina:

Leia mais

CINÉTICA QUÍMICA. Obs.: a variação da quantidade deverá ser sempre um valor positivo, então ela deverá ser em módulo. 1.

CINÉTICA QUÍMICA. Obs.: a variação da quantidade deverá ser sempre um valor positivo, então ela deverá ser em módulo. 1. CINÉTICA QUÍMICA 1. Introdução O Conhecimento e o estudo da velocidade das reações, além de ser muito importante em termos industriais, também está relacionado ao nosso dia-adia, verificamos que há algumas

Leia mais

COLÉGIO EUCARÍSTICO Fixando o Conteúdo

COLÉGIO EUCARÍSTICO Fixando o Conteúdo COLÉGIO EUCARÍSTICO Fixando o Conteúdo 1. Considere as informações: I) A + B C + D Hº = - 10,0 kcal II) C + D E Hº = +15,0 kcal 2 Bimestre Calcule o H para cada uma das reações a seguir: a) C + D A + B

Leia mais

AULA 13 CALORIMETRIA. 1- Introdução

AULA 13 CALORIMETRIA. 1- Introdução AULA 13 CALORIMETRIA 1- Introdução Neste capítulo estudaremos o calor e suas aplicações. Veremos que o calor pode simplesmente alterar a temperatura de um corpo, ou até mesmo mudar o seu estado físico.

Leia mais

Aula 6 Transferências de energia

Aula 6 Transferências de energia Universidade Tecnológica Federal do Paraná Departamento Acadêmico de Química e Biologia Aula 6 Transferências de energia Dr. Tiago P. Camargo governa a química e a vida. Atraves da termodinâmica podemos

Leia mais

TERMOQUÍMICA. Karla Gomes Diamantina-MG

TERMOQUÍMICA. Karla Gomes Diamantina-MG TERMOQUÍMICA Karla Gomes Diamantina-MG Conceitos fundamentais Temperatura É a medida da energia cinética média ou do grau de agitação das partículas formadoras de um sistema. Quanto maior a temperatura,

Leia mais

química química na abordagem do cotidiano

química química na abordagem do cotidiano Capítulo Lei de Hess e entalpias-padrão Respostas dos exercícios essenciais H C H 35 kj H total 60 kj B H 5 kj A H X H 3 0 kj Y H 4 40 kj H total 60 kj Z 3 H T H 6 30 kj U H 5 60 kj H total 30 kj S 5 a)

Leia mais

Entropia e energia livre de Gibbs. Prof. Leandro Zatta

Entropia e energia livre de Gibbs. Prof. Leandro Zatta Entropia e energia livre de Gibbs Prof. Leandro Zatta 1 Segunda e a terceira leis Ideias importantes Sentido Natural Desordem Medido por Energia livre de Gibbs 2 Chave para compreensão da ocorrência ou

Leia mais

Termoquímica. Química 10/08/2015. Enem 15 Semanas. 1. Observando o diagrama a seguir, é correto afirmar que:

Termoquímica. Química 10/08/2015. Enem 15 Semanas. 1. Observando o diagrama a seguir, é correto afirmar que: Termoquímica 1. Observando o diagrama a seguir, é correto afirmar que: [Dadas as massas molares (g/mol): H=1 e O=16] a) para vaporizar 18g de água são liberados 10,5 kcal. b) o calor de reação, na síntese

Leia mais

Soluções e Gases III. Gases

Soluções e Gases III. Gases Soluções e Gases III Gases Gases Gás é um material que preenche todo o espaço ou volume do recipiente em que se encontra, independentemente do tamanho do recipiente. Ar 78 % de N 2 21% de O 2 1% de outros

Leia mais

Entalpia. O trabalho realizado por esta reação é denominado trabalho de pressão-volume (trabalho PV)

Entalpia. O trabalho realizado por esta reação é denominado trabalho de pressão-volume (trabalho PV) Entalpia As reações químicas podem absorver ou liberar calor e também podem provocar a realização de trabalho. Quando um gás é produzido, ele pode ser utilizado para empurrar um pistão: Zn(s) + 2H + (aq)

Leia mais

2.1 Breve história da termodinâmica

2.1 Breve história da termodinâmica 2.1 Breve história da termodinâmica TERMODINÂMICA calor força, movimento No início, estudava os processos que permitiam converter calor em trabalho (força e movimento). 2.1 Breve história da termodinâmica

Leia mais

Banco de Questões para o 2º ano MEDF. 1. De acordo com o gráfico abaixo, assinale o caminho que sugere a presença de catalisador. Explique.

Banco de Questões para o 2º ano MEDF. 1. De acordo com o gráfico abaixo, assinale o caminho que sugere a presença de catalisador. Explique. Banco de Questões para o 2º ano MEDF Cinética Química 1. De acordo com o gráfico abaixo, assinale o caminho que sugere a presença de catalisador. Explique. Gabarito: O caminho que sugere a presença de

Leia mais

Estudo Físico-Químico dos Gases

Estudo Físico-Químico dos Gases Estudo Físico-Químico dos Gases Prof. Alex Fabiano C. Campos Fases de Agregação da Matéria Sublimação (sólido em gás ou gás em sólido) Gás Evaporação (líquido em gás) Condensação (gás em líquido) Sólido

Leia mais

P2 - PROVA DE QUÍMICA GERAL 22/10/05.

P2 - PROVA DE QUÍMICA GERAL 22/10/05. P2 - PROVA DE QUÍMICA GERAL 22/10/05. Nome: Nº de Matrícula: GABARITO Turma: Assinatura: Questão Valor Grau Revisão 1 a 2,5 2 a 2,5 3 a 2,5 4 a 2,5 Total 10,0 Constantes e Fatores de Conversão R = 8,314

Leia mais

Lista de Exercícios Lei de Hess, Cinética Química e Equilíbrio Químico Prof. Benfica

Lista de Exercícios Lei de Hess, Cinética Química e Equilíbrio Químico Prof. Benfica Lista de Exercícios Lei de Hess, Cinética Química e Equilíbrio Químico Prof. Benfica 1) A entalpia da reação (I) não pode ser medida diretamente em um calorímetro porque a reação de carbono com excesso

Leia mais

GASES PERFEITOS AULA INTRODUÇÃO

GASES PERFEITOS AULA INTRODUÇÃO AULA 5 GASES PERFEIOS - INRODUÇÃO Neste capítulo, vamos estudar as transformações gasosas e as leis elaboradas por Boyle e ariotte, Clapeyron, Gay-Lussac e Charles, que regem estas transformações. Vamos

Leia mais

Primeira Lei da Termodinâmica

Primeira Lei da Termodinâmica Físico-Química I Profa. Dra. Carla Dalmolin Primeira Lei da Termodinâmica Definição de energia, calor e trabalho Trocas térmicas Entalpia e termoquímica Termodinâmica Estudo das transformações de energia

Leia mais

FÍSICO-QUÍMICA Prof. Jackson Alves

FÍSICO-QUÍMICA Prof. Jackson Alves FÍSICO-QUÍMICA Prof. Jackson Alves TERMOQUÍMICA Parte II Entalpia e H Processos exotérmicos e endotérmicos Equações Alotropia Entalpia (H) e Variação de entalpia ( H) Entalpia: É a energia total em um

Leia mais

Estudos de Calor Nas Reações Químicas

Estudos de Calor Nas Reações Químicas studos de Calor Nas Reações s 1. Leia as informações a seguir: Uma árvore, em um ambiente natural a 0 C, apresentando 10 5 folhas com área média de 0,5 dm por folha, está perdendo água para a atmosfera

Leia mais

REVISIONAL DE QUÍMICA 1º ANO PROF. RICARDO

REVISIONAL DE QUÍMICA 1º ANO PROF. RICARDO REVISIONAL DE QUÍMICA 1º ANO PROF. RICARDO 1- Um aluno de química, ao investigar as propriedades de gases, colocou uma garrafa plástica (PET), contendo ar e devidamente fechada, em um freezer e observou

Leia mais

P2 - PROVA DE QUÍMICA GERAL - 16/05/03

P2 - PROVA DE QUÍMICA GERAL - 16/05/03 P2 - PROVA DE QUÍMICA GERAL - 6/05/03 Nome: Nº de Matrícula: GABARITO Turma: Assinatura: Constantes: Questão Valor Grau Revisão a 2,0 2 a 2,0 3 a 2,0 4 a 2,0 5 a 2,0 Total 0,0 R = 8,34 J mol - K - R =

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA - EEL. Profª Drª Marivone Nunho Sousa

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA - EEL. Profª Drª Marivone Nunho Sousa UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA - EEL Profª Drª Marivone Nunho Sousa 5 de agosto de 2016 ALGUNS ILUSTRES PESQUISADORES QUE CONSTRUÍRAM A TERMODINÂMICA Sadi Carnot 1796-1832 James

Leia mais

10ª LISTA - EXERCÍCIOS DE PROVAS 2ª. Lei da Termodinâmica

10ª LISTA - EXERCÍCIOS DE PROVAS 2ª. Lei da Termodinâmica Pg. 1/5 1 a Questão A massa de 1,80 g de água pura, em um recipiente hermeticamente fechado, foi aquecida até a fervura, ao nível do mar. A equação abaixo representa a vaporização da água. H 2 O(l) H 2

Leia mais

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte. Esta aula tratará de gases e termodinâmica:

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte. Esta aula tratará de gases e termodinâmica: Esta aula tratará de gases e termodinâmica: Estudando a matéria, os cientistas definiram o mol. Um mol corresponde a 6,02. 10 " unidades de algo, número conhecido por N A, número de Avogadro. A importância

Leia mais

Fundamentos da Termodinâmica

Fundamentos da Termodinâmica 1 Fundamentos da Termodinâmica Objetivos: Definição de sistema e vizinhança Compreender o trabalho P-V Compreender processos reversíveis e irreversíveis Definir a primeira Lei da termodinâmica Cálculo

Leia mais

Aula 14 Equilíbrio de Fases: Substâncias Puras

Aula 14 Equilíbrio de Fases: Substâncias Puras Aula 14 Equilíbrio de Fases: Substâncias Puras 1. A condição de estabilidade Inicialmente precisamos estabelecer a importância da energia de Gibbs molar na discussão das transições de fase. A energia de

Leia mais

MÓDULOS 37 E 38 QUÍMICA. Termodinâmica I e II. Ciências da Natureza, Matemática e suas Tecnologias. 1. Trabalho de expansão à pressão constante

MÓDULOS 37 E 38 QUÍMICA. Termodinâmica I e II. Ciências da Natureza, Matemática e suas Tecnologias. 1. Trabalho de expansão à pressão constante Ciências da Natureza, Matemática e suas Tecnologias QUÍMICA MÓDULOS 37 E 38 Termodinâmica I e II 1. Trabalho de expansão à pressão constante Vamos considerar um gás aprisionado em um cilindro com pistão

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departamento de Estudos Básicos e Instrumentais 4 Termodinâmica Física II Ferreira 1 ÍNDICE 1. Conceitos Fundamentais; 2. Sistemas Termodinâmicos; 3. Leis da

Leia mais

Please purchase PDFcamp Printer on to remove this watermark.

Please purchase PDFcamp Printer on  to remove this watermark. Calor=Entalpiadasreações Entalpiapadrão O termômetro tem o seu ponto de referência o 0ºC pra cima de 0 é positivo e para baixo de 0 é negativo o mesmo ponto de referência existe na termoquímica: Um elemento

Leia mais

QUÍMICA MÓDULO 18 RELAÇÕES NUMÉRICAS. Professor Edson Cruz

QUÍMICA MÓDULO 18 RELAÇÕES NUMÉRICAS. Professor Edson Cruz QUÍMICA Professor Edson Cruz MÓDULO 18 RELAÇÕES NUMÉRICAS INTRODUÇÃO Precisamos compreender que houve uma necessidade de se definir uma nova unidade de massa para átomos e moléculas. É importante que você

Leia mais

A Primeira Lei da Termodinâmica. Energia. U = variação na energia de um sistema U = U final -U inicial

A Primeira Lei da Termodinâmica. Energia. U = variação na energia de um sistema U = U final -U inicial Química Aplicada à Engenharia Civil Termodinâmica Química Continuação Profa. Geisamanda Pedrini Brandão Athayde Revisão Calor Sistema ganha calor Æ q > 0 Æ Processo Endotérmico Sistema perde calor Æ q

Leia mais

Questão 4. Questão 5

Questão 4. Questão 5 Questão 1 Um mol de gás ideal sofre transformação AëBëC indicada no diafragma pressão x volume da figura a seguir. a) qual é a temperatura do gás no estado A? b) Qual é o trabalho realizado pelo gás na

Leia mais

Características dos gases

Características dos gases Gases Características dos gases Os gases são altamente compressíveis e ocupam o volume total de seus recipientes. Quando um gás é submetido à pressão, seu volume diminui. Os gases sempre formam misturas

Leia mais

2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3

2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3 6/Fev/016 Aula 3 Calor e Primeira Lei da Termodinâmica Calor e energia térmica Capacidade calorífica e calor específico Calor latente Diagrama de fases para a água Primeira Lei da Termodinâmica Trabalho

Leia mais

Capítulo 1. Propriedades dos Gases

Capítulo 1. Propriedades dos Gases Capítulo 1. Propriedades dos Gases Baseado no livro: Atkins Physical Chemistry Eighth Edition Peter Atkins Julio de Paula 14-03-2007 Maria da Conceição Paiva 1 O estado físico de uma substância A equação

Leia mais

QUÍMICA CÁLCULOS ESTEQUIOMÉTRICOS

QUÍMICA CÁLCULOS ESTEQUIOMÉTRICOS QUÍMICA CÁLCULOS ESTEQUIOMÉTRICOS CÁLCULOS ESTEQUIOMÉTRICOS Os cálculos estequiométricos correspondem aos cálculos de massa, de quantidade de matéria e em alguns casos, de volumes das substâncias envolvidas

Leia mais

P4 - PROVA DE QUÍMICA GERAL - 03/12/05

P4 - PROVA DE QUÍMICA GERAL - 03/12/05 P4 - PROVA DE QUÍMICA GERAL - 03//05 Nome: GABARITO Nº de Matrícula: Turma: Assinatura: Questão Valor Grau Revisão a,5 a,5 3 a,5 4 a,5 Total 0,0 Constantes e equações: R = 0,08 atm L mol - K - = 8,34 J

Leia mais

Professor Armando J. De Azevedo

Professor Armando J. De Azevedo Professor Armando J. De Azevedo Química Professor Armando J. De Azevedo WWW.quimicarmando.com REAÇÃO DE ADIÇÃO As reações de adição são aquelas onde um átomo proveniente de uma substância orgânica ou inorgânica

Leia mais

a) 0,60 M e 0,20 M b) 0,45 M e 0,15 M c) 0,51 M e 0,17 M d) 0,75 M e 0,25 M

a) 0,60 M e 0,20 M b) 0,45 M e 0,15 M c) 0,51 M e 0,17 M d) 0,75 M e 0,25 M ª série E.M. - APE 1. (Vunesp) Medicamentos, na forma de preparados injetáveis, devem ser soluções isotônicas com relação aos fluidos celulares. O soro fisiológico, por exemplo, apresenta concentração

Leia mais

Termodinâmica. Lucy V. C. Assali

Termodinâmica. Lucy V. C. Assali Termodinâmica Gases Ideais Física II 2015 - IO Propriedades dos Gases: Equação de Estado dos Gases Ideais Fluido homogêneo: caracterizado por qualquer par das três variáveis (P,V,T) uma relação funcional

Leia mais

Físico-Química Farmácia 2014/02

Físico-Química Farmácia 2014/02 Físico-Química Farmácia 2014/02 1 2 Aspectos termodinâmicos das transições de fase A descrição termodinâmica das misturas Referência: Peter Atkins, Julio de Paula, Físico-Química Biológica 3 Condição de

Leia mais

Termodinâmica A primeira Lei

Termodinâmica A primeira Lei Departamento de Química e Bioquímica Termodinâmica A primeira Lei Cap. 7 Atkins FUNDAMENTOS DE QUÍMICA Termodinâmica Estudo das transformações de energia entre as suas diferentes formas Sistema + Vizinhança

Leia mais

11ª LISTA - EXERCÍCIOS DE PROVAS Energia Livre

11ª LISTA - EXERCÍCIOS DE PROVAS Energia Livre Pg. 1/5 1ª. Questão Considere o processo de sublimação (eq. 1) e a reação de dissociação (eq. 2) do iodo e responda o que se pede. Sublimação do iodo: I 2 (s) I 2 (g) eq. 1 Reação de dissociação do iodo:

Leia mais

Os sistemas podem armazenar energia e está pode ser transferida.

Os sistemas podem armazenar energia e está pode ser transferida. AULA 13 Termoquímica A termoquímica é uma parte da físico-química que estuda as trocas de calor (entre os sistemas e o meio ambiente) que acompanha os fenômenos. Calor é uma energia em trânsito. Existem

Leia mais

Aluno(a): nº: Turma: Data: / /2016. Matéria: Química Valor: 15,0

Aluno(a): nº: Turma: Data: / /2016. Matéria: Química Valor: 15,0 Aluno(a): nº: Turma: Nota Ano: 2º Ano EM Data: / /2016 Trabalho Recuperação Professor(a): Willian Novato Matéria: Química Valor: 15,0 PARA TODAS AS QUESTÕES, AS RESPOSTAS DEVERÃO CONSTAR DE RACIOCÍNIO

Leia mais

Primeira Lei da Termodinâmica. Prof. Marco Simões

Primeira Lei da Termodinâmica. Prof. Marco Simões Primeira Lei da Termodinâmica Prof. Marco Simões Calor e Trabalho A termodinâmica estuda a relação entre calor e trabalho Conforme determinado por Joule 1 cal=4,18 J esse é o equivalente mecânico do calor.

Leia mais

AULA PRÁTICA DE QUÍMICA GERAL Estudando a água parte 41 Comportamento da água com sal - 4

AULA PRÁTICA DE QUÍMICA GERAL Estudando a água parte 41 Comportamento da água com sal - 4 AULA PRÁTICA DE QUÍMICA GERAL Estudando a água parte 41 Comportamento da água com sal - 4 9º NO DO ENSINO FUNDAMENTAL - 1º e 2º ANO DO ENSINO MÉDIO INTRODUÇÃO Na parte anterior, investigamos o método de

Leia mais

NOME: ANO: 2º ENSINO: MÉDIO TURMA: DATA: / / PROF(ª).: Luciano Raposo Freitas EXERCÍCIOS TERMOQUÍMICA QUÍMICA II (2º BIM)

NOME: ANO: 2º ENSINO: MÉDIO TURMA: DATA: / / PROF(ª).: Luciano Raposo Freitas EXERCÍCIOS TERMOQUÍMICA QUÍMICA II (2º BIM) NOME: ANO: 2º ENSINO: MÉDIO TURMA: DATA: / / PROF(ª).: Luciano Raposo Freitas EXERCÍCIOS TERMOQUÍMICA QUÍMICA II (2º BIM) 1. Nos motores de explosão existentes hoje em dia utiliza-se uma mistura de gasolina

Leia mais

Aula 15 Diagramas de Fase

Aula 15 Diagramas de Fase Aula 15 Diagramas de Fase 1. Introdução O diagrama de fases de uma substância é um mapeamento que mostra as condições de temperatura e pressão em que as diferentes fases são termodinamicamente mais estáveis.

Leia mais

Aula Calor e 1ª Lei da Termodinâmica. As leis da Termodinâmica foram inicialmente obtidas empiricamente e somente

Aula Calor e 1ª Lei da Termodinâmica. As leis da Termodinâmica foram inicialmente obtidas empiricamente e somente 1 Aula Calor e 1ª Lei da Termodinâmica Tema: Termodinâmica a serem abordados os assuntos: - Lei zero da Termodinâmica; - 1ª Lei da Termodinâmica calor e energia; - 2ª Lei entropia; - Aplicações da Termodinâmica

Leia mais

Todo gás exerce uma PRESSÃO, ocupando um certo VOLUME à determinada TEMPERATURA

Todo gás exerce uma PRESSÃO, ocupando um certo VOLUME à determinada TEMPERATURA Todo gás exerce uma PRESSÃO, ocupando um certo VOLUME à determinada TEMPERATURA Aos valores da pressão, do volume e da temperatura chamamos de ESTADO DE UM GÁS Assim: V 5 L T 300 K P 1 atm Os valores da

Leia mais

Concentração dos reagentes Quanto maior a concentração dos reagentes, maior a velocidade da reação.

Concentração dos reagentes Quanto maior a concentração dos reagentes, maior a velocidade da reação. Setor 3306 Aula 20 Lei da velocidade das reações Complemento. As reações químicas podem ocorrer nas mais diferentes velocidades. Existem reações tão lentas que levam milhares de anos para ocorrer, como

Leia mais

Deve-se esperar uma redução na velocidade de rotação do hidrômetro em dias frios.

Deve-se esperar uma redução na velocidade de rotação do hidrômetro em dias frios. 01. Considere que dez litros de cada um dos seguintes gases estão nas mesmas condições de pressão e temperatura: PH 3, C 2 H 6 O, H 2, NH 3, Ne, Cl 2 e SO 2. A alternativa que apresenta corretamente os

Leia mais

Lista de exercícios 2 QB70D

Lista de exercícios 2 QB70D Lista de exercícios 2 QB70D 1) Suponha que você jogue uma bola de tênis para o alto. (a) A energia cinética da bola aumenta ou diminui à medida que ela ganha altitude? (b) O que acontece com a energia

Leia mais

Física e Química A 715 (versão 1)

Física e Química A 715 (versão 1) Exame (Resolução proposta por colaboradores da Divisão de Educação da Sociedade Portuguesa de Física) Física e Química A 715 (versão 1) 0 de Junho de 008 1. 1.1. Átomos de ferro A espécie redutora é o

Leia mais

P4 PROVA DE QUÍMICA GERAL 02/12/08

P4 PROVA DE QUÍMICA GERAL 02/12/08 P4 PROVA DE QUÍMICA GERAL 0/1/08 Nome: Nº de Matrícula: GABARITO Turma: Assinatura: Questão Valor Grau Revisão 1 a,5 a,5 3 a,5 4 a,5 Total 10,0 Constantes e equações: R = 0,08 atm L mol -1 K -1 = 8,314

Leia mais

ESCOLA SECUNDÁRIA DE MONSERRATE

ESCOLA SECUNDÁRIA DE MONSERRATE ESCOLA SECUNDÁRIA DE MONSERRATE F.Q. A 2º ANO EQUILÍBRIO QUÍMICO 1. Para ocorrer uma situação de equilíbrio num sistema são necessárias, pelo menos, duas das condições seguintes: A Todos os reagentes se

Leia mais