Divisibilidade e o algoritmo da divis~ao em Z

Tamanho: px
Começar a partir da página:

Download "Divisibilidade e o algoritmo da divis~ao em Z"

Transcrição

1 3 Divisibilidade e o algoritmo da divis~ao em Z 31 Divisibilidade Em nossa educa»c~ao b asica, aprendemos que quando um n umero inteiro e dividido por um n umero inteiro n~ao nulo, o quociente pode ou n~ao ser um n umero inteiro Esta observa»c~ao nos leva µa seguinte de ni»c~ao De ni»c~ao 31 Um inteiro a divide um inteiro b quando existe um n umero inteiro m tal que b = a m Quando a 6= 0(e somente neste caso), dizemos tamb em que b e divis ³vel por a Neste caso, o inteiro m e chamado quociente de b por a e e indicado por m = b a Quando a divide b denotamos a j b e dizemos tamb em que a e umdivisor de b ou que a e umfator de b ou ainda que b e umm ultiplo de a No caso em que a 6= 0, dizemos ainda que b e divis ³vel por a Quando a n~ao divide b escrevemos a6j b N~ao escreva a= b enemanb para denotar que a divide b A nota»c~ao correta e a j b Exemplo 31 7 divide 161 j a que existe um inteiro, 3, tal que 161 = 7 3 Os divisores de 1 s~ao 1,, 3, 4, 6, 1, 1,, 3 4, 6, e 1 J a os divisores de 3 s~ao 1, 3, 1 e 3 0

2 Divisibilidade e o algoritmo da divis~ao em Z 1 Proposi»c~ao 31 Se a, b e c s~ao inteiros, tais que a j b e b j c, ent~ao a j c Demonstra»c~ao Comoa j b e b j c, existem inteiros m e n tais que b = am e c = bn Logo, c =(am)n = a(mn), eportantoa j c Proposi»c~ao 3 Se a, b, c, m e n s~ao inteiros, tais que a j b e a j c, ent~ao a j (mb+nc) Demonstra»c~ao Como a j b e a j c existem inteiros e e f tais que b = ae e c = af Logo mb + nc = m(ae)+n(af) =(me + nf)a Portanto,a j (mb + nc) Para exempli car a proposi»c~ao acima, note que 3 j 1, 3 j 33 e, conseqäuentemente, 3 j ( ), isto e, 3 j 6 3 O algoritmo da divis~ao em Z Teorema 31 (Teorema do algoritmo da divis~ao em Z) Se a e b s~ao inteiros, e b 6= 0,ent~ao existem inteiros q e r tais que a = bq + r, e0 r<jbj Osinteirosq e r, nas condi»c~oes acima, s~ao unicos Os inteiros q e r s~ao chamados, respectivamente, de quociente e resto da divis~ao euclidiana de a por b Demonstra»c~ao Demonstraremos o teorema supondo b>0 e deixaremos o caso b<0 para ser completado pelo leitor Pelo teorema 4, do algoritmo da divis~ao em N, cap ³tulo, se a 0, existem n umeros naturais q e r satisfazendo a = bq + r e 0 r<b Se a < 0, ent~ao jaj > 0 Aplicando o teorema 4, existem naturais q e r satisfazendo jaj = bq + r; e 0 r<b Como jaj = a, temos ent~ao a = bq + r, ouseja,a = b( q)+( r) Ser =0, temos a = b( q)+0, sendo ent~ao q e 0 o quociente e o resto da divis~ao de a por b, respectivamente Se r>0, temos a = b( q)+( r) = b( q) b + b r, logo = b( q 1) + (b r) Como 0 <r<b,temos b < r <0 eent~ao, somando b aos tr^es membros desta ultima desigualdade, 0 <b r < b Fazendo q 0 = q 1, er 0 = b r, temos a = bq 0 + r 0,com0 <r 0 <b No caso em que b<0, fazendo a divis~ao euclidiana de a por jbj, obtemos quociente e resto da divis~ao de a por b

3 Divisibilidade e o algoritmo da divis~ao em Z Para demonstrar a unicidade do quociente q e do resto r, suponhamos que seja poss ³vel fazer a = bq 1 + r 1 = bq + r com q 1 ;q ;r 1 e r inteiros, 0 r 1 <be 0 r <b Mostraremos que necessariamente q 1 = q e r 1 = r A partir da igualdade bq 1 + r 1 = bq + r,obtemos0=b(q 1 q )+(r 1 r ) ou, equivalentemente, (r r 1 )=b(q 1 q ) Logo b divide r r 1 Por outro lado, como 0 r 1 <be 0 r <bsegue que b <r r 1 <b,eportantojr r 1 j <b Como b divide jr r 1 j <b(pois divide r r 1 ), temos necessariamente (justi que) r r 1 =0e, conseqäuentemente, q 1 q =0 Segue portanto a unicidade q 1 = q e r 1 = r Observa»c~ao 31 Fixado um inteiro positivo d,em v arias inst^ancias, na teoria do n umeros, classi camos os n umeros inteiros pelos restos da divis~ao por d Por exemplo, se d =ent~ao o resto da divis~ao de qualquer inteiro n por satisfaz 0 r<, isto e, r =0ou r =1 No primeiro caso, n =q, dizemos que n e um inteiro par, e no segundo caso, n =q +1, dizemos que n e uminteiro ³mpar De forma an aloga, se d =4temos 0 r<4 Conclu ³mos ent~ao que cada inteiro n tem uma e apenas uma das formas: n =4q, n =4q +1, n =4q +, n =4q +3(com q Z) Assim, o conjunto Z, dos n umeros inteiros, ca subdividido em quatro classes de inteiros, cada uma das classes contendo todos os inteiros que deixam um mesmo resto quando divididos por 4 33 Divis~ao euclidiana na calculadora Nesta se»c~ao, assumiremos familiaridade com os n umeros reais, e exploraremos um m etodo simplesparaobterquocienteeresto,deumadivis~ao euclidiana em Z, usandoumacalculadora comum De ni»c~ao 3 (Fun»c~ao maior inteiro) Para cada x R, de ne-se o maior inteiro contido em x, como sendo o n umero [x] Z tal que x = [x] +, sendo real, 0 <1 Exemplo 3 [8=3] =, pois 8=3 =+=3; [¼] =3, pois ¼ =3+, sendo ¼ 0; 14 [ 1;5] =, pois 1;5 = + 0;5

4 Divisibilidade e o algoritmo da divis~ao em Z 3 Lema 31 Para cada x R, x 1 < [x] x Demonstra»c~ao Sejax um n umero real Ent~ao x =[x]+, com[x] Z e 0 <1 Da ³ temos[x] [x]+ = x Agora, x 1=[x]+( 1) Como 0 <1, temos 1 1 < 0 eent~ao [x]+( 1) < [x] Portanto, x 1 < [x] Assim, x 1 < [x] x Proposi»c~ao 33 (Obtendo quociente e resto em uma calculadora) Sejam a e b a inteiros, com b>0 Consideremos o n umero racional b Ent~ao o quociente q eo resto r, da divis~ao euclidiana de a por b, s~ao dados por h a i ³ a h a i q = e r = b b b b h a i Demonstra»c~ao Tomemos q = e r = b b ³ a b h a b i Temos ent~ao a = bq + r, sendo q =[ a b ] e r = a b[ a ]=a bq ambos inteiros b Basta veri car agora que 0 r<b Pelo lema 31 temos a b 1 < a b a b,isto e, a b 1 <q a b Sendo b>0, temos ent~ao a b<bq a, de onde a bq < b a, eent~ao 0 a bq < b Exemplo 33 Como exemplo, ao dividir 6795 por 15, em uma calculadora obtemos 6795=15 = 14;36, portantoq = [14;36] = 14 e r = (14;36 14) 15 = 0;36 15 = 45 Se a =536e b =18ent~ao q = [536=18] = 9 e r = 536 [536=18] 18 = = 14 Se a = 380 e b =75ent~ao q =[ 380=75] = 6 e r = 380 [ 380=75] 75 = 380 ( 6) 75 = 70 Este algoritmo funciona bem em calculadoras eletr^onicas, desde que os inteiros envolvidos n~ao sejam muito grandes, por causa de limita»c~oes de mem oria Sabemos que r =( a b [ a b ]) b e um inteiro Se aparecer, no visor de sua calculadora, um resultado para r tal como 6; , simplesmente arredonde-o para 7

5 Divisibilidade e o algoritmo da divis~ao em Z 4 34 Exerc ³cios 1 De acordo com a de ni»c~ao 31, podemos dizer que 0 divide 0? (N~ao se apresse em dar a resposta Pense: 0 e fator de 0?) Podemos dizer que 0 e divis ³vel por 0? Mostre que 160 e divis ³vel por 7, por5 epor9 3 Encontre o quociente e o resto da divis~ao por 17, sendo o dividendo (a) 100 (b) 89 (c) 44 (d) 100 Respostas (a) q =5, r =15 (b) q =17, r =0 (c) q = 3, r =7 (d) q = 6, r = 4 Use uma calculadora, para obter quociente e resto da divis~ao, por 135, sendo o dividendo (a) (b) Respostas (a) q =385, r = 1571 (b)q = 10 11, r = Sendo a e b inteiros, demonstre que a j b e b j a, a = b 6 Mostre que sendo a, b, c e d inteiros, se a j b e c j d ent~ao ac j bd 7 Existem inteiros a, b e c tais que a j bc mas a6j b e a6j c? 8 Mostre que a soma de dois inteiros pares e sempre par, que a soma de dois inteiros ³mpares e sempre par, e que a soma de um inteiro par com um inteiro ³mpar e sempre ³mpar 9 Mostre que se a e um inteiro ent~ao a 3 a e divis ³vel por 6 Sugest~ao Pelo teorema 31, a =6q + r, comr f0; 1; ; 3; 4; 5g 10 Mostre que o quadrado de um inteiro ³mpar e daforma8k +1,comk inteiro 11 Mostre que o produto de dois inteiros da forma 6k +5 e um inteiro da forma 6k +1 Sugest~ao Os dois inteiros tem a forma 6k 1 +5e 6k +5,paracertosinteirosk 1 e k 1 Mostre que o cubo de um inteiro e deumadasformas:9k, 9k 1, 9k +1,com k inteiro Sugest~ao Pelo algoritmo da divis~ao por 3, todointeiron tem a forma 3q + r, sendo r f0; 1; g 13 Seja f n o n- esimo n umero de Fibonacci Recorde-se de que f 1 = f =1,e f n = f n 1 + f n para cada n 3 (a) Mostre que f n epar, n e divis ³vel por 3 Sugest~ao Mostre, por indu»c~ao sobre k, que para cada inteiro k 0, f 3k e par, enquanto que f 3k+1 e f 3k+ s~ao ³mpares (podemos considerar f 0 =0)

6 Divisibilidade e o algoritmo da divis~ao em Z 5 (b) Mostre que f n e divis ³vel por 3, n e divis ³vel por 4 (c) Mostre que f n+m = f n f m 1 + f n+1 f m se m e n 1 Sugest~ao Mostre que, para cada n 1, aigualdade e valida para m =e para m =3 Demonstre ent~ao a igualdade, para cada n, por indu»c~ao sobre m, pelo o princ ³pio de indu»c~ao (d) Usando o resultado do item anterior, mostre que se n j m ent~ao f n j f m Sugest~ao Mostre, por indu»c~ao sobre k, k 1, que f kn e divis ³vel por f n 14 Sejam a; b; c; d quatro inteiros com a e c n~ao nulos Mostre que se a j b e c j d ent~ao ac j bd 15 Existem inteiros a; b; c tais que a j bc mas a6j b e a6j c? 16 Sejam a; b; c tr^es inteiros com c 6= 0 Mostre que a j b se e somente se ac j bc 17 Sejam a e b dois inteiros tais que a j b Mostre que a jbj 18 Complete a demonstra»c~ao do teorema 31, com o caso em que b<0 19 Demonstre que (a) Se x e y s~ao dois n umeros reais ent~ao [x + y] [x]+[y] Sugest~ao Considere que [x] =a, x = a +, sendo a inteiro e um n umero real satisfazendo 0 < <1 (b) Se x e umn umero real, e x 6= n + 1 para todo inteiro n, ent~ao x + 1 eo inteiro mais pr oximo de x Sugest~ao Quando x 6= n + 1 para todo inteiro n, o inteiro m mais pr oximo de x e aquele satisfazendo x = m +, com 1 < < 1 (c) Se x = n + 1, para algum inteiro n, ent~ao n e n +1s~ao eqäuidistantes de x, sendo os inteiros mais pr oximos de x 0 (a) Mostre que, se x e d s~ao inteiros positivos, o n umero de inteiros positivos, menores do que ou iguais a x, que s~ao divis ³veis por d, e calculado por x d Sugest~ao Os inteiros positivos m ultiplos de d s~ao d, d, 3d, etc Existeum unico inteiro positivo n satisfazendo nd x e (n +1)d>x (b) Calcule o n umero de inteiros positivos que n~ao excedem 1000 e que s~ao divis ³veis por 5, por5, por15 epor65 (c) Quantos inteiros entre 100 e 1000 s~ao divis ³veis por 7?Epor49? 1 Seja T (n) uma fun»c~ao com dom ³nio nos inteiros positivos de nida por ( n se n e par T (n) = 3n+1 se n e ³mpar

7 Divisibilidade e o algoritmo da divis~ao em Z 6 Iterando a fun»c~ao T podemos construir, a partir de um inteiro positivo n xado, uma seqäu^encia de inteiros conforme mostra o quadro abaixo: n n; T (n);t(t (n));t(t (T (n)));t 4 (n);t 5 (n);::: 1 1; ; 1; ; 1; ; 1;::: ; 1; ; 1; ; 1; ; 1;::: 3 3; 5; 8; 4; ; 1; ; 1;::: 4 4; ; 1; ; 1; ; 1;::: 5 5; 8; 4; ; 1; ; 1;::: 6 6; 3; 5; 8; 4; ; 1; ; 1;::: 7 7; 11; 17; 6; 13; 0; 10; 5; 8; 4; ; 1; ; 1;::: Uma conjectura muito conhecida, as vezes chamada de Conjectura de Collatz, a rma que a seqäu^encia obtida pelas itera»c~oes de T sempre recaem na repeti»c~ao 1; ; 1; ; 1;:::, independentemente do valor do inteiro inicial n (a) Encontre a seqäu^encia obtida pelas itera»c~oes de T,come»cando com n =9 (b) Mostre que se k e uminteiro,( k 1)=3 e sempreuminteiro ³mpar (c) Mostre que a seqäu^encia obtida pelas itera»c~oes de T,come»cando com n = ( k 1)=3, sendo k um inteiro, sempre recai em 1,, 1,, 1, :::

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

M aximo divisor comum

M aximo divisor comum 6 M aximo divisor comum 6.1 Conceitua»c~ao e propriedades elementares Se x e a s~ao inteiros, com a 6= 0,ex j a (lembre-se de que \x j a" signi ca \x divide a") ent~ao jxj jaj. Defato,comoa = xc, para

Leia mais

Inteiros e Indu»c~ao Finita

Inteiros e Indu»c~ao Finita 1 Inteiros e Indu»c~ao Finita Neste cap ³tulo estudaremos uma estrutura alg ebrica que j a nos e familiar: a estrutura alg ebrica do conjunto Z dos n umeros inteiros. Por estrutura alg ebrica do conjunto

Leia mais

Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides

Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides 1 Máximo Divisor Comum Definição 1.1 Sendo a um número inteiro, D a indicará o conjunto de seus divisores positivos,

Leia mais

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 Neste curso, consideraremos o conjunto dos números naturais como sendo o conjunto N = {0, 1, 2, 3,... }, denotando por N o conjunto N \ {0}. Como

Leia mais

MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (2/6) Carlos Luz. EST Setúbal / IPS Abril 2012

MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (2/6) Carlos Luz. EST Setúbal / IPS Abril 2012 MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (2/6) Carlos Luz EST Setúbal / IPS 16 22 Abril 2012 Carlos Luz (EST Setúbal / IPS) Aritmética Racional (2/6) 16 22 Abril 2012 1 / 15 Divisão Inteira Teorema Sendo

Leia mais

MA14 - Aritmética Unidade 2 Resumo. Divisão Euclidiana

MA14 - Aritmética Unidade 2 Resumo. Divisão Euclidiana MA14 - Aritmética Unidade 2 Resumo Divisão Euclidiana Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte da disciplina e o seu estudo não garante o domínio do assunto. O material

Leia mais

Primeiros conceitos da teoria dos an eis

Primeiros conceitos da teoria dos an eis 1 Primeiros conceitos da teoria dos an eis 1.1 Coisas elementares De ni»c~ao 1.1.1 Um anel e uma estrutura alg ebrica (A; +; ), (isto e, um conjunto n~ao vazio A, juntamente com duas opera»c~oes + e em

Leia mais

1.1 Propriedades Básicas

1.1 Propriedades Básicas 1.1 Propriedades Básicas 1. Classi que as a rmações em verdadeiras ou falsas, justi cando cada resposta. (a) Se x < 2, então x 2 < 4: (b) Se x 2 < 4, então x < 2: (c) Se 0 x 2, então x 2 4: (d) Se x

Leia mais

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c Números Reais Víctor Arturo Martínez León (victor.leon@unila.edu.br) 1 Os números racionais Os números racionais são os números da forma a, sendo a e b inteiros e b 0; o conjunto b dos números racionais

Leia mais

MA14 - Aritmética Lista 1. Unidades 1 e 2

MA14 - Aritmética Lista 1. Unidades 1 e 2 MA14 - Aritmética Lista 1 Unidades 1 e 2 Abramo Hefez PROFMAT - SBM 05 a 11 de agosto 2013 Unidade 1 1. Mostre, por indução matemática, que, para todo n N {0}, a) 8 3 2n + 7 b) 9 10 n + 3.4 n+2 + 5 2.

Leia mais

Diagonal mais curta. Como d = mx e l = nx, teríamos: l 1 = d l = mx nx = (m n)x = n 1 x. d 1 = a:d + b:l = amx + bnx = (am + bn)x = m 1 x

Diagonal mais curta. Como d = mx e l = nx, teríamos: l 1 = d l = mx nx = (m n)x = n 1 x. d 1 = a:d + b:l = amx + bnx = (am + bn)x = m 1 x Diagonal mais curta Seja P um polígono regular de lados ( > 6), d a medida da sua diagonal mais curta e l a medida do seu lado. Supondo que d e l são comensuráveis, temos d mx e l nx, onde m e n são inteiros

Leia mais

Limites. Uma introdu»c~ao intuitiva

Limites. Uma introdu»c~ao intuitiva Aula 4 Limites. Uma introdu»c~ao intuitiva Nos cap ³tulos anteriores, zemos uso de um ite especial para calcular derivadas: f 0 f(+ ) f() () =.!0 Neste cap ³tulo veremos os ites como ferramentas de estudo

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos 1 - Algoritmo de Euclides; Indução Matemática; Teorema Fundamental da Aritmética 1. Considere os inteiros a 406 e b 654. (a) Encontre d mdc(a,b), o

Leia mais

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012 NÚMEROS INTEIROS PROF. FRANCISCO MEDEIROS Álgebra Abstrata - Verão 2012 Faremos, nessas notas, uma breve discussão sobre o conjunto dos números inteiros. O texto é basicamente a seção 3 do capítulo 1 de

Leia mais

ENFOQUE USANDO CORTES DE DEDEKIND

ENFOQUE USANDO CORTES DE DEDEKIND Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit CONSTRUÇÃO DOS REAIS: UM ENFOQUE

Leia mais

Algoritmos. OBMEP Teoria dos números - Parte I. Algoritmo da divisão:

Algoritmos. OBMEP Teoria dos números - Parte I. Algoritmo da divisão: OBMEP Teoria dos números - Parte I Elaine Pimentel 1 o Semestre - 2006 Algoritmos Algoritmo = processo de cálculo baseado em regras formais Especificação de um algoritmo: entrada + instruções + saída Perguntas:

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17)

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Lista 1 - Bases Matemáticas Elementos de Lógica e Linguagem Matemática 1

Leia mais

Definimos a soma de seqüências fazendo as operações coordenada-a-coordenada:

Definimos a soma de seqüências fazendo as operações coordenada-a-coordenada: Aula 8 polinômios (Anterior: chinês. ) 8.1 séries formais Fixemos um anel A. Denotaremos por A N o conjunto de todas as funções de N = {, 1, 2,... } a valores em A. Em termos mais concretos, cada elemento

Leia mais

Representa»c~ao posicional de inteiros

Representa»c~ao posicional de inteiros 4 Representa»c~ao posicional de inteiros Habitualmente os n umeros inteiros positivos s~ao representados no sistema (posicional) decimal. Na representa»c~ao de um inteiro positivo no sistema decimal, os

Leia mais

CENTRO EDUCACIONAL GIRASSOL TD de Matemática Prof.: Tiago Rodrigues

CENTRO EDUCACIONAL GIRASSOL TD de Matemática Prof.: Tiago Rodrigues CENTRO EUCACIONAL GIRASSOL T de Matemática Prof.: Tiago Rodrigues proftiagorodrigues@gmail.com IVISIBILIAE E RESTO. Introdução O assunto divisibilidade no Conjunto dos Inteiros ( ) é extremamente importante

Leia mais

MDC, MMC, Algoritmo de Euclides e o Teorema de Bachet-Bézout

MDC, MMC, Algoritmo de Euclides e o Teorema de Bachet-Bézout Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 3 MDC, MMC, Algoritmo de Euclides e o Teorema de Bachet-Bézout 1 mdc, mmc e Algoritmo de Euclides Dados

Leia mais

Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos

Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos Capítulo 1 Matrizes e Sistema de Equações Lineares Neste capítulo apresentaremos as principais de nições e resultados sobre matrizes e sistemas de equações lineares que serão necessárias para o desenvolvimento

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

MA14 - Aritmética Unidade 15 - Parte 1 Resumo. Congruências

MA14 - Aritmética Unidade 15 - Parte 1 Resumo. Congruências MA14 - Aritmética Unidade 15 - Parte 1 Resumo Congruências Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio do assunto.

Leia mais

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível

Leia mais

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional.

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional. Capítulo 9 1. Coordenadas no Espaço Seja E o espaço da Geometria Euclidiana tri-dimensional. Um sistema de eixos ortogonais OXY Z em E consiste de três eixos ortogonais entre si OX, OY e OZ com a mesma

Leia mais

Mais uma aplicação do teorema de isomorfismo. Sejam G um grupo, H um subgrupo de G e N um subgrupo normal de

Mais uma aplicação do teorema de isomorfismo. Sejam G um grupo, H um subgrupo de G e N um subgrupo normal de Obs: tem exercícios na página 6. Mais uma aplicação do teorema de isomorfismo. Sejam G um grupo, H um subgrupo de G e N um subgrupo normal de G. Seja HN = {hn : h H, n N}. Então HN G, H N H e H/H N = HN/N.

Leia mais

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Gabarito da 1 a Prova de Geometria I - Matemática - Monica 08/05/2013 1 a Questão: (3 pontos) Dê uma prova

Leia mais

Cálculo do MDC e MMC

Cálculo do MDC e MMC META: Apresentar o algoritmo do Cálculo do MMC e do MDC entre dois números OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Executar de maneira correta os algoritmos do Cálculo do MMC e do MDC.

Leia mais

Notas de Aulas. Prof a Maria Julieta Ventura Carvalho de Araujo. Prof. Frederico Sercio Feitosa (colaborador)

Notas de Aulas. Prof a Maria Julieta Ventura Carvalho de Araujo. Prof. Frederico Sercio Feitosa (colaborador) Notas de Aulas Introdução à Álgebra Prof a Maria Julieta Ventura Carvalho de Araujo Prof. Frederico Sercio Feitosa (colaborador) 2009 ii i Introdução à Álgebra (MAT128) Introdução à Teoria dos Números

Leia mais

r O GABARITO - QUALIFICAÇÃO - Março de 2013

r O GABARITO - QUALIFICAÇÃO - Março de 2013 GABARITO - QUALIFICAÇÃO - Março de 013 Questão 1. (pontuação: 1,5) É dado um retângulo ABCD tal que em seu interior estão duas circunferências tangentes exteriormente no ponto T, como mostra a figura abaixo.

Leia mais

Projecto Delfos: Escola de Matemática Para Jovens 1 TEORIA DOS NÚMEROS

Projecto Delfos: Escola de Matemática Para Jovens 1 TEORIA DOS NÚMEROS Projecto Delfos: Escola de Matemática Para Jovens 1 A Teoria dos Números tem como objecto de estudo o conjunto Z dos números inteiros (a letra Z vem da palavra alemã Zahl que significa número). 1. DIVISIBILIDADE

Leia mais

Polos Olímpicos de Treinamento (POT) Curso de Teoria dos Números - Nível 2. Aula 1 - Divisibilidade I

Polos Olímpicos de Treinamento (POT) Curso de Teoria dos Números - Nível 2. Aula 1 - Divisibilidade I Polos Olímpicos de Treinamento (POT) Curso de Teoria dos Números - Nível 2 Aula 1 - Divisibilidade I Samuel Barbosa Feitosa Arquivo Original 1 1 Documento:...gaia/educacional/matematica/teoria numeros2/aula01-divisibilidadei.pdf.

Leia mais

Derivando fun»c~oes exponenciais e logar ³tmicas

Derivando fun»c~oes exponenciais e logar ³tmicas Aula 0 Derivando fun»c~oes eponenciais e logar ³tmicas Nesta aula estaremos deduzindo as derivadas das fun»c~oes f() =a e g() =log a, sendo a uma constante real, a>0 e a 6=. O que faz do n umero e uma

Leia mais

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios Matemática Polinômios CAPÍTULO 02 OPERAÇÕES COM POLINÔMIOS 1 INTRODUÇÃO Como com qualquer outra função, podemos fazer operações de adição, subtração, multiplicação e divisão com polinômios. A soma e a

Leia mais

Um Mini-Curso de Aritm etica dos Inteiros

Um Mini-Curso de Aritm etica dos Inteiros 2 Um Mini-Curso de Aritm etica dos Inteiros Neste cap ³tulo reuniremos elementos b asicos da teoria dos n umeros, pr e-requisitos indispens aveis a um primeiro curso de estruturas alg ebricas. 2.1 O Princ

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Inteiros e divisão Definição: Se a e b são inteiros com a 0, dizemos que a divide

Leia mais

MATEMÁTICA MÓDULO 1 TEORIA DOS NÚMEROS 1. DIVISIBILIDADE 1.1. DEFINIÇÃO 1.2. CRITÉRIOS DE DIVISIBILIDADE

MATEMÁTICA MÓDULO 1 TEORIA DOS NÚMEROS 1. DIVISIBILIDADE 1.1. DEFINIÇÃO 1.2. CRITÉRIOS DE DIVISIBILIDADE TEORIA DOS NÚMEROS 1. DIVISIBILIDADE Neste momento inicial, nosso interesse será em determinar quando a divisão entre dois números inteiros é exata, ou seja, quando o resto da divisão é 0. Antes de mais

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita

Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita 1 Preliminares Neste curso, prioritariamente, estaremos trabalhando com números inteiros mas, quando necessário,

Leia mais

Cálculo Diferencial e Integral Química Notas de Aula

Cálculo Diferencial e Integral Química Notas de Aula Cálculo Diferencial e Integral Química Notas de Aula João Roberto Gerônimo 1 1 Professor Associado do Departamento de Matemática da UEM. E-mail: jrgeronimo@uem.br. ÍNDICE 1. INTRODUÇÃO Esta notas de aula

Leia mais

Aula 14 DOMÍNIOS FATORIAIS META. Estabelecer o conceito de domínio fatorial. OBJETIVOS

Aula 14 DOMÍNIOS FATORIAIS META. Estabelecer o conceito de domínio fatorial. OBJETIVOS Aula 14 DOMÍNIOS FATORIAIS META Estabelecer o conceito de domínio fatorial. OBJETIVOS Aplicar a definição de domínio fatorial na resolução de problemas. Estabelecer a definição de máximo divisor comum

Leia mais

Técnicas de. Integração

Técnicas de. Integração Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO 7.4 Integração de Funções Racionais por Frações Parciais Nessa seção, vamos aprender como integrar funções racionais reduzindo-as a uma soma de

Leia mais

Os números inteiros. Capítulo 2

Os números inteiros. Capítulo 2 6 Capítulo 2 Os números inteiros Intuitivamente, o conjunto Z dos números inteiros é composto pelos números naturais e pelos "negativos". Como justificamos de uma forma simples qual a origem dos números

Leia mais

Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais

Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e Resto Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e resto 1 Exercícios Introdutórios Exercício 1. Encontre os inteiros que, na divisão

Leia mais

Polinómios. Integração de Fracções Racionais

Polinómios. Integração de Fracções Racionais Polinómios. Integração de Fracções Racionais Escola Superior de Tecnologia e de Gestão, Instituto Politécnico de Bragança. Mário Abrantes 2016 1 / 17 Índice de Matérias 1. Polinómios Denição Factorização

Leia mais

3 Espaços com Produto Interno

3 Espaços com Produto Interno 3 Espaços com Produto Interno 3.1 Produtos Internos em Espaços Vetoriais Seja V um espaço vetorial. Um produto interno em V é uma função, : V V R que satisfaz P1) = v, u para todos u, v V ; P2) u, v +

Leia mais

Aula 2 Divisibilidade - raízes

Aula 2 Divisibilidade - raízes Aula 2 Divisibilidade - raízes Objetivos Aprender o conceito de divisibilidade e o algoritmo euclidiano para polinômios. Compreender o conceito de raiz real de um polinômio em R[x]. Relacionar a existência

Leia mais

5 Congruências lineares. Programa. 1 Parte 1 - Conjuntos e Aplicações. 1 Conjuntos. 4 Indução matemática e divisibilidade

5 Congruências lineares. Programa. 1 Parte 1 - Conjuntos e Aplicações. 1 Conjuntos. 4 Indução matemática e divisibilidade Matemática Discreta 2008/09 Jorge André & Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Programa 1 Parte 1 - Conjuntos e Aplicações 1 Conjuntos 2 Relações Binárias 3 Aplicações 4 Indução matemática

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

» Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC.

» Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC. » Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC. Iniciamos, nesta seção, o estudo sistemático da geometria dos quadriláteros. Dentre os

Leia mais

Álgebra A - Aula 01 Algoritmo da divisão de Euclides e Algoritmo Euclideano estendido

Álgebra A - Aula 01 Algoritmo da divisão de Euclides e Algoritmo Euclideano estendido Álgebra A - Aula 01 Algoritmo da divisão de Euclides e Algoritmo Euclideano estendido Elaine Pimentel Departamento de Matemática, UFMG, Brazil 2 o Semestre - 2010 Introdução Objetivo: estudar o método

Leia mais

Raízes quadrada e cúbica de um polinômio

Raízes quadrada e cúbica de um polinômio Raízes quadrada e cúbica de um polinômio Lenimar Nunes de Andrade UFPB - João Pessoa, PB 1 de abril de 2011 1 Raiz quadrada de um polinômio Consideremos p(x) e r(x) polinômios tais que (r(x)) 2 = p(x).

Leia mais

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011 Lic. em Ciências da Computação Matemática Discreta Introdução à Teoria de Números - Exercícios 1 o ano - 2010/2011 1. Determine o quociente e o resto na divisão de: (a) 310156 por 197; (b) 32 por 45; (c)

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A 10. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: O teste é constituído por dois grupos, I e II. O Grupo I inclui cinco questões de escolha múltipla. O Grupo

Leia mais

XXXV Olimpíada Cearense de Matemática Nível 2 - Oitavo e Nono Anos

XXXV Olimpíada Cearense de Matemática Nível 2 - Oitavo e Nono Anos XXXV Olimpíada Cearense de Matemática Nível 2 - Oitavo e Nono Anos Reservado para a correção Prova Probl. 1 Probl. 2 Probl. 3 Probl. 4 Probl. 5 Total # 2000 Nota - - - - - - - - - - - - - - - - - - - -

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

Lista 1- Cálculo I Lic. - Resolução

Lista 1- Cálculo I Lic. - Resolução Lista 1- Cálculo I Lic. - Resolução Exercício 6: Uma molécula de açúcar comum (sacarose) pesa 5,7 10 - g e uma de água, 3 10-3 g. Qual das duas é mais pesada? Quantas vezes uma é mais pesada que a outra?

Leia mais

TEOREMA FUNDAMENTAL DA ARITMÉTICA: APLICAÇÕES

TEOREMA FUNDAMENTAL DA ARITMÉTICA: APLICAÇÕES 4. TEOREMA FUNDAMENTAL DA ARITMÉTICA: APLICAÇÕES 1). Achando os divisores de um número natural 2). Quantidade de divisores de um número natural 3). Decidindo se um número natural divide outro 4). Extrema

Leia mais

UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática

UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática Segunda Lista de Exercícios de ITN: Números Inteiros Prof. Marnei Luis Mandler Segundo

Leia mais

Ordem dos Inteiros AULA. 4.1 Introdução. 4.2 Ordem Ordem dos Inteiros

Ordem dos Inteiros AULA. 4.1 Introdução. 4.2 Ordem Ordem dos Inteiros META: Apresentar ordem nos números inteiros e os Princípio de indução e do Menor elemento. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Usar o processo de indução finita dos Inteiros. Justificar

Leia mais

Fun»c~oes trigonom etricas e o \primeiro limite fundamental"

Fun»c~oes trigonom etricas e o \primeiro limite fundamental Aula Fun»c~oes trigonom etricas e o \primeiro ite fundamental" Nesta aula estaremos fazendo uma pequena revis~ao de fun»c~oes trigonom etricas e apresentando um ite que lhes determina suas derivadas..

Leia mais

Generalizações do Teorema de Wedderburn-Malcev e PI-álgebras. Silvia Gonçalves Santos

Generalizações do Teorema de Wedderburn-Malcev e PI-álgebras. Silvia Gonçalves Santos Generalizações do Teorema de Wedderburn-Malcev e PI-álgebras Silvia Gonçalves Santos Definição 1 Seja R um anel com unidade. O radical de Jacobson de R, denotado por J(R), é o ideal (à esquerda) dado pela

Leia mais

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 3. Divisibilidade 1. Carlos Gustavo Moreira e Samuel Barbosa Feitosa

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 3. Divisibilidade 1. Carlos Gustavo Moreira e Samuel Barbosa Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira e Samuel Barbosa Aula 1 Divisibilidade 1 Teorema 1. (Algoritmo da Divisão) Para quaisquer inteiros positivos

Leia mais

MA14 - Aritmética Unidade 5 Resumo. Máximo Divisor Comum

MA14 - Aritmética Unidade 5 Resumo. Máximo Divisor Comum MA14 - Aritmética Unidade 5 Resumo Máximo Divisor Comum Abramo Hefez PROFMAT - SBM Julho 2013 Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

Matrizes - Parte II. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2

Matrizes - Parte II. Juliana Pimentel.  juliana.pimentel. Sala Bloco A, Torre 2 Matrizes - Parte II Juliana Pimentel juliana.pimentel@ufabc.edu.br http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 AB BA (Comutativa) Considere as matrizes [ ] [ 1 0 1 2 A =

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

Números Naturais: Continuação

Números Naturais: Continuação Números Naturais: Continuação AULA 2 META: Apresentar as propriedades de Multiplicação e o Princípio da Boa Ordem. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Entender o processo de multiplicação

Leia mais

Área: conceito e áreas do quadrado e do retângulo

Área: conceito e áreas do quadrado e do retângulo Área: conceito e áreas do quadrado e do retângulo Dada uma figura no plano, vamos definir a área desta figuracomo o resultado da comparação da figura dada como uma certa unidade de medida. No caso do conceito

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +

Leia mais

Åaxwell Mariano de Barros

Åaxwell Mariano de Barros Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø ÍÒ Ú Ö Ö Ð Ó Å Ö Ò Ó ÒØÖÓ Ò Ü Ø Ì ÒÓÐÓ ÆÓØ ÙÐ ¹ ¼½ ÐÙÐÓ Î ØÓÖ Ð ÓÑ ØÖ Ò Ð Ø Åaxwell Mariano de Barros ËÓ ÄÙ ¹ ÅA ¾¼½½ ËÙÑ Ö Ó 1 Vetores no Espaço 2 1.1 Reta Orientada....................................

Leia mais

Aula 4 Colinearidade, coplanaridade e dependência linear

Aula 4 Colinearidade, coplanaridade e dependência linear Aula 4 Colinearidade, coplanaridade e dependência linear MÓDULO 1 - AULA 4 Objetivos Compreender os conceitos de independência e dependência linear. Estabelecer condições para determinar quando uma coleção

Leia mais

Polinômios. 2) (ITA-1962) Se x³+px+q é divisível por x²+ax+b e x²+rx+s, demonstrar que:

Polinômios. 2) (ITA-1962) Se x³+px+q é divisível por x²+ax+b e x²+rx+s, demonstrar que: Material by: Caio Guimarães Polinômios A seguir, apresento uma lista de vários exercícios propostos (com gabarito) sobre polinômios. Os exercícios são para complementar a vídeo-aula a respeito de polinômios

Leia mais

Capítulo 1. Funções e grácos

Capítulo 1. Funções e grácos Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa

Leia mais

Material Teórico - Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas. Produtos Notáveis. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas. Produtos Notáveis. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Produtos Notáveis e Fatoração de Epressões Algébricas Produtos Notáveis Oitavo Ano Prof. Ulisses Lima Parente Uma identidade algébrica é uma equação em que os dois membros

Leia mais

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 bras.png Cálculo I Logonewton.png Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 Objetivos da Aula: Definir limite de uma função Definir limites laterias Apresentar as propriedades operatórias

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 2. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 2. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 2 Sexto Ano Prof. Angelo Papa Neto 1 Mínimo múltiplo comum Continuando nossa aula, vamos estudar o mínimo múltiplo comum de um conjunto finito

Leia mais

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n 1. Descrição do método e alguns exemplos Colocamos o seguinte problema: dado um conjunto finito: A = {a 1, a 2,...,

Leia mais

RACIOCÍNIO LÓGICO ÁLGEBRA LINEAR

RACIOCÍNIO LÓGICO ÁLGEBRA LINEAR RACIOCÍNIO LÓGICO AULA 11 ÁLGEBRA LINEAR I - POLINÔMIOS POLINÔMIOS E EQUAÇÕES ALGÉBRICAS 1 Definição Seja C o conjunto dos números complexos ( números da forma a + bi, onde a e b são números reais e i

Leia mais

Material Teórico - Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas. Produtos Notáveis. Oitavo Ano

Material Teórico - Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas. Produtos Notáveis. Oitavo Ano Material Teórico - Módulo de Produtos Notáveis e Fatoração de Epressões Algébricas Produtos Notáveis Oitavo Ano Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto Uma identidade algébrica

Leia mais

Rela»c~oes e Fun»c~oes

Rela»c~oes e Fun»c~oes 3 Rela»c~oes e Fun»c~oes O cap ³tulo inicia-se com uma discuss~ao sobre pares ordenados e o produto cartesiano de dois conjuntos. O conceito de rela»c~ao e ent~ao de nido como sendo um conjunto de pares

Leia mais

Álgebra A - Aula 02 Teorema da fatoração única, Propriedade fundamental dos primos, números primos

Álgebra A - Aula 02 Teorema da fatoração única, Propriedade fundamental dos primos, números primos Álgebra A - Aula 02 Teorema da fatoração única, Propriedade fundamental dos primos, números primos Elaine Pimentel Departamento de Matemática, UFMG, Brazil 2 o Semestre - 2010 Teorema da fatoração única

Leia mais

Universidade Federal de Goiás Regional Catalão - IMTec

Universidade Federal de Goiás Regional Catalão - IMTec Universidade Federal de Goiás Regional Catalão - IMTec Disciplina: Álgebra I Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 11/03/2015 1. Prove que G é um grupo com a operação de multiplicação

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios Primeira Lista de Exercícios disciplina: Introdução à Teoria dos Números (ITN) curso: Licenciatura em Matemática professores: Marnei L. Mandler, Viviane M. Beuter Primeiro semestre de 2012 1. Determine

Leia mais

Portal da OBMEP. Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano

Portal da OBMEP. Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Máximo divisor comum Nesta aula, estudaremos métodos para

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

Produto Misto, Determinante e Volume

Produto Misto, Determinante e Volume 15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................

Leia mais

Construção dos Números Reais

Construção dos Números Reais 1 Universidade de Brasília Departamento de Matemática Construção dos Números Reais Célio W. Manzi Alvarenga Sumário 1 Seqüências de números racionais 1 2 Pares de Cauchy 2 3 Um problema 4 4 Comparação

Leia mais

Operações Fundamentais com Números

Operações Fundamentais com Números Capítulo 1 Operações Fundamentais com Números 1.1 QUATRO OPERAÇÕES Assim como na aritmética, quatro operações são fundamentais em álgebra: adição, subtração, multiplicação e divisão. Quando dois números

Leia mais

Coeficientes Reais. Jorge J. Delgado Maria Lúcia Torres Villela

Coeficientes Reais. Jorge J. Delgado Maria Lúcia Torres Villela Pré-Cálculo, Vol. 3: Polinômios com Coeficientes Reais Jorge J. Delgado Maria Lúcia Torres Villela IM-UFF 2007 2 Conteúdo 3 Polinômios com coeficientes reais 7 1. Polinômios e operações...................

Leia mais

Capítulo 2. Conjuntos Infinitos

Capítulo 2. Conjuntos Infinitos Capítulo 2 Conjuntos Infinitos Não é raro encontrarmos exemplos equivocados de conjuntos infinitos, como a quantidade de grãos de areia na praia ou a quantidade de estrelas no céu. Acontece que essas quantidades,

Leia mais

Exemplos: Os números 12, 18 e 30 têm conjuntos de divisores respectivamente iguais a:

Exemplos: Os números 12, 18 e 30 têm conjuntos de divisores respectivamente iguais a: Lista de atividades sobre MDC. Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum e o mıınimo múltiplo comum de números naturais, bem como algumas de suas propri edades.

Leia mais

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries)

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries) PROBLEMA No desenho ao lado, o quadrado ABCD tem área de 30 cm e o quadrado FHIJ tem área de 0 cm. Os vértices A, D, E, H e I dos três quadrados pertencem a uma mesma reta. Calcule a área do quadrado BEFG.

Leia mais

Números naturais e cardinalidade

Números naturais e cardinalidade Números naturais e cardinalidade Roberto Imbuzeiro M. F. de Oliveira 5 de Janeiro de 2008 Resumo 1 Axiomas de Peano e o princípio da indução Intuitivamente, o conjunto N dos números naturais corresponde

Leia mais

Aula 27 - Álgebra II. x (m(x)), x 2 + x + (m(x)), x 2 + x (m(x)) operações deste corpo são as seguintes:

Aula 27 - Álgebra II. x (m(x)), x 2 + x + (m(x)), x 2 + x (m(x)) operações deste corpo são as seguintes: Já vimos maneiras de codificar mensagens de modo a que, no caso de ocorrerem alguns erros na sua transmissão, o receptor possa ser capaz de corrigir esses erros. Esses códigos, chamados códigos lineares

Leia mais

Fatoração Algébrica. Casos Simples de Fatoração Algébrica

Fatoração Algébrica. Casos Simples de Fatoração Algébrica Fatoração Algébrica Casos Simples de Fatoração Algébrica Como já aprendemos na Aritmética, todo número, não primo, pode ser decomposto em um produto de fatores primos. Assim, tem-se: 30 = 2 X 3 X 5 ; 72

Leia mais

Ou seja, A consiste nos números 1, 3, 5, 7, 9. O segundo conjunto, o qual se lê

Ou seja, A consiste nos números 1, 3, 5, 7, 9. O segundo conjunto, o qual se lê Capítulo 1 Teoria de Conjuntos 1.1 INTRODUÇÃO O conceito de conjunto aparece em toda a matemática. Este capítulo introduz a notação e a terminologia básicas da teoria de conjuntos usadas ao longo deste

Leia mais

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1.

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1. Como seria de esperar, o Teorema Fundamental da Aritmética tem imensas consequências importantes. Por exemplo, dadas factorizações em potências primas de dois inteiros, é imediato reconhecer se um deles

Leia mais