Matemática 4 Módulo 9

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Matemática 4 Módulo 9"

Transcrição

1 Matemática 4 Módulo 9 ANÁLISE COMBINATÓRIA I COMENTÁRIOS ATIVIDADES PARA SALA (n + )! (n + )(n )!. I. Dada a função ƒ (n). Simplificando, temos: n! + (n )! (n + ).n.(n )! (n + ).(n )! (n )![(n + ).n (n + ] n.(n )! + (n )! (n ).[n+ ] (n + ).n (n + ) (n + ).[n ] n (n + ) (n + ) II. Se ƒ(n) n, então ƒ(996) Para cada questão temos duas possibilidades de resposta (sim ou não).. Solução a) Logo, o número de divisores é dado por: 4.. 4, em que: 4 ( + ), sendo epoente do. ( + ), sendo epoente do. ( + ), sendo epoente do. b) Os divisores ímpares são obtidos através dos epoentes dos números e (que são ímpares). Daí,. 6 ( + ) (+ ) Epoente do. Epoente do. c) Os divisores positivos que são quadrados perfeitos: 4 9 Totalizando 4 divisores. 6. a) O total de maneiras é. b) 4. a) centena dezena unidade centena dezena unidade 0 ou A 0 6, centena dezena unidade Solução Fatorando 60: Qualquer divisor de 60 é de forma. y. z, em que, y e z são os epoentes dos fatores que podem variar de zero até o valor do epoente obtido na fatoração. a) Para formar todos os divisores positivos serão feitas escolhas: menos o zero! b) 4 00 menos o zero! c) Podem terminar em: 4 0 (0) 4 4 () 6 + Eistem 4 4 divisores positivos. b) Para formar os divisores positivos ímpares não pode haver fator, por isso seu epoente tem de ser nulo: 4 4 (4) 6 Eistem 6 divisores positivos. PRÉ-VESTIBULAR VOLUME MATEMÁTICA 4

2 c) Para formar um quadrado perfeito, os epoentes têm de ser pares: III. A quantidade de possibilidades para um código é: Eistem 4 divisores positivos quadrados perfeitos. COMENTÁRIOS ATIVIDADES PROPOSTAS. Temos 0 candidatos para ocupar quatro vagas. Assim para o primeiro cargo temos 0 candidatos, para o segundo, 9 candidatos, e assim por diante. Então: o o o o cargo cargo cargo 4 cargo. IV. Como não podemos ter todo branco, ou todo preto, então só podemos ter Encontrando os números que começam por 6, lembrando que começando por 6, o o algarismo não poderá ser, pois tem de ser menor que Dezena de milhar Unidade de milhar Centena Dezena N o de possibilidades Igual a 6,, 4 Unidade 8 Cor da a listra Cor da a listra Cor da a listra... Cor da 7 a listra Encontrando os números que começam por ou 4:. a) 4. N o de possibilidades... O total de possibilidades é. 6 9 Resposta correta: letras algarismos b) I que são TODAS as placas distintas possíveis II igual igual que são todas as placas que têm as duas primeiras letras iguais. Logo, a porcentagem 6. 0 P P ou P,8% ºlugar ºlugar ºlugar. I. Observe que cada barra pode ser branca ou preta, ou seja, temos duas possibilidades. II. Também vemos que não podemos ter um código todo branco ou todo preto. Dezena de milhar Unidade de milhar N o de possibilidades 4 48 ou 4 O total de números é Temos que: n! + + n! n! + n n vezes n Centena + 49n Dezena n! + n! + n! n! n n (+ n)n n. n! + n.n! + n + n n n + 49n + 49n n. n! 48n n! 4 n! 4! n 4 Unidade + 49n 8. Veja que: ! 0 0 vezes 0! PRÉ-VESTIBULAR VOLUME MATEMÁTICA 4

3 9. Ida temos Volta temos 9 Logo, ida e volta 7 maneiras distintas. 0. Desenvolvendo a equação: m! + (m )! 6 (m + )! m! m(m )! + (m )! 6 (m+ ) m(m )! m(m )! (m )! (m + ) 6 (m )! [(m + )m m] m+ 6 m 6m m 0 m e m 6 (Não convém). Observe a disposição das possibilidades: Homem Mulher o Banco o Banco o Banco Usam-se ideias básicas de contagem: eaustão das possibilidades e as simetrias do problema. Do ponto A o besouro pode alcançar os pontos B, C, D e E, na primeira etapa. Vejamos quantos caminhos, saindo de A e passando por B, chegam até F (figura a seguir). Há 7 caminhos diferentes, satisfazendo as condições do problema, isto é, caminhos que não passam por qualquer vértice mais de uma vez. Analogamente, há 7 caminhos diferentes saindo de A, passando por C, até F; há 7 caminhos diferentes saindo de A, passando por D, até F; há 7 caminhos diferentes saindo de A, passando por E, até F. Logo, há 8 caminhos diferentes de A para F, nas condições do problema.. São feitas 0 escolhas, os resultados de cada prêmio: Resultado o jogo Resultado o jogo... Resultado 0 o jogo N o de possibilidades ( ) 0 ( 0 ) (.000) de resultados. 4. Serão feitas escolhas: o e o prêmios. Ganhador o prêmio Ganhador o prêmio N o de possibilidades. O número de elementos do conjunto A B é 4. A B {(,0), (,), (,), (,), (,), (,)... (,)}. Uma relação é formada por subconjunto de A B. Para cada elemento de A B eiste duas possibilidades: pertencer ou não pertencer à relação. (,0) (,) (,)... (,) possibilidades Uma função de A em B é a relação de A em B em que todos os elementos de A devem ter uma única imagem em B, podendo diferentes elementos de A ter a mesma imagem. Por eemplo: A B 0 ou Cada elemento de A deve ser ligado a um de B podendo haver repetição, então para cada elemento de A, eistirão 4 possibilidades: A {,, } 0 N o de possibilidades Resposta correta: 8 A função injetora é a função em que cada elemento de B é gerado por apenas um elemento de A. Conjunto A {,, } N o de 4 4 possibilidades possibilidades PRÉ-VESTIBULAR VOLUME MATEMÁTICA 4

4 ANÁLISE COMBINATÓRIA II Módulo 0 COMENTÁRIOS ATIVIDADES PARA SALA. Considerando Rogério e Reginaldo como uma pessoa só: Marcelo, Rogério e Reginaldo, Danielle, Márcio P 4 4! 4 48 Rogério e Reginaldo ou Reginaldo e Rogério. a) Fiando A nos etremos e trocando a posição das letras: F, R, T, L, Z A FORTELZA P 7 7! b) Considerando F, R, T, L e Z como apenas uma letra e trocando as consoantes de posição entre elas: A F R T L Z E O A P P!! c) Considerando F, R, T, L e Z como apenas uma letra: A F R T L Z E O A P! 6 d) A L F R T E Z O A P 7 7! 840 Considerando a troca de posição das consoantes: P! 0 Ordem Alfabética e) !! 7 P 7!! Resposta correta: a) 840 b) 70 c) 6 d) 7 e) I. Esse número é precedido pelos números da forma: (,,,, ) P 4 4! 4 (,,,, ) P 4 4! 4 (4,,,, ) P 4 4! 4 (6,,,, ) (6,,,, ) P! 6 P! 6 + (6, 4,,, ) P! 6 (6, 8,,, ) P! (6, 8,,, ) P! 94 números II. Concluímos que 684 é precedido por um total de 94 números, assim a posição de 684 é a 9º. 4. I. Temos bolas, vermelhas e amarelas. Assim, há uma permutação com repetição. II., P!. 4!.!.!! 0. I. Permutando todas as possibilidades, temos: P 7 7! II. Como os números ímpares devem ficar em ordem crescente (,,, 7), quando permutamos os sete números, estamos permutando os números ímpares, porém só serve a ordem crescente. Assim devemos dividir 7! pela permutação dos ímpares P 4 4! III... 4! 4! 4! 0 COMENTÁRIOS ATIVIDADES PROPOSTAS. Observe a disposição: Chevrolet Ford o o o 4 o o 6 o 7 o 8 o 9 o Volkswagen 0 o o o o 4 o o Trocando os carros de lugar, teremos P 4, P e P 6. Considerando a troca de posição das marcas, teremos P : P P 4 P P 6 4!! 6 6 4!! 6!. Para ser múltiplo de é necessário que a soma dos algarismos seja múltiplo de, isso só será possível se forem u- sados os algarismos, 4, 8 e 9 (soma 4) ou 4, 6, 8 e 9 (soma 7) ou, 4, 6, 8 (soma ); para obtermos os números devemos trocar os algarismos de posição (permutando):, 4, 8 e 9 P 4 4! 4 4 4, 6, 8 e 9 P 4 4, 4, 6 e 9 P 4 4 Total 7 4 PRÉ-VESTIBULAR VOLUME MATEMÁTICA 4

5 . Queremos que V, E e S fiquem juntos, então, devemos considerá-los como sendo uma letra só, permutando a posição de 8 letras, VES TIBULAR, P 8. P Cada questão possui 4 opções, então: N o de possibilidades Opção a questão Opção a questão... Opção 0 a questão I. Todos os números entre 00 e 9009 possuem 4 algarismos. II. Se o produto dos 4 algarismos desses números é, então estes algarismos só podem ser,, e, em alguma ordem. III. Para que estes números sejam maiores do que 00, eles devem começar com ou como algarismo das unidades de milhar, assim: o caso: o caso: Há 6 possibilidades. P,! possibilidades!! P,! possibilidades!! 6. Temos uma permutação de 8 elementos com elementos repetidos ( azuis, vermelhas, branca). Assim:,, 8 P 8! !.!.!.!!. 68 Resposta correta: 68 (Retificação de gabarito) 7. I. Indo de "A" para "C":,!. 4.! P 0!.!!. II. Indo de "A" para "B",!.! P!.! III. Indo de A para B, passando por C, temos: Atenção: O número de soluções inteiras não negativas da equação n r, é: (n + r )! r!. (n )! Dada a equação + y + z + w 7, temos: r 7, n 4. Temos: 4 (4 + 7 )! ! !.(4 )! 7!.. 9. I. p: + y + z ; (; ; ) 6, 8! P8 8! 6! II. q: + y + z 6 (a + ) + (b + ) + (c + ) ;(;;),! P 0!! 0. a) Indo da casa do Joventino para a casa de Genuíno., P!. 4!!.!! 0 b) I. Indo da casa do Joventino para a casa de Genivalda temos 0 modos. II. Indo da casa da Genivalda para a casa de Carlinaldo, temos:, 4 P 4! III. Indo de Joventino para Carlinaldo, passando por Genivalda, temos: ANÁLISE COMBINATÓRIA III Módulo COMENTÁRIOS ATIVIDADES PARA SALA. I. Se prêmios iguais (não importa a ordem): C n, k + 0 C n, II. Se prêmios distintos (importa a ordem): A n, 4K 0 A n, III. Dividindo () por (), temos: n! k+ 0 (n )! k+ 0 4k 0 n! 4k 0 (n )! 4k 0 k + 40 k 0 k p + q PRÉ-VESTIBULAR VOLUME MATEMÁTICA 4

6 n! 4k 0 A 4() 0 (n )! IV. n, n(n ) (n )! 90 n(n ) 90 n 0 (n )!. I. Total de candidatos 0. II. Homens 8 e mulheres, pois III. Fumantes (H + M) ; não fumantes (H + M) 7. IV. Mulheres não fumantes 7; mulheres fumantes. V. Homens fumantes 8, pois + 8. VI. Homens não fumantes 0, pois VII. Seleção dos homens não fumantes: 0! ! C0, 4 8!! 8!. VIII. Seleção das mulheres não fumantes: C7,!! IX !!.. I. Formar triângulos C7,! 4! II. Formar quadriláteros C7, 4 4!! III. Formar pentágonos C 7,!!.. 4! 4!.... 4! 4!.!.!! IV. Formar heágonos! C7, 6 7 6!! 6!. V. Formar pentágonos C 7, 7 VI. Total de polígonos conveos: I. a, 4! ; C!, ( 4)! ( )!. ()! II.. A, 4 4!; C,!. 4..! ( 4)!.! ( )!! ( 4)! ( )!! ( 4)( )! ( )! ( 4) 0 Resposta correta: 4 II. Logo, a diferença (C 0, 6 C 8, 4 40) fornece o número de modos possíveis de efetuar as misturas. COMENTÁRIOS ATIVIDADES PROPOSTAS. Numa comissão, a ordem das pessoas não tem importância, desta maneira, trata-se de uma questão de combinação; as possibilidades são: homem e mulheres C 8, C, homens e mulher C 8, C, C 8, C, + C 8, C, 8!! 8!! + ( 8 )!! ( )!! ( 8 )!! ( )!! 8 7! 0! 8 7 6!! + 7! 0! 6!!! Na primeira fase, em cada grupo eistem equipes e cada jogo é formado com duas equipes, não tendo importância a ordem (combinação). Em um grupo são realizados C, 0 jogos. Eistem 4 grupos, ou seja, são realizados jogos. Na segunda fase, eistem 4 equipes realizando C 4, 6 jogos. Total de jogos é jogos. Resposta correta: 46 jogos. Dos 0 livros, escolhemos para a primeira gaveta (C 0, ); dos livros restantes, escolhemos para a segunda (C, ) gaveta; os dois restantes vão para a a gaveta. C 0,. C, Das três casas eiste uma ocupada por pombos. Devemos escolher os dois pombos que irão para essa casa, C 4,. Trocando a posição dos conteúdos das casas: P. C 4, Resposta correta: 6 pombos pombo pombo AB C D. A ordem dos times não tem importância (combinação) na formação das chaves, só serão escolhidos times para cada chave, dispondo, então, de apenas 9 6 times.. I. Misturar as substâncias {A, B, C, D, E, F} é o mesmo que misturar {B, F, A, D, C, E}. Assim, o número total de misturas eistentes é C 0,6. Por outro lado, o número de combinações em que as duas substâncias eplosivas aparecem é C 8, 4. 6 PRÉ-VESTIBULAR VOLUME MATEMÁTICA 4

7 6. Se dois membros pertencem ao grupo, devemos escolher apenas pessoas das que sobraram, lembrando que num grupo a ordem das pessoas não tem importância, se tratando, então, de uma combinação.! 0! C, 86 ( )!! 0! 7. A ordem em que receberam os ingressos não tem importância, então, tratamos de uma combinação, em que dos 0 alunos devemos escolher. 0! ! C 0, 4060 (0 )!! 7! 8. I. Como < 0, então { 9, 8, 7, 6,, 4,,,...,, 6, 7, 8, 9}. No conjunto dos possíveis valores de "", temos 9 números pares e 0 números ímpares. II. Uma soma de três números, para dar um resultado par, é necessário números pares ou dois ímpares e um par. III. Se forem pares, temos: C 9, 9! !! 6! 6! IV. Se forem dois ímpares e um par: C 0,. C 9, V. Logo o total é c7, 4!. 4!.. 4! 4!. 0. I. Escolhe no total de 9: C 9, 9! !.!.7. 6.!!.4.. II. Escolhe 4 no total de 4: C 4, 4 III. Total: C 9,. C 4, PROBABILIDADE 6 Módulo COMENTÁRIOS ATIVIDADES PARA SALA. I. Total de bolas brancas Total de bolas pretas + Total de bolas azuis Total de bolas 8 + II. P(azul),comP(azul), temos: P (A B) P(A) + P(B) P(A B) P (A B) P (A B) 0 P (A B). I. O número de elementos do espaço amostral é o número de formas de dispor nove livros em fila, que corresponde a P 9 9! II. Considerando que os livros juntos correspondam a um único, então temos 7! permutações. Como os elementos do trio podem permutar entre si, ao todo teremos! 7! permutações. III. Assim, a probabilidade pedida é:! 7!!. 7! 9! ! I. Para retirar bolas da 0 eistentes, temos: a retirada: 0 a retirada: a retirada: 8 II. Para retirar bolas defeituosas, temos: 6. III. A probabilidade de se retirar pelo menos uma bola não defeituosa, é: 6 9 P I. Para o nascimento de 6 filhos, temos: II. Como dois são do seo masculino, então quatro são do seo feminino. Para serem homens e 4 mulheres temos:. 6 P 4, 6.. 4! 4!. III. A probabilidade é 64 COMENTÁRIOS ATIVIDADES PROPOSTAS! 4! 0!!!! PRÉ-VESTIBULAR VOLUME MATEMÁTICA 4 7

8 . Das cartas eistem apenas rei, então, a probabilidade é.. Para ocorrer o desejado, é necessário que a primeira carta não seja rei P, tendo sido retirado uma carta, restarão. A segunda carta deve ser um rei P. ª carta rei ª carta rei P 4. Os múltiplos de ou são,, 4, 6, 8, 9, 0,, 4,, 6, 8, 0,,, 4, 6, 7, 8 e 0, ou seja, eistem 0 possibilidades, então, o total de possibilidades é O número de possibilidades total é O número de possibilidades desejadas é 4 (branca preta) e 4 (preta branca), resultando 4 possibilidades. 4 4 Desta maneira: P Ao se retirar o primeiro sapato, devemos garantir que o segundo tenha a mesma cor. Dos que sobraram apenas tem a mesma cor, então, a probabilidade é. 9. Sendo a probabilidade de C vencer igual a P(C), então P(B). P(C) e P(A) P(B). 6. A soma de todas as probabilidades é. P(A) + P(B) + P(C) , 0% Resposta correta:. Deve ser retirada uma bola de cada cor, sendo a probabilidade de cada uma, então, a probabilidade desejada é: P P (verde). P (azul). P (branca) P.. P 7 Considerando a troca de posição P! 6, a probabilidade é Como P(A) 6, então P(A) 60%. 0. A probabilidade de cada um errar é, e. Desta maneira, a probabilidade de 6 6 todos errarem é ,0 %. Resposta correta: 9 6. Eistem frutas, para ocuparem lugares, podendo repetir, o total de possibilidades então será: X X O que desejamos é que eistam duas frutas iguais e uma diferente. Então devemos escolher duas frutas para o- cuparem as três posições, C,. Escolhidas as frutas temos de levar em consideração que podem trocar de lugar. Maçã maçã uva!! Uva maçã maçã P!! Maçã uva - maçã Devemos ainda considerar que pode ser uvas e maçã, eistindo 6 possibilidades. 6. C, 60. P -409 Rev.: Jylita 8 PRÉ-VESTIBULAR VOLUME MATEMÁTICA 4

Resposta da questão 2: [B] O número de maneiras que esse aluno pode escrever essa palavra é igual ao arranjo de 4, 3 a 3.

Resposta da questão 2: [B] O número de maneiras que esse aluno pode escrever essa palavra é igual ao arranjo de 4, 3 a 3. Resposta da questão 1: [A],5h = 9.000 s Se d é número de algarismos da senha ímpar, podemos escrever que o número n de senhas será dado por: d1 n= 10 5 ou n= 9000 1,8 = 5000 Portanto, d1 10 5 = 5000 d

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA ANÁLISE COMBINATÓRIA 1) (PUC) A soma das raízes da equação (x + 1)! = x 2 + x é (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 2) (UFRGS) Um painel é formado por dois conjuntos de sete lâmpadas cada um, dispostos como

Leia mais

Solução: a) Observamos que temos as seguintes linhas entre as cidades: A B C

Solução: a) Observamos que temos as seguintes linhas entre as cidades: A B C Exercício 1 Há 3 linhas de ônibus entre as cidades A e B e 2 linhas de ônibus entre B e C. De quantas maneiras uma pessoa pode viajar: (a) indo de A até C, passando por B? (b) indo e voltando entre A e

Leia mais

Matemática E Extensivo V. 5

Matemática E Extensivo V. 5 Extensivo V Exercícios 0) a) / b) / c) / a) N(E) N(A), logo P(A) b) N(E) N(A), logo P(A) c) N(E) N(A), logo P(A) 0) a) 0 b) / % c) 9/0 90% d) /0 % 0) E a) N(E) 0 + + + 0 b) N(E) 0 N(A), logo P(A) 0, %

Leia mais

RESPOSTA Princípio Fundamental da contagem

RESPOSTA Princípio Fundamental da contagem RESPOSTA Princípio Fundamental da contagem Monitores: Juliana e Alexandre Exercício 1 Para resolver esse exercício, devemos levar em consideração os algarismos {0, 2, 3, 5, 6, 7, 8 e 9}. Para que esse

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

Combinatória. Samuel Barbosa. 28 de março de 2006

Combinatória. Samuel Barbosa. 28 de março de 2006 Combinatória Samuel Barbosa 28 de março de 2006 1 Princípios Básicos de Contagem Em contagem, tentamos abordar o problema de contar o número de elementos de um conjunto sem efetivamente contá-los de um

Leia mais

PROBABILIDADE. Prof. Patricia Caldana

PROBABILIDADE. Prof. Patricia Caldana PROBABILIDADE Prof. Patricia Caldana Estudamos probabilidade com a intenção de prevermos as possibilidades de ocorrência de uma determinada situação ou fato. Para determinarmos a razão de probabilidade,

Leia mais

Análise Combinatória

Análise Combinatória Análise Combinatória PFC Princípio Fundamental da Contagem O princípio fundamental da contagem está diretamente ligado às situações que envolvem as possibilidades de um determinado evento ocorrer, por

Leia mais

COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM. 1. O número de anagramas da palavra verão que começam e terminam por consoante é:

COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM. 1. O número de anagramas da palavra verão que começam e terminam por consoante é: 1. O número de anagramas da palavra verão que começam e terminam por consoante é: a) 120 b) 60 c) 12 d) 24 e) 6 2. Com as letras da palavra prova, podem ser escritos x anagramas que começam por vogal e

Leia mais

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci Termo-Estatística (2013) 2ª Aula Prof. Alvaro Vannucci Na Mecânica Estatística, será muito útil a utilização dos conceitos básicos de Análise Combinatória e Probabilidade. Por ex., uma garota vai sair

Leia mais

Elementos de Matemática

Elementos de Matemática Elementos de Matemática Exercícios de Análise Combinatória - Atividades de 2007 Versão compilada no dia 11 de Setembro de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré: ulysses(a)uel(pt)br

Leia mais

Matemática. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 84) AD TM TC. Aula 38 (pág. 85) AD TM TC. Aula 39 (pág.

Matemática. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 84) AD TM TC. Aula 38 (pág. 85) AD TM TC. Aula 39 (pág. Matemática Setor A Prof.: Índice-controle de Estudo Aula 7 (pág. 84) AD TM TC Aula 8 (pág. 85) AD TM TC Aula 9 (pág. 85) AD TM TC Aula 40 (pág. 87) AD TM TC Aula 41 (pág. 89) AD TM TC Aula 4 (pág. 89)

Leia mais

Análise Combinatória

Análise Combinatória Introdução Análise combinatória PROBLEMAS DE CONTAGEM Princípio Fundamental da Contagem Exemplo: Um número de telefone é uma seqüência de 8 dígitos, mas o primeiro dígito deve ser diferente de 0 ou 1.

Leia mais

Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem. Permutação simples e fatorial de um número.

Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem. Permutação simples e fatorial de um número. Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem 1. Existem 2 vias de locomoção de uma cidade A para uma cidade B e 3 vias de locomoção da cidade B a uma cidade C. De

Leia mais

38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO

38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO 38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1 1) E 6) E 11) C 16) E ) D 7) D 1) A 17) A 3) D 8) A 13) E 18) B 4) C 9) C 14)

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Permutação simples Segundo ano Permutação Simples 1 Exercícios Introdutórios Exercício 1. De quantas formas se pode dispor quatro pessoas em fila indiana? Exercício

Leia mais

(b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da letra E?

(b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da letra E? Exercício 1. (a) Quantos são os anagramas da palavra CINEMA. (b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da

Leia mais

Material Teórico - Módulo Números Naturais: Contagem, Divisibilidade e o Teorema da Divisão Euclidiana

Material Teórico - Módulo Números Naturais: Contagem, Divisibilidade e o Teorema da Divisão Euclidiana Material Teórico - Módulo Números Naturais: Contagem, Divisibilidade e o Teorema da Divisão Euclidiana Números Naturais e Problemas de Contagem Parte Oitavo Ano Autor: Prof Ulisses Lima Parente Revisor:

Leia mais

2 Um edifício possui 8 portas. De quantas formas uma pessoa poderá entrar no edifício e sair por uma porta diferente da que usou para entrar?

2 Um edifício possui 8 portas. De quantas formas uma pessoa poderá entrar no edifício e sair por uma porta diferente da que usou para entrar? UNIVERSIDDE FEDERL DE MTO GROSSO ampus Universitário do raguaia Instituto de iências Exatas e da Terra urso: Matemática Disciplina: Probabilidade e Estatística Professor: Renato Ferreira da ruz 1 a Lista

Leia mais

Matemática E Semiextensivo V. 2

Matemática E Semiextensivo V. 2 Matemática E Semiextensivo V. Exercícios 0).. 4 4 possibilidades 0).. 4 0 possibilidades 0). 8 40 possibilidades 0) C Logo, são 4. 4 possibilidades No total, temos 0 + possibilidades. 04) Ida: ida 0. 4

Leia mais

setor 1102 Aula 20 PRINCÍPIOS BÁSICOS DA CONTAGEM 2 REVISÃO

setor 1102 Aula 20 PRINCÍPIOS BÁSICOS DA CONTAGEM 2 REVISÃO setor 1102 1102008 Aula 20 PRINCÍPIOS BÁSICOS DA CONTAGEM 1 PRINCÍPIOS BÁSICOS DA CONTAGEM Seja, por exemplo, uma lanchonete que vende três tipos de refrigerantes e dois tipos de cerveja. Pergunta-se:

Leia mais

Ciclo 2 Encontro 2 PERMUTAÇÕES E COMBINAÇÕES. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr.

Ciclo 2 Encontro 2 PERMUTAÇÕES E COMBINAÇÕES. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. 1 Ciclo 2 Encontro 2 PERMUTAÇÕES E COMBINAÇÕES Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. ATUALIZAR O ENDEREÇO RESIDENCIAL ATÉ 07/08! 2 ATUALIZAR O ENDEREÇO RESIDENCIAL ATÉ 07/08!

Leia mais

Cálculo Combinatório

Cálculo Combinatório Cálculo Combinatório Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento da Análise Combinatória, parte da Matemática

Leia mais

Lista 10 Análise Combinatória e Probabilidade

Lista 10 Análise Combinatória e Probabilidade Lista 10 Análise Combinatória e Probabilidade 1) Dada a palavra AMORECO, responda as seguintes questões: a) Quantos são seus anagramas? = 2520 b) Quantas são os anagramas que começam e terminam por consoante?.

Leia mais

ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER

ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER FATORIAL Chama-se fatorial de n ou n fatorial o número n!, tal que: - Para n=0: 0!=1 - Para n=1: 1!=1 - Para n=2: 2!=21=2 - Para n=3: 3!=321=6 - Para n=4: 4!=4321=24

Leia mais

Matemática E Extensivo V. 3

Matemática E Extensivo V. 3 Matemática E Extensivo V. Exercícios 01) 10 anagramas. POEMA 5 letras 5! 10. 0) 60 anagramas. Vogais: e, i, o omeçando com e : e _ 10 omeçando com i : i _ 10 omeçando com o : o _ 10 Logo 10 60. 4! 4 (permutação

Leia mais

MATEMÁTICA CADERNO 6 CURSO E FRENTE 1 ÁLGEBRA. Módulo 24 Números Complexos. Módulo 25 Potências Naturais de i e Forma Algébrica

MATEMÁTICA CADERNO 6 CURSO E FRENTE 1 ÁLGEBRA. Módulo 24 Números Complexos. Módulo 25 Potências Naturais de i e Forma Algébrica MATEMÁTICA CADERNO 6 CURSO E FRENTE ÁLGEBRA Módulo 4 Números Complexos ) (5 + 7i) ( i) = 5 0i + i 4i = 5 + i + 4 = 9 + i ) f(z) = z z + f( i) = ( i) ( i) + = = i + i + i + = i ) x + (y )i = y 4 + xi, (x

Leia mais

Contagem 2: permutação e resolução de exercícios de contagem. - Assuntos a serem abordados: Contagem permutação e resolução de exercícios de contagem

Contagem 2: permutação e resolução de exercícios de contagem. - Assuntos a serem abordados: Contagem permutação e resolução de exercícios de contagem Contagem 2: permutação e resolução de exercícios de contagem - Assuntos a serem abordados: Contagem permutação e resolução de exercícios de contagem - Textos: Apresentado neste roteiro da aula Apostila

Leia mais

CONTAGEM. (a) uma semana (b) um mês (c) dois meses (d) quatro meses (e) seis meses

CONTAGEM. (a) uma semana (b) um mês (c) dois meses (d) quatro meses (e) seis meses CONTAGEM Exercício 1(OBMEP 2011) Podemos montar paisagens colocando lado a lado, em qualquer ordem, os cinco quadros da figura. Trocando a ordem dos quadros uma vez por dia, por quanto tempo, aproximadamente,

Leia mais

Análise Combinatória

Análise Combinatória Análise Combinatória PFC Princípio Fundamental da Contagem O princípio fundamental da contagem está diretamente ligado às situações que envolvem as possibilidades de um determinado evento ocorrer, por

Leia mais

XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental)

XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental) XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental) Resoluções www.opm.mat.br PROBLEMA 1 a) O total de segundos destinados à visualização

Leia mais

ESTUDO DA ANÁLISE COMBINATÓRIA

ESTUDO DA ANÁLISE COMBINATÓRIA ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar

Leia mais

Continuando com. O título desta aula já indica que continuaremos. Nossa aula. Permutações com repetição

Continuando com. O título desta aula já indica que continuaremos. Nossa aula. Permutações com repetição A UA UL LA Continuando com permutações Introdução Nossa aula O título desta aula já indica que continuaremos o assunto da Aula 49, em que vimos vários exemplos de permutações denominadas permutações simples

Leia mais

10 opções. 10 opções. 9 opções. 22 opções. 23 opções

10 opções. 10 opções. 9 opções. 22 opções. 23 opções Contagem Princípio Fundamental de Contagem Se algum procedimento pode ser realizado de n 1 maneiras diferentes; se, seguindo este, um segundo procedimento pode ser realizado de n 2 maneiras diferentes;

Leia mais

10. ANÁLISE COMBINATÓRIA

10. ANÁLISE COMBINATÓRIA 10. ANÁLISE COMBINATÓRIA 1) Observe a figura: Nessa figura, está representada uma bandeira que deve ser pintada com duas cores diferentes, de modo que a faixa do meio tenha a cor diferente das outras faixas.

Leia mais

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M. Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com

Leia mais

Lista de Análise Combinatória. Edson Prestes

Lista de Análise Combinatória. Edson Prestes Lista de Análise Combinatória Edson Prestes de Dezembro de 011 Capítulo 1 Questões 1.1 Questão 1 Marcam-se 5 pontos sobre uma reta R e 8 pontos sobre uma R paralela a R. Quantos triângulos podem ser formados

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 2014/20 PROFESSOR (a) DISCIPLINA Matemática ALUNO (a) SÉRIE 2º ano 1. OBJETIVO

Leia mais

... Lista Álgebra. Produtos Notáveis. POTI 2015 Lista 1...

... Lista Álgebra. Produtos Notáveis. POTI 2015 Lista 1... ................................. Lista 1................................. Elaborado por Tiago Miranda 1 Álgebra A Produtos Notáveis Problema A.1 O número 9999999 + 1999000 é primo ou composto? Problema

Leia mais

Matemática 2 Ano do Ensino Médio. Lista 1 Análise Combinatória. 1. Simplifique as expressões algébricas.

Matemática 2 Ano do Ensino Médio. Lista 1 Análise Combinatória. 1. Simplifique as expressões algébricas. Estudante: Nº. Matemática 2 Ano do Ensino Médio Professor: Diego Andrades Lista 1 Análise Combinatória 1. Simplifique as expressões algébricas. ( x 1)! x! a) ( n 1)! b) ( k 2)! k! c) ( n 1)! ( n 2)! d)

Leia mais

Análise Combinatória - ENEM

Análise Combinatória - ENEM Prof Rômulo Garcia https://wwwfacebookcom/matematicaenem Análise Combinatória - ENEM 1)Quantos são os gabaritos possíveis de um teste de 10 questões de múltipla escolha, com 5 opções por questão? Podemos

Leia mais

+ 1, segue que o 103º termo dessa sequência é

+ 1, segue que o 103º termo dessa sequência é 1 N1Q1 a) A sequência é 415 537 810 91 10 1 b) Os seis primeiros termos são 995 1814 995 1814 995 1814 c) Os primeiros termos da sequência são 33333 6666 111 33333 6666 e vemos que os termos se repetem

Leia mais

Análise Combinatória Intermediário

Análise Combinatória Intermediário Análise Combinatória Intermediário 1. (AFA) As senhas de acesso a um determinado arquivo de um microcomputador de uma empresa deverão ser formadas apenas por 6 dígitos pares, não nulos. Sr. José, um dos

Leia mais

CPV 73% de aprovação na ESPM

CPV 73% de aprovação na ESPM 7% de aprovação na ESPM ESPM NOVEMBRO/007 PROVA E MATEMÁTICA. O menor número natural tal que 0800. = n 5, com n N*, é igual a: a) 745 b) 50 c) 5 d) 4050 e) 785 Temos que 0800. = n 5 4.. 5. = n 5 para que

Leia mais

Aula 6 Revisão de análise combinatória

Aula 6 Revisão de análise combinatória Aula 6 Revisão de análise combinatória Conforme você verá na próxima aula, a definição clássica de probabilidade exige que saibamos contar o número de elementos de um conjunto. Em algumas situações, é

Leia mais

Curso: Ciência da Computação Turma: 4ª Série. Probabilidade e Estatística. Aula 2

Curso: Ciência da Computação Turma: 4ª Série. Probabilidade e Estatística. Aula 2 Curso: Ciência da Computação Turma: 4ª Série Aula 2 Análise Combinatória: Arranjo, Permutação, Combinação Simples e com Repetição Motivação Quantas ordenações são possíveis fazer com um baralho de 52 cartas?

Leia mais

Análise Combinatória 2

Análise Combinatória 2 1. Um estudante possui dez figurinhas, cada uma com o escudo de um único time de futebol, distribuídas de acordo com a tabela: Para presentear um colega, o estudante deseja formar um conjunto com cinco

Leia mais

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL.

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL. Estatística Aplicada Administração p(a) = n(a) / n(u) PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL Prof. Carlos Alberto Stechhahn 2014 1. Noções de Probabilidade Chama-se experimento

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias Matemática Atividades para Estudos Autônomos Data: 5 / 6 / 2017 Aluno(a): N o : Turma: 1) (Ufes)

Leia mais

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. ou 9º. anos) (antigas 7ª. ou 8ª. séries) GABARITO

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. ou 9º. anos) (antigas 7ª. ou 8ª. séries) GABARITO XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º. ou 9º. anos) (antigas 7ª. ou 8ª. séries) GABARITO GABARITO NÍVEL 1) D 6) B 11) A 16) A 1) B ) C 7) E 1) D 17) A ) B 3) C 8) C 13) C 18) B

Leia mais

4. COMBINATÓRIA BÁSICA. Combinatória: ramo da matemática que trata de arranjos de objetos (configurações satisfazendo propriedades específicas).

4. COMBINATÓRIA BÁSICA. Combinatória: ramo da matemática que trata de arranjos de objetos (configurações satisfazendo propriedades específicas). Combinatória básica Introdução INTRODUÇÃO 4. COMBINATÓRIA BÁSICA Introdução Regra da soma e do produto Modelo de amostragem Modelo de distribuição Modelo de equação Identidades combinatórias Coeficientes

Leia mais

Mais Permutações e Combinações (grupo 2)

Mais Permutações e Combinações (grupo 2) Capítulo 4 Mais Permutações e Combinações (grupo 2) Como vimos anteriormente, é possível resolver um grande número de problemas interessantes de contagem sem utilizar fórmulas, apenas empregando apropriadamente

Leia mais

Análise Combinatória 1 3 o ano Blaidi/Walter ago/09. Nome: Nº: Turma:

Análise Combinatória 1 3 o ano Blaidi/Walter ago/09. Nome: Nº: Turma: Matemática Análise Combinatória 1 3 o ano Blaidi/Walter ago/09 Nome: Nº: Turma: 1. (U. F. Viçosa MG) Para controlar o estoque de um produto, uma empresa usa etiquetas formadas por uma parte literal e outra

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória

UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória Exercícios: 1. Maria inventou uma brincadeira. Digitou alguns algarismos na primeira linha de uma folha. Depois, no segunda linha, fez

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos

Leia mais

Estatística Básica Capítulo 2 Ayrton Barboni. Anotamos n(x) o número de elementos do conjunto X. Vejamos algumas situações:

Estatística Básica Capítulo 2 Ayrton Barboni. Anotamos n(x) o número de elementos do conjunto X. Vejamos algumas situações: 2. TÉCNICAS DE CONTAGEM Capítulo 2 Para resolver problemas de probabilidades, que serão estudados adiante, é necessário, em alguns casos, contar os elementos de um conjunto finito. 2.1. REGRAS DE CONTAGEM

Leia mais

Probabilidade e Estatística Preparação para P1

Probabilidade e Estatística Preparação para P1 robabilidade e Estatística reparação para rof.: Duarte ) Uma TV que valia R$ 00,00, entrou em promoção e sofreu uma redução de 0% em seu preço. Qual é o novo preço da TV? ) Um produto foi vendido por R$

Leia mais

c) 17 b) 4 17 e) 17 21

c) 17 b) 4 17 e) 17 21 Probabilidade I Exercícios. Dois jogadores A e B vão lançar um par de dados. Eles combinam que se a soma dos números dos dados for 5, A ganha e se a soma for 8, B é quem ganha. Os dados são lançados. Sabe-se

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

OBMEP NA ESCOLA Soluções

OBMEP NA ESCOLA Soluções OBMEP NA ESCOLA 016 - Soluções Q1 Solução item a) A área total do polígono da Figura 1 é 9. A região inferior à reta PB é um trapézio de área 3. Isso pode ser constatado utilizando a fórmula da área de

Leia mais

8º ANO; LISTA 2. Princípio fundamental da contagem AV 2 4º Bim. Escola adventista de Planaltina Professor: Celmo Xavier Aluno

8º ANO; LISTA 2. Princípio fundamental da contagem AV 2 4º Bim. Escola adventista de Planaltina Professor: Celmo Xavier Aluno 8º ANO; LISTA 2. Princípio fundamental da contagem AV 2 4º Bim. Escola adventista de Planaltina Professor: Celmo Xavier Aluno ANÁLISE COMBINATÓRIA Introdução Consideremos o seguinte problema: Uma lanchonete

Leia mais

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) D 6) C ) D 6) C ) B ) A 7) B ) B 7) B ) C ) D 8) C ) E 8) B ) B 4) D 9) E 4) D 9) C 4) D ) D 0) A ou

Leia mais

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos temos que D B C. (Equação 1)

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos temos que D B C. (Equação 1) UFJF MÓDULO III DO PISM TRIÊNIO 0-0 PROVA DE MATEMÁTICA Questão Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel é igual

Leia mais

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos, temos que D B C. (Equação 1)

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos, temos que D B C. (Equação 1) UFJF MÓDULO III DO PISM TRIÊNIO 01-01 PROVA DE MATEMÁTICA Questão 1 Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel

Leia mais

LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 3º ANO PROF.: ARI

LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 3º ANO PROF.: ARI 01.: (Sta.Casa) Existem 4 entradas de rodagem e 3 estradas de ferro entre as cidades A e B. Quantos são os diferentes percursos para fazer a viagem de ida e volta entre A e B, utilizando rodovia e trem,

Leia mais

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO COLÉGIO NOSSA SENHORA DA ASSUNÇÃO FAMALICÃO ANADIA FICHA DE TRABALHO N.º2 DE MATEMÁTICA Data: Outubro de 2009 Turmas: 12ºA e 12ºB TÉCNICAS DE CONTAGEM: Arranjos com repetição ; Arranjos sem repetição;

Leia mais

01. Quantos números com 3 algarismos podem ser formandos usando-se os algarismos 2, 3, 4, 5, 6, 7?

01. Quantos números com 3 algarismos podem ser formandos usando-se os algarismos 2, 3, 4, 5, 6, 7? Colégio Santa Maria 3º ano médio 2012. Lista de exercícios Análise Combinatória (Arranjos simples, permutações e combinações simples P.F.C). Professor: Flávio Verdugo Ferreira. 01. Quantos números com

Leia mais

8 ANÁLISE COMBINATÓRIA E

8 ANÁLISE COMBINATÓRIA E MATEMATICA 8 ANÁLISE COMBINATÓRIA E PROBABILIDADE NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA PERMUTAÇÕES SIMPLES EXEMPLO QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9? Temos

Leia mais

Análise Combinatória e Probabilidade

Análise Combinatória e Probabilidade Análise Combinatória e Probabilidade Exemplo: NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA PERMUTAÇÕES SIMPLES -Roteiro do aluno- QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8

Leia mais

Solução. Este problema pode ser resolvido de modo análogo ao problema anterior.

Solução. Este problema pode ser resolvido de modo análogo ao problema anterior. page 11 1.2 Sistema posicional de numeração 11 Solução. Este problema pode ser resolvido de modo análogo ao problema anterior. Exercício 15: Em um conjunto de 101 moedas, há 50 falsas e as demais são verdadeiras.

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Combinação Segundo ano Combinação 1 Exercícios Introdutórios Exercício 1. Numa sala há 6 pessoas e cada uma cumprimenta todas as outras pessoas com um único aperto

Leia mais

OBMEP 2010 Soluções da prova da 2ª Fase Nível 1. Questão 1

OBMEP 2010 Soluções da prova da 2ª Fase Nível 1. Questão 1 1 Questão 1 a) O número-parada de 93 é 4, pois 93 9 3 = 27 2 7 = 14 1 4 = 4. b) Escrevendo 3 2 = 6 vemos que 32 3 2 = 6. Como 32 = 4 2 2 2, temos 4222 4 2 2 2 = 32 3 2 = 6 e assim o número-parada de 4222

Leia mais

_32109, _42109, _52109 e (o traço indica onde deve ser colocado o algarismo das centenas de milhar)

_32109, _42109, _52109 e (o traço indica onde deve ser colocado o algarismo das centenas de milhar) Questão 1 Como o algarismo das unidades é 1, para que o número seja aditivado, a soma dos algarismos das casas das dezenas, centenas e unidades de milhar deve ser igual a 1. Existe só um número com quatro

Leia mais

Combinação A forma de escrita. Assim sendo, podemos interpretar este exercício como sendo:

Combinação A forma de escrita. Assim sendo, podemos interpretar este exercício como sendo: Combinação 016 1. (Fgv 015) Em uma sala estão presentes n pessoas, com n 3. Pelo menos uma pessoa da sala não trocou aperto de mão com todos os presentes na sala, e os demais presentes trocaram apertos

Leia mais

Módulo de Métodos Sofisticados de Contagens. Combinação completa. Segundo ano

Módulo de Métodos Sofisticados de Contagens. Combinação completa. Segundo ano Módulo de Métodos Sofisticados de Contagens Combinação completa Segundo ano Combinações Completas 1 Exercícios Introdutórios Exercício 1. As triplas (x, y, z) = (2, 2, 0), (1, 2, 1) e (0, 1, 3) são soluções

Leia mais

38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO 38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO GABARITO NÍVEL 3 1) E 6) E 11) E 16) B 21) D 2) A 7) B 12) D 17) D 22) A 3) C 8) D 13) A 18) E 23) C 4) B 9) D 14) A

Leia mais

ANÁLISE COMBINATÓRIA II E PROBABILIDADE

ANÁLISE COMBINATÓRIA II E PROBABILIDADE 1. (Fac. Albert Einstein - Medicina 2016) Suponha que nos Jogos Olímpicos de 2016 apenas um representante do Brasil faça parte do grupo de atletas que disputarão a final da prova de natação dos 100 metros

Leia mais

RACIOCÍNIO LÓGICO. 04. Se dois dados, um azul e um branco, forem lançados, a probabilidade de sair 5 no azul ou 3 no branco é superior a 2/3.

RACIOCÍNIO LÓGICO. 04. Se dois dados, um azul e um branco, forem lançados, a probabilidade de sair 5 no azul ou 3 no branco é superior a 2/3. RACIOCÍNIO LÓGICO 01. Anagramas são agrupamentos de letras que são obtidos ao se mudar a ordem destas em uma palavra. Cada vez que se muda a ordem das letras, obtém-se um novo anagrama. A quantidade de

Leia mais

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries)

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries) PROBLEMA No desenho ao lado, o quadrado ABCD tem área de 30 cm e o quadrado FHIJ tem área de 0 cm. Os vértices A, D, E, H e I dos três quadrados pertencem a uma mesma reta. Calcule a área do quadrado BEFG.

Leia mais

ANÁLISE COMBINATÓRIA E PRINCÍPIO FUNDAMENTAL DA CONTAGEM

ANÁLISE COMBINATÓRIA E PRINCÍPIO FUNDAMENTAL DA CONTAGEM 1. (Fac. Albert Einstein - Medicin 2016) Suponha que nos Jogos Olímpicos de 2016 apenas um representante do Brasil faça parte do grupo de atletas que disputarão a final da prova de natação dos 100 metros

Leia mais

MATEMÁTICA ELEMENTAR II:

MATEMÁTICA ELEMENTAR II: Marcelo Gorges Olímpio Rudinin Vissoto Leite MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia 2009 2009 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer

Leia mais

Módulo Divisibilidade. Conjunto e Quantidade de Divisores. 6 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Divisibilidade. Conjunto e Quantidade de Divisores. 6 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Divisibilidade Conjunto e Quantidade de Divisores 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Conjunto e Quantidade de Divisores 1 Exercícios Introdutórios Exercício 1. de:

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Resoluções de Exercícios MATEMÁTICA V Capítulo 05 Noções de Probabilidade Parte II 3 o ) P(I B) = Observação: Diagrama de Árvore Considere as probabilidades seguintes a) P(I) = = P(II) b) P(B I) = e P(V

Leia mais

Matemática E Extensivo v. 3

Matemática E Extensivo v. 3 Matemática xtensivo v. xercícios 0) Octógno tem 0 e decágono tem. Número de vértices de um octógono: 8 vértices. D = nn ( ) D = 88 ( ) 8. 0 = = = 0 Número de vértices de um decágono: 0 vértices. D = nn

Leia mais

Álgebra ( ) 4 ( ) 25.

Álgebra ( ) 4 ( ) 25. Análise combinatória. Dê o valor de: a) 7! b) 6! c) 8! d) 5! - 3! e)! -! f) (5-3)! g) (3-3)! h)! ( 5)! i) 6!. Simplifique: 8! 8! 7! a) b) c) 6!!! 7! 5! 8! d) e) f)!3!!! 3!5! 3. Simplifique as expressões:

Leia mais

QUESTÕES n = 100 Fonte: Toledo (1985) Determinar: a) Desvio quartil. b) Desvio médio. c) Desvio padrão.

QUESTÕES n = 100 Fonte: Toledo (1985) Determinar: a) Desvio quartil. b) Desvio médio. c) Desvio padrão. 1 MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PIAUÍ CENTRO DE EDUCAÇÃO ABERTA E A DISTÂNCIA CEAD/UFPI-UAB/CAPES CURSO DE LICENCIATURA EM COMPUTAÇÃO 2ª Atividade Probabilidade e Estatística QUESTÕES

Leia mais

Matemática 2 Prof. Heitor Achilles

Matemática 2 Prof. Heitor Achilles 2 ª SÉRIE EM ORIENTAÇÕES FINAIS Matemática 2 Prof. Heitor Achilles ORIENTAÇÃO DE ESTUDO CONTEÚDOS PARA A RECUPERAÇÃO FINAL COMBINATÓRIA: PFC, Permutações simples, Combinações simples, Permutação com elementos

Leia mais

Ensino Médio. Fatorial

Ensino Médio. Fatorial As Permutações Comentários: As primeiras atividades matemáticas da humanidade estavam ligadas à contagem de objetos de um conjunto, enumerando seus elementos. As civilizações antigas, como egípcia, babilônia,

Leia mais

Projeto Jovem Nota 10 Permutação Lista 1 Professor Marco Costa 1. (Fgv 97) Um processo industrial deve passar pelas etapas A, B, C, D e E.

Projeto Jovem Nota 10 Permutação Lista 1 Professor Marco Costa 1. (Fgv 97) Um processo industrial deve passar pelas etapas A, B, C, D e E. 1 1. (Fgv 97) Um processo industrial deve passar pelas etapas A, B, C, D e E. a) Quantas seqüências de etapas podem ser delineadas se A e B devem ficar juntas no início do processo e A deve anteceder B?

Leia mais

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par. Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

Breve revisão de Análise Combinatória

Breve revisão de Análise Combinatória 1. Princípio fundamental da contagem Breve revisão de Análise Combinatória Considere que certo procedimento pode ocorrer de duas maneiras diferentes, quais sejam: A 1ª maneira, ocorrendo de a modos distintos;

Leia mais

As permutações. Nesta aula você estudará um tipo muito comum. Nossa aula

As permutações. Nesta aula você estudará um tipo muito comum. Nossa aula A UA UL LA As permutações Introdução Nesta aula você estudará um tipo muito comum de problemas de contagem, que está relacionado com as várias formas de organizar ou arrumar os elementos de um conjunto.

Leia mais

SOLUÇÕES N item a) Basta continuar os movimentos que estão descritos no enunciado:

SOLUÇÕES N item a) Basta continuar os movimentos que estão descritos no enunciado: N1Q1 Solução SOLUÇÕES N1 2015 Basta continuar os movimentos que estão descritos no enunciado: Basta continuar por mais dois quadros para ver que a situação do Quadro 1 se repete no Quadro 9. Também é possível

Leia mais

PROBABILIDADE PROPRIEDADES E AXIOMAS

PROBABILIDADE PROPRIEDADES E AXIOMAS PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por

Leia mais

PUC-Rio Desafio em Matemática 4 de outubro de 2015

PUC-Rio Desafio em Matemática 4 de outubro de 2015 PUC-Rio Desafio em Matemática 4 de outubro de 05 Nome: GABARITO Inscrição: Assinatura: Identidade: Questão Valor Nota Revisão,0,0 3,5 4,5 5,5 6,5 7,0 Nota final 0,0 Instruções Mantenha seu celular completamente

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

Matemática Régis Cortes ANÁLISE COMBINATÓRIA

Matemática Régis Cortes ANÁLISE COMBINATÓRIA ANÁLISE COMBINATÓRIA 1 ANÁLISE COMBINATÓRIA PERMUTAÇÃO é o tipo de agrupamento ordenado em que cada grupo entram todos os elementos. Os grupos diferem pela ORDEM Pn = n! ARRANJO : é o tipo de agrupamento

Leia mais