Sequência da apresentação

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Sequência da apresentação"

Transcrição

1

2 Sequência da apresentação Mal entendidos dos alunos relativos às frações. Os diferentes significados das frações. Diferentes tipos de unidade. Exemplos de tarefas para a reconstrução da unidade e exploração dos diferentes significados da fração. A multiplicação e divisão: Mal entendidos, significados e tarefas.

3 Mal entendidos dos alunos Relativos às frações: 1/3 < ¼, porque 4 é maior que 3. ½ = 1,2. Na adição de números representados por frações os alunos adicionam numeradores e denominadores, precisamente porque generalizam os algoritmos das operações com números inteiros. Alguns destes erros revelam que o sistema de numeração decimal não está entendido e que as representações estão desligadas das quantidades a que dizem respeito. Estas situações enraízam no facto dos alunos serem submetidos a um ensino essencialmente mecanicista baseado em símbolos como realidades próprias, sem terem ainda desenvolvido imagens e modelos que os sustentem.

4 Diferentes significados das frações Uma fração é uma representação versátil e muito rica, porque permite expressar diferentes relações. Por exemplo: A fração 3/5 pode ser interpretada como: 3/5 de um bolo; A razão entre o número de rapazes (3) e de raparigas (5) existentes numa sala de aula; O quociente resultante de se dividir 3 chocolates iguais por cinco pessoas.

5 Quociente entre dois números inteiros Surge em situações de partilha equitativa: O numerador representa o número de algo a ser partilhado e o denominador o número de recetores dessa partilha; É pois uma relação entre duas quantidades, mas que também tem o significado de uma quantidade, que é a quantidade com que cada um dos recetores ficou.

6 Quociente entre dois números inteiros Por exemplo: "três chocolates a dividir por cinco crianças representa a relação entre o número de chocolates e o número de crianças, mas também representa o resultado dessa divisão, ou seja, a fração de chocolate com que cada criança ficou. 3 5

7 Relação parte-todo Como uma unidade continua - três das cinco partes de uma folha de papel estão pintadas. Nestes casos a fração surge da comparação entre a parte e o todo, considerado este a unidade. 3 5 Como uma unidade discreta - três quintos dos cinco berlindes são cinzentos. 3 5

8 Operador partitivo multiplicativo Para obter um meio de dez caricas: O aluno terá de dividir as 10 caricas em dois grupos iguais para saber o número de caricas de um grupo.

9 Medida Nesta situação compara-se uma grandeza com outra tomada como unidade. Por exemplo: Para medir com a unidade AB o comprimento CD, há que dividir a unidade em partes tais, que um número inteiro dessas partes corresponda ao comprimento que se quer medir. A C D B 3 CD = AB 5

10 Diferentes tipos de unidades Uma das grandes dificuldadesinerentes ao estudo das frações prende-se com a questão da unidade tomada como o todo a ser fracionado: Metade de um quilo de laranjas não é o mesmo que metade de uma dúzia de ovos; ou Um terço de uma folha de papel A4 não é o mesmo que um terço de um folha de papel A5.

11 Diferentes tipos de unidades Por exemplo, relativamente à seguinte figura podemos considerar várias frações: 1 ¼ se cada grupo de 4 círculos é uma unidade. 5/8 se o conjunto das 8 círculos é a unidade. 5/3 se considerada a razão entre o número de círculos azuis e o número de círculos brancos. 2 ½ se cada 2 círculos é a unidade.

12 Diferentes tipos de unidades Podem considerar-se vários tipos de unidades: Discretas ou contínuas Simples ou compostas Uma dúzia de maçãs pode ser considerada uma unidade composta pois resulta de se agrupar um conjunto discreto de objetos, uma maça será uma unidade simples. Uma centena integra dez dezenasque por sua vez integra dez unidadessimples. A construção de uma unidade composta, como a centena, implica que a criança coordene diferentes tipos de unidades ao mesmo tempo.

13 Tarefas para a reconstrução da unidade Se duas bolas representam um quarto de uma coleção de bolas, quantas bolas tem a coleção? Se um retângulo representa a décima parte de uma tira de papel qual é o comprimento da tira completa?

14 Tarefas para os diferentes significados das frações Tarefa - Os chocolates O João trouxe para comer no intervalo três chocolates. Resolveu dividi-los com 4 colegas de forma justa: com o Diogo, a Rita, a Inês e o Pedro. Que quantidade de chocolate vai cada um receber? Para resolverem este problema podem usar palavras, desenhos, esquemas ou cálculos.

15 Tarefas para os diferentes significados das frações Planificar a exploração da tarefa Que ideias fundamentais do tópico números racionais não negativos podem surgir durante a exploração desta tarefa? Que vantagens pode trazer para o processo de ensinoaprendizagem este tipo de tarefas e a sua exploração em pequenos grupos? Que desafios adicionais para o professor traz este tipo de exploração? Será possível predefinir a exploração que irá surgir?

16 Produções dos alunos

17 Produções dos alunos

18 Tarefas para os diferentes significados das frações A partir das diferentes estratégias apresentadas que ideias fundamentais pode explorar? Que desafios adicionais traz para o professor este tipo de exploração em sala de aula? Quais as vantagens do confronto de várias resoluções? De vários modos de demonstrar o mesmo resultado? Como é que o professor pode organizar a apresentação e discussão no grupo turma?

19 Multiplicação e divisão de frações Mal entendidos mais frequentes: (os relativos ao efeito das operações sobre um par de números) Multiplicar aumenta sempre; Dividir diminui sempre; O dividendo tem de ser sempre maior que o divisor. Dados da investigação sugerem que estes mal entendidos estão associados ao facto de se trabalhar essencialmente um dos significados da multiplicação a multiplicação como adição sucessiva, e um dos significados da divisão a divisão como partilha.

20 Diferentes significados Isomorfismo de medidas proporção direta simples entre medidas de duas grandezas M1 e M2 (por exemplo, pessoas e objetos, bem e custos, tempo e distância), descrevendo um grande número de situações quer diárias, quer técnicas. Multiplicação Situações que envolvem uma relação quaternária de onde os alunos têm de extrair uma relação terciária. Adição sucessiva Relação multiplicativa

21 Multiplicação: Adição sucessiva A Maria foi à padaria comprar pão. Cada pão pesava 3/4 kg. Quantos quilos de pão trouxe a Maria sabendo que comprou 4 pães?

22 Multiplicação: Relação multiplicativa A Maria está a bordar um quadro. Durante as férias bordou metade do quadro. Desde que começaram as aulas bordou ¼ do que faltava bordar. Que parte do quadro bordou a Maria depois das férias?

23 Multiplicação: Relação multiplicativa A distância da casa da Sofia à escola é ½ da distância da casa do Tiago à escola. O Tiago mora a 2 ½ km da escola. Qual dos dois colegas mora mais próximo da escola. Justifica a tua resposta recorrendo à reta numérica para explicares o teu raciocínio

24 Diferentes significados Isomorfismo de medidas proporção direta simples entre medidas de duas grandezas M1 e M2 (por exemplo, pessoas e objetos, bem e custos, tempo e distância), descrevendo um grande número de situações quer diárias quer técnicas. Divisão: medida Situações cujo objetivo é determinar o número de grupos, sabendo a dimensão de cada grupo. O dividendo e o divisor são da mesma natureza.

25 Divisão: medida O pai do Tiago comprou 5 litros de azeite e quer guardá-lo em garrafas de meio litro. Quantas garrafas serão necessárias? I.: Mas, começaste por dividir e depois multiplicaste cinco por dois. Porquê? A.: Porque fiz o inverso! Multipliquei pelo inverso de 1/2! I.: Não percebi! Mas tens 5 litros a dividir por garrafas de 1/2 litro! A.: Pois! Mas, são precisas duas garrafas de meio litro para levar 1 litro, por isso, são cinco vezes duas!

26 Divisão: medida Um grupo de amigos costuma fazer uma caminhada no final da tarde. Se numa hora percorrem 3 ½ km, quanto tempo será necessário para percorrerem 1 ¾ km? A.: 1 hora igual a 3 ½ km e agora quero saber quanto tempo vai ser preciso para fazerem 1 ¾ km. ( ). Quantas vezes 3 ½ cabem em 1 ¾ para saber quanto tempo é necessário!

27 Diferentes significados Isomorfismo de medidas proporção direta simples entre medidas de duas grandezas M1 e M2 (por exemplo, pessoas e objetos, bem e custos, tempo e distância), descrevendo um grande número de situações quer diárias quer técnicas. Divisão: partilha Situações cujo objetivo é encontrar o valor unitário, ou seja, o valor que cabe a cada um dos elementos do divisor. O Dividendo e o divisor são de natureza diferente.

28 Divisão: partilha Numa caminhada que fez durante o fim-de-semana, a Sofia percorreu 1 ½ km em 1/4 de hora. Dado que manteve a mesma velocidade média, quantos quilómetros terá percorrido numa hora? A. : Se percorreu um quilómetro e meio num quarto de hora, numa hora vai percorrer mais! Um quarto é metade de metade, então é 4 vezes uma hora e meia, que é o mesmo que dividir [1 ½ ] por 1/4!

29 Divisão: partilha Se 4/5 de uma coleção de cromos fossem 48 cromos, quantos cromos teria a coleção completa?

30 Diferentes significados Produto de medidas composição cartesiana de dois espaços métricos, M1 e M2, para encontrar um terceiro espaço métrico, M3. Multiplicação Situações onde são dadas duas grandezas elementares e se pede o valor do produto dessas grandezas.

31 Multiplicação: produto de medidas Qual é a área de um retângulo que tem ¼ m de largura e 2/3 m de comprimento?

32 Diferentes significados Produto de medidas composição cartesiana de dois espaços métricos, M1 e M2, para encontrar um terceiro espaço métrico, M3. Divisão Situações onde se pretende encontrar o valor de uma grandeza elementar, dado o valor da grandeza de um produto e o valor de outra grandeza elementar. Medida em falta Fator em falta

33 Divisão: medida em falta Um retângulo tem ½ m 2 de área e ¾ m de comprimento. Calcula a sua largura?

34 Divisão: fator em falta Qual é o número que multiplicado por 3/4 é igual a 6?

35 Em suma Tarefas exploratórias que comtemplem os diferentes significados das frações e das operações com frações, em contextos significativos para os alunos, promovem a modelação e por conseguinte, aprendizagens significativas dos números racionais, bem como das suas operações, ou seja, o desenvolvimento do sentido de número e de operação.

Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016

Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016 Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016 1.º Período Conteúdos Programados Previstas Dadas Números e Operações Utilizar corretamente os numerais ordinais até vigésimo. Ler e representar

Leia mais

Disciplina: Matemática. Período: I. Professor (a): Liliane Cristina de Oliveira Vieira e Maria Aparecida Holanda Veloso

Disciplina: Matemática. Período: I. Professor (a): Liliane Cristina de Oliveira Vieira e Maria Aparecida Holanda Veloso COLÉGIO LA SALLE BRASILIA Associação Brasileira de Educadores Lassalistas ABEL SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: Matemática Período:

Leia mais

Disciplina: Matemática. Período: I. Professor (a): Liliane Cristina de Oliveira Vieira e Maria Aparecida Holanda Veloso

Disciplina: Matemática. Período: I. Professor (a): Liliane Cristina de Oliveira Vieira e Maria Aparecida Holanda Veloso COLÉGIO LA SALLE BRASILIA Associação Brasileira de Educadores Lassalistas ABEL SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: Matemática Período:

Leia mais

Resoluções Prova Anglo

Resoluções Prova Anglo Resoluções Prova Anglo F- TIPO D-7 Matemática (P-2) Ensino Fundamental 7º ano DESCRITORES, RESOLUÇÕES E COMENTÁRIOS A Prova Anglo é um dos instrumentos para avaliar o desempenho dos alunos do 7 o ano das

Leia mais

Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo.

Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. 1. Círculos e cilindros 1.1. Planificação da superfície de um cilindro Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. A planificação

Leia mais

Projeto Pré-Requisitos 6º Ano

Projeto Pré-Requisitos 6º Ano Caro aluno Colégio Militar de Curitiba Este Caderno de Apoio à Aprendizagem em Matemática foi produzido para você com o objetivo de colaborar com seus estudos. Ele apresenta uma série de atividades a serem

Leia mais

Sumário. Volta às aulas. Vamos recordar?... 7 1. Grandezas e medidas: tempo e dinheiro... 59. Números... 10. Regiões planas e seus contornos...

Sumário. Volta às aulas. Vamos recordar?... 7 1. Grandezas e medidas: tempo e dinheiro... 59. Números... 10. Regiões planas e seus contornos... Sumário Volta às aulas. Vamos recordar?... Números... 0 Um pouco da história dos números... Como os números são usados?... 2 Números e estatística... 4 Números e possibilidades... 5 Números e probabilidade...

Leia mais

Resoluções Prova Anglo

Resoluções Prova Anglo Resoluções Prova Anglo F- TIPO D-6 Matemática (P-2) Ensino Fundamental 6º ano DESCRITORES, RESOLUÇÕES E COMENTÁRIOS A Prova Anglo é um dos instrumentos para avali ar o desempenho dos alunos do 6 o ano

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

META FINAL 2014-2015 Teste de Preparação Prova Final do 1.º Ciclo do Ensino Básico Soluções de Matemática

META FINAL 2014-2015 Teste de Preparação Prova Final do 1.º Ciclo do Ensino Básico Soluções de Matemática TESTE META FINAL 0-05 Teste de Preparação Prova Final do.º Ciclo do Ensino Básico Soluções de Matemática novo Item. Pinta as figuras: Apresenta uma explicação adequada: Um triângulo é um polígono com três

Leia mais

Palavras - chave: Matemática, Ensino, Séries Iniciais, Multiplicação, Problemas Multiplicativos.

Palavras - chave: Matemática, Ensino, Séries Iniciais, Multiplicação, Problemas Multiplicativos. SENTIDOS CIRCULANTES: AS IDEIAS DE PROBLEMAS MULTIPLICATIVOS EM ALUNOS DE UMA TURMA DO CURSO NORMAL Bruno Marques Collares UFRGS collares.bruno@hotmail.com Resumo O texto relata uma tentativa de compreensão

Leia mais

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matemática Razão e Proporção Razão A palavra razão vem do latim ratio e significa a divisão ou o quociente entre dois números A e B, denotada

Leia mais

Resoluções Prova Anglo

Resoluções Prova Anglo Resoluções Prova Anglo TIPO F P- tipo D-8 Matemática (P-) Ensino Fundamental 8º ano DESCRITORES, RESOLUÇÕES E COMENTÁRIOS A Prova Anglo é um dos instrumentos para avaliar o desempenho dos alunos do 8 o

Leia mais

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;

Leia mais

ESCRITURÁRIO DO BANCO DO BRASIL

ESCRITURÁRIO DO BANCO DO BRASIL APOSTILA DE MATEMÁTICA PARA ESCRITURÁRIO DO BANCO DO BRASIL Encontre o material de estudo para seu concurso preferido em www.acheiconcursos.com.br Conteúdo: 1. Números inteiros, racionais e reais; problemas

Leia mais

ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA

ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA PLANOS DE CURSO PARA 6º E 7º ANOS Campina Grande, 2011 -

Leia mais

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1)

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1) Gabarito da Prova do Nível II Primeira Questão: ANULADA- Com três algarismos distintos, formamos três números: O primeiro número é obtido ordenando-se os algarismos em ordem decrescente, da esquerda para

Leia mais

PROVA BRASIL: DESCRITORES DE MATEMÁTICA 8ª SÉRIE/9º ANO

PROVA BRASIL: DESCRITORES DE MATEMÁTICA 8ª SÉRIE/9º ANO PROVA BRASIL: DESCRITORES DE MATEMÁTICA 8ª SÉRIE/9º ANO CÉSAR CLEMENTE Professor Especialista em Matemática Aplicada, Diretor de Escola e Mestrando em Educação Temas e seus descritores: 8 ª série ou 9º

Leia mais

Metas Curriculares do Ensino Básico Matemática 1.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo

Metas Curriculares do Ensino Básico Matemática 1.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Metas Curriculares do Ensino Básico Matemática 1.º Ciclo António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Números e Operações Contar até cem, mil,... Descodificar o sistema de numeração

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. UFMG 2007 RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0 Francisco resolveu comprar um pacote de viagem que custava R$ 4 200,00, já incluídos R$ 20,00

Leia mais

EIXO/TEMA IV - TRATAMENTO DA INFORMAÇÃO Descritor 27 Ler informações e dados apresentados em tabelas.

EIXO/TEMA IV - TRATAMENTO DA INFORMAÇÃO Descritor 27 Ler informações e dados apresentados em tabelas. SUGESTÕES DE ATIVIDADES PARA O TRABALHO COM AS HABILIDADES E OS CONTEÚDOS DOS DESCRITORES DA MATRIZ SAEB E DAS EXPECTATIVAS DE APRENDIZAGEM DA MATRIZ CURRICULAR DO ESTADO DE GOIÁS CADERNO 5 Matemática

Leia mais

Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental

Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental TEMA II GRANDEZAS E MEDIDAS A comparação de grandezas de mesma natureza que dá origem à idéia de

Leia mais

Simulado OBM Nível 1. Gabarito Comentado

Simulado OBM Nível 1. Gabarito Comentado Simulado OBM Nível 1 Gabarito Comentado Questão 1. Renata digitou um número em sua calculadora, multiplicou-o por 3, somou 12, dividiu o resultado por 7 e obteve o número 15. O número digitado foi: a)

Leia mais

I.INTRODUÇÃO A MATEMÁTICA.

I.INTRODUÇÃO A MATEMÁTICA. I.INTRODUÇÃO A MATEMÁTICA. 1. HISTÓRIA DA MATEMÁTICA Matemática é uma ciência que foi criada a fim de contar e resolver problemas com uma razão de existirem, foi criada a partir dos primeiros seres racionais

Leia mais

FUNÇÕES E SUAS PROPRIEDADES

FUNÇÕES E SUAS PROPRIEDADES FUNÇÕES E SUAS PROPRIEDADES Í N D I C E Funções Definição... Gráficos (Resumo): Domínio e Imagem... 5 Tipos de Funções... 7 Função Linear... 8 Função Linear Afim... 9 Coeficiente Angular e Linear... Função

Leia mais

- 45.000 Testes e exercícios. - 5.600 Provas de concursos anteriores. Por R$ 24,90

- 45.000 Testes e exercícios. - 5.600 Provas de concursos anteriores. Por R$ 24,90 CD-ROM APOSTILAS PARA CONCURSOS - 400 Apostilas específicas e genéricas. (PDF e Word) - 45.000 Testes e exercícios. - 5.600 Provas de concursos anteriores. Por R$ 4,90 Pague quando receber o CD-ROM! Saiba

Leia mais

PLANO DE ENSINO DE MATEMÁTICA 5ª. SÉRIE, 6º ANO DO ENSINO FUNDAMENTAL - 1º BIMESTRE DIRETORIA DE ENSINO REGIÃO CAIEIRAS

PLANO DE ENSINO DE MATEMÁTICA 5ª. SÉRIE, 6º ANO DO ENSINO FUNDAMENTAL - 1º BIMESTRE DIRETORIA DE ENSINO REGIÃO CAIEIRAS PLANO DE ENSINO DE MATEMÁTICA 5ª. SÉRIE, 6º ANO DO ENSINO FUNDAMENTAL - 1º BIMESTRE 1-Estrutura do ensino de numeração decimal; agrupamento e contagens; valor posicional; operações básicas; operações inversas;

Leia mais

1º Aulão Biomed 2012

1º Aulão Biomed 2012 1º Aulão Biomed 01 01.Uma garrafa está cheia de uma mistura, na qual /3 do conteúdo é composto pelo produto A e 1/3 pelo produto B. Uma segunda garrafa, com o dobro da capacidade da primeira, está cheia

Leia mais

.x.y.z A B = {1,2,3,4} Conjunto das Partes CONJUNTOS. Nomenclatura: Conjuntos Letras maiúsculas Elementos Letras minúsculas

.x.y.z A B = {1,2,3,4} Conjunto das Partes CONJUNTOS. Nomenclatura: Conjuntos Letras maiúsculas Elementos Letras minúsculas Nomenclatura: Representação:.x.y.z CONJUNTOS Conjuntos Letras maiúsculas Elementos Letras minúsculas A = {x,y,z}- Entre chaves Diagrama de Euler-Venn Descrição de um Conjunto Enumerado - A= {a,e,i,o,u}

Leia mais

10 ( C ) A é um número compreendido entre 5 e 6. ( D ) A é um número compreendido entre 6 e 7. ( E ) A é um número compreendido entre 9 e 10.

10 ( C ) A é um número compreendido entre 5 e 6. ( D ) A é um número compreendido entre 6 e 7. ( E ) A é um número compreendido entre 9 e 10. Escolha a única resposta certa, assinalando-a com um X nos parênteses à esquerda. 01. Se A 2 5 3 1 4 8, podemos afirmar que ( A ) A é um número natural, ímpar e primo. 65 ( B ) A é uma fração equivalente

Leia mais

AULA 03 ESCALAS E DESENHO TOPOGRÁFICO

AULA 03 ESCALAS E DESENHO TOPOGRÁFICO Universidade Federal do Ceará Centro de Ciências Agrárias Departamento de Engenharia Agrícola Disciplina: Topografia Básica Facilitadores: Nonato, Julien e Fabrício AULA 03 ESCALAS E DESENHO TOPOGRÁFICO

Leia mais

EDITAL 2015 Testes de Português e Matemática - Material: com foto PORTUGUÊS Indicação bibliográfica: Na ponta da língua MATEMÁTICA

EDITAL 2015 Testes de Português e Matemática - Material: com foto PORTUGUÊS Indicação bibliográfica: Na ponta da língua MATEMÁTICA EDITAL 2015 2º ANO DO ENSINO FUNDAMENTAL Testes de Português e Matemática - Material: o candidato deverá trazer: lápis apontados, apontador, borracha e o Compreensão e interpretação de textos; exploração

Leia mais

MATEMÁTICA NÚMEROS INTEIROS E RACIONAIS: OPERAÇÕES (ADIÇÃO, SUBTRAÇÃO, MULTIPLICAÇÃO, DIVISÃO, POTENCIAÇÃO);

MATEMÁTICA NÚMEROS INTEIROS E RACIONAIS: OPERAÇÕES (ADIÇÃO, SUBTRAÇÃO, MULTIPLICAÇÃO, DIVISÃO, POTENCIAÇÃO); NÚMEROS INTEIROS E RACIONAIS: OPERAÇÕES (ADIÇÃO, SUBTRAÇÃO, MULTIPLICAÇÃO, DIVISÃO, POTENCIAÇÃO); Conjunto dos Números Inteiros Z Definimos o conjunto dos números inteiros como a reunião do conjunto dos

Leia mais

DESENVOLVENDO HABILIDADES CIÊNCIAS DA NATUREZA I - EM

DESENVOLVENDO HABILIDADES CIÊNCIAS DA NATUREZA I - EM Olá Caro Aluno, Você já reparou que, no dia a dia quantificamos, comparamos e analisamos quase tudo o que está a nossa volta? Vamos ampliar nossos conhecimentos sobre algumas dessas situações. O objetivo

Leia mais

1. Localizar pessoas ou objetos no espaço, com base em diferentes pontos de referência algumas indicações de posição;

1. Localizar pessoas ou objetos no espaço, com base em diferentes pontos de referência algumas indicações de posição; PREFEITURA MUNICIPAL DE BETIM SECRETARIA MUNICIPAL DE EDUCAÇÃO SEMED DIVISÃO PEDAGÓGICA DE ENSINO 2010 MATRIZ BÁSICA DO REFERENCIAL CURRICULAR DE BETIM 1 CICLO MATEMÁTICA 06 ANOS 07 ANOS 08 ANOS COMPETÊNCIAS

Leia mais

MATEMÁTICA PARA CONCURSOS

MATEMÁTICA PARA CONCURSOS MATEMÁTICA PARA CONCURSOS Sumário Números Naturais ------------------------------------------- 03 Conjuntos numéricos: racionais e reais ------------------- 05 Divisibilidade -------------------------------------------------

Leia mais

CURSO PRÉ-UNIVERSITÁRIO UFJF

CURSO PRÉ-UNIVERSITÁRIO UFJF CURSO PRÉ-UNIVERSITÁRIO UFJF TAREFA Nº 1 DIA PARA ENTREGA: 24/06/2014-18:OOH ANFITEATRO ODONTO 1) Leia com atenção a tirinha em quadrinhos abaixo: Suponha que Mafalda esteja estudando o Globo Terrestre

Leia mais

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO Toda a matemática da Vunesp em 50 questões resolvidas - Prof. Gilmar Augusto 1/14 STO DIVISÃO PROPORCIONAL EQUAÇÃO DO PRIMEIRO GRAU EQUAÇÃO DO SEGUNDO GRAU NÚMEROS RACIONAIS a) forma fracionária b) forma

Leia mais

a c (com a, b, c e d 0) é chamada de a b c d

a c (com a, b, c e d 0) é chamada de a b c d PROFESSOR: Sebastião Geraldo Barbosa MARÇO - 304 M A T E M Á T I C A C O M E R C I A L. RAZÕES E PROPORÇÕES.. RAZÃO: Razão de dois números a e b (com b 0) é o quociente de a por b. Indica-se b a ou a :

Leia mais

DIRECÇÃO REGIONAL DE EDUCAÇÃO DO ALENTEJO AGRUPAMENTO DE ESCOLAS DE FRONTEIRA PLANIFICAÇÃO ANUAL

DIRECÇÃO REGIONAL DE EDUCAÇÃO DO ALENTEJO AGRUPAMENTO DE ESCOLAS DE FRONTEIRA PLANIFICAÇÃO ANUAL DIRECÇÃO REGIONAL DE EDUCAÇÃO DO ALENTEJO AGRUPAMENTO DE ESCOLAS DE FRONTEIRA PLANIFICAÇÃO ANUAL Professor: Pedro Miguel Bezerra Disciplina: Matemática Ano: 6 Turma: A Ano lectivo: 2011/2012 Objectivos

Leia mais

NÍVEL 1 7 a Lista. 1) Qual é o maior dos números?

NÍVEL 1 7 a Lista. 1) Qual é o maior dos números? NÍVEL 1 7 a Lista 1) Qual é o maior dos números? (A) 1000 + 0,01 (B)1000 0,01 (C) 1000/0,01 (D) 0,01/1000 (E) 1000 0,01 ) Qual o maior número de 6 algarismos que se pode encontrar suprimindo-se 9 algarismos

Leia mais

Matemática Exercícios sobre Funções AFA/EFOMM

Matemática Exercícios sobre Funções AFA/EFOMM Matemática Exercícios sobre Funções AFA/EFOMM p 8 01 - A fórmula N dá o valor aproximado do 4 número do calçado (N) em função do comprimento (p), em centímetros, do pé de qualquer pessoa. De acordo com

Leia mais

XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 Sabemos que a água do mar contém 3, 5% do seu peso em sal, isto é, um quilograma de água do mar contém 35 gramas de sal (a) Determine quantos litros

Leia mais

Programas Referenciais do 1º ciclo do Ensino Recorrente. Programa Referencial de MATEMÁTICA INTRODUÇÃO

Programas Referenciais do 1º ciclo do Ensino Recorrente. Programa Referencial de MATEMÁTICA INTRODUÇÃO Programa Referencial de MATEMÁTICA INTRODUÇÃO 1. Finalidades A Matemática intervém, em quase todas as actividades humanas do quotidiano, quer como instrumento para resolução de situações problemáticas,

Leia mais

MATEMÁTICA BÁSICA. Prof. Edu OPERAÇÕES BÁSICAS

MATEMÁTICA BÁSICA. Prof. Edu OPERAÇÕES BÁSICAS 1. Calcule: 497 + 353 + 217 3134 + 297 + 415 + 1234 4735 + 2137 3174 2891 5739 4372 + 321 49 2. Calcule: 1237 x 23 2489 x 35 2458 x 112 54732 x 247 OPERAÇÕES BÁSICAS 3. Calcule o quociente e o resto de

Leia mais

Alemão Ciências Apostila página 4 ------------------------------- Lição de Casa: Português Páginas 9 e 10 Aulas de Quarta-Feira

Alemão Ciências Apostila página 4 ------------------------------- Lição de Casa: Português Páginas 9 e 10 Aulas de Quarta-Feira Aulas dadas: Conteúdos e tarefas da Semana- 101 Apostila página 5 Adição. Lição de Casa: Páginas 5 e 8 Apostila páginas 1 a 3 Corpo humano Apostila páginas 8 a 11 Leitura e escrita de palavras. Lição de

Leia mais

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Cálculo Numérico Aula : Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Computação Numérica - O que é Cálculo Numérico? Cálculo numérico é uma metodologia para resolver problemas matemáticos

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Nivelamento 1º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma: EXPRESSÕES NUMÉRICAS

Colégio Adventista Portão EIEFM MATEMÁTICA Nivelamento 1º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma: EXPRESSÕES NUMÉRICAS Colégio Adventista Portão EIEFM MATEMÁTICA Nivelamento 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 0 1º Bimestre/013 Aluno(: Número: Turma: EXPRESSÕES NUMÉRICAS

Leia mais

COLÉGIO MILITAR DE CURITIBA - Projeto Pré-Requisitos 7º ano

COLÉGIO MILITAR DE CURITIBA - Projeto Pré-Requisitos 7º ano Caro aluno Este Caderno de Apoio à Aprendizagem em Matemática foi produzido com o objetivo de colaborar em sua aprendizagem. Ele apresenta uma série de atividades a serem resolvidas por você. Estas atividades

Leia mais

Sumário. Apresentação da Coleção... 23

Sumário. Apresentação da Coleção... 23 Sumário Apresentação da Coleção... 23 INTRODUÇÃO... 25 O que é lógica?... 25 Divisão da Filosofia... 29 Lógica de Aristóteles... 30 Lógica Moderna... 30 Raciocínio lógico matemático... 32 Objeto da lógica...

Leia mais

FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2014_V3.indd 1-3 23/08/2013 10:01:48

FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2014_V3.indd 1-3 23/08/2013 10:01:48 1 2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30

Leia mais

Sistemas de Numeração

Sistemas de Numeração Sistemas de Numeração Representação da Informação para seres humanos Números (1,2,3,4...) Letras (a,a,b,b,c,c...) Sinais de pontuação (:,;...) Operadores aritméticos (+,-,x,/) Representação da Informação

Leia mais

Aluno: Matrícula: Turma:

Aluno: Matrícula: Turma: P1 08/04/2011 Matrícula: Turma: Q1 Q2 Q3 Questão 1) (3,0 pontos) A planta de um objeto real é sua redução de acordo com uma escala que determina a razão entre o modelo e o real. Por exemplo, a escala 1:200

Leia mais

VERSÃO DE TRABALHO. Prova Final de Matemática. 2.º Ciclo do Ensino Básico. Prova 62/2.ª Fase. Critérios de Classificação.

VERSÃO DE TRABALHO. Prova Final de Matemática. 2.º Ciclo do Ensino Básico. Prova 62/2.ª Fase. Critérios de Classificação. Prova Final de Matemática 2.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 62/2.ª Fase Critérios de Classificação 9 Páginas 2015 Prova 62/2.ª F. CC Página 1/ 9 CRITÉRIOS GERAIS

Leia mais

Regras de Conversão de Unidades

Regras de Conversão de Unidades Unidades de comprimento Regras de Conversão de Unidades A unidade de principal de comprimento é o metro, entretanto existem situações em que essa unidade deixa de ser prática. Se quisermos medir grandes

Leia mais

AGRUPAMENTO DE ESCOLAS EUGÉNIO DOS SANTOS. Conteúdos Curriculares 4ºano. 1º Período. Português Matemática Estudo do Meio

AGRUPAMENTO DE ESCOLAS EUGÉNIO DOS SANTOS. Conteúdos Curriculares 4ºano. 1º Período. Português Matemática Estudo do Meio AGRUPAMENTO DE ESCOLAS EUGÉNIO DOS SANTOS Conteúdos Curriculares 4ºano 1º Período Português Matemática Estudo do Meio COMPREENSÃO ORAL E ESCRITA Comunicar progressivamente e com correção; Ler e interpretar

Leia mais

Cronograma da Disciplina Matemática Básica 2012/1

Cronograma da Disciplina Matemática Básica 2012/1 Cronograma da Disciplina Matemática Básica 2012/1 Período letivo do 1º semestre de 2012 para Matemática Básica De 30 de janeiro de 2012 a 01 de julho de 2012 1ª semana 30/01 a 05/02 Assunto: Números Naturais

Leia mais

Educadora: Daiana Araújo C. Curricular:Ciências Naturais Data: / /2013 Estudante: 9º Ano. Unidade principal

Educadora: Daiana Araújo C. Curricular:Ciências Naturais Data: / /2013 Estudante: 9º Ano. Unidade principal Educadora: Daiana Araújo C. Curricular:Ciências Naturais Data: / /2013 Estudante: 9º Ano Medidas de massa Quilograma A unidade fundamental de massa chama-se quilograma. Apesar de o quilograma ser a unidade

Leia mais

Metas Curriculares Ensino Básico Matemática António Bivar, Carlos Grosso, Filipe Oliveira, Maria Clementina Timóteo

Metas Curriculares Ensino Básico Matemática António Bivar, Carlos Grosso, Filipe Oliveira, Maria Clementina Timóteo Metas Curriculares Ensino Básico Matemática António Bivar, Carlos Grosso, Filipe Oliveira, Maria Clementina Timóteo Autores António Bivar Universidade Lusíada de Lisboa Carlos Grosso Escola Secundária

Leia mais

Tema/Tópico Propósito principal de ensino Objetivos gerais Números e operações Números naturais Números racionais não negativos Números inteiros

Tema/Tópico Propósito principal de ensino Objetivos gerais Números e operações Números naturais Números racionais não negativos Números inteiros Secretaria Regional da Educação e Formação Direção Regional da Educação e Formação Escola Básica 2 Gaspar Frutuoso Departamento de Matemática e Ciências Naturais Planificação a médio prazo da Área Curricular

Leia mais

Raciocínio Lógico-Matemático

Raciocínio Lógico-Matemático Raciocínio Lógico-Matemático Índice Operações com Números Inteiros e Racionais Números Naturais... 02 Números Inteiros... 05 Números Racionais (Frações e Operações)... 26 Números Decimais... 45 Expressões

Leia mais

Módulo de Recuperação 2 (5º Ano) - Matemática

Módulo de Recuperação 2 (5º Ano) - Matemática Módulo de Recuperação 2 (5º Ano) - Matemática 01. Determine os algarismos representados pelas letras a e b no número 7a5b, de modo que ele seja divisível por 2, 3, 5, 6, 9 e 10. 02. Costumo Fazer caminhadas

Leia mais

CONTEÚDO PROGRAMÁTICO 3º Ano - III Trimestre

CONTEÚDO PROGRAMÁTICO 3º Ano - III Trimestre CONTEÚDO PROGRAMÁTICO 3º Ano - III Trimestre Língua Portuguesa PRODUÇÃO DE LEITURA Fábulas Tirinhas História em quadrinhos Crônicas Biografia Cartaz Reportagem Comandos verbais (específicos da etapa) Gêneros

Leia mais

PIBID Programa Institucional de Bolsas de Iniciação a Docência Subprojeto: Matemática Ensino Fundamental. Desenvolvimento de atividades

PIBID Programa Institucional de Bolsas de Iniciação a Docência Subprojeto: Matemática Ensino Fundamental. Desenvolvimento de atividades PIBID Programa Institucional de Bolsas de Iniciação a Docência Subprojeto: Matemática Ensino Fundamental 1. Atividade: Aula de reforço Desenvolvimento de atividades 2. Objetivo da atividade: Identificar

Leia mais

m dela vale R$ 500,00,

m dela vale R$ 500,00, CLICK PROFESSOR Professor: Júnior ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Calcule: Se um carro mede cerca de 4 m, quantos carros, aproximadamente, há em uma rodovia com 3 pistas e que tem 6 km

Leia mais

PLANEJAMENTO ANUAL DE MATEMÁTICA

PLANEJAMENTO ANUAL DE MATEMÁTICA COLÉGIO VICENTINO IMACULADO CORAÇÃO DE MARIA Educação Infantil, Ensino Fundamental e Médio Rua Rui Barbosa, 1324, Toledo PR Fone: 3277-8150 PLANEJAMENTO ANUAL DE MATEMÁTICA 6º ANO "... A minha contribuição

Leia mais

Ao final do trajeto, João estará no ponto: a) A b) B c) C d) D

Ao final do trajeto, João estará no ponto: a) A b) B c) C d) D QUIZ 1) (Prova Brasil 2007) A figura abaixo ilustra as localizações de alguns pontos no plano. João sai do ponto X, anda 20 metros para a direita, 30 metros para cima, 40 metros para a direita e 10 metros

Leia mais

Metas Curriculares. Ensino Básico. Matemática. António Bivar, Carlos Grosso, Filipe Oliveira, Maria Clementina Timóteo

Metas Curriculares. Ensino Básico. Matemática. António Bivar, Carlos Grosso, Filipe Oliveira, Maria Clementina Timóteo Metas Curriculares Ensino Básico Matemática António Bivar, Carlos Grosso, Filipe Oliveira, Maria Clementina Timóteo METAS CURRICULARES DO ENSINO BÁSICO - MATEMÁTICA O presente documento descreve o conjunto

Leia mais

Planificação de Matemática -6ºAno

Planificação de Matemática -6ºAno DGEstE - Direção-Geral de Estabelecimentos Escolares Direção de Serviços Região Alentejo Agrupamento de Escolas de Moura código n.º 135471 Escola Básica nº 1 de Moura (EB23) código n.º 342294 Planificação

Leia mais

Bingo dos Racionais: explorando as potencialidades do jogo na compreensão do conceito de número racional e suas representações

Bingo dos Racionais: explorando as potencialidades do jogo na compreensão do conceito de número racional e suas representações Bingo dos Racionais: explorando as potencialidades do jogo na compreensão do conceito de número racional e suas representações Amanda Rodrigues Marques da Silva 1 GD 02 - Educação Matemática nos anos finais

Leia mais

(A) (B) (C) (D) (E) RESPOSTA: (A)

(A) (B) (C) (D) (E) RESPOSTA: (A) 1. Assinale, dentre as regiões a seguir, pintadas de cinza, aquela que é formada pelos pontos do quadrado cuja distância a qualquer um dos vértices não é maior do que o comprimento do lado do quadrado.

Leia mais

Qual é a média dos salários dessa empresa? R.:

Qual é a média dos salários dessa empresa? R.: EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 7º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 0- Assunto: Média aritmética

Leia mais

PROGRAMAS PARA OS CANDIDATOS A VAGAS 2016 3 o Ano Ensino Fundamental

PROGRAMAS PARA OS CANDIDATOS A VAGAS 2016 3 o Ano Ensino Fundamental 3 o Ano Textos Ler, entender e interpretar contos infantis e textos informativos. Gramática Será dada ênfase à aplicação, pois ela é entendida como instrumento para que o aluno se expresse de maneira adequada

Leia mais

Matriz de Matemática de 4ª série - Ensino Fundamental Comentários sobre os Temas e Descritores Exemplos de itens

Matriz de Matemática de 4ª série - Ensino Fundamental Comentários sobre os Temas e Descritores Exemplos de itens Matriz de Matemática de 4ª série - Ensino Fundamental Comentários sobre os Temas e Descritores Exemplos de itens TEMA I ESPAÇO E FORMA A compreensão do espaço com suas dimensões e formas de constituição

Leia mais

Questão 1. Questão 3. Questão 2. alternativa D. alternativa C. alternativa A

Questão 1. Questão 3. Questão 2. alternativa D. alternativa C. alternativa A Questão 1 Paulo comprou um automóvel fle ue pode ser abastecido com álcool ou com gasolina. O manual da montadora informa ue o consumo médio do veículo é de km por litro de álcool ou 1 km por litro de

Leia mais

Prova de Aferição de Matemática

Prova de Aferição de Matemática PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2008 A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA

Leia mais

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência

Leia mais

Quando você receber a nova edição do Caderno do Aluno, veja o que mudou e analise as diferenças, para estar sempre bem preparado para suas aulas.

Quando você receber a nova edição do Caderno do Aluno, veja o que mudou e analise as diferenças, para estar sempre bem preparado para suas aulas. Caro Professor, Em 009 os Cadernos do Aluno foram editados e distribuídos a todos os estudantes da rede estadual de ensino. Eles serviram de apoio ao trabalho dos professores ao longo de todo o ano e foram

Leia mais

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD)

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD) Domínios de conteúdos: Números e Operações (NO) Geometria e Medida (GM) Funções, Sequências e Sucessões (FSS) Álgebra (ALG) Organização e Tratamento de Dados (OTD) Domínio NO7 9 GM7 33 Números racionais

Leia mais

ECT. Gran Cursos. Guará I. Prof. Mauro César EQUAÇÕES DO 1º GRAU. x 2 3. 2 x 4. x = 3 3. x 3 2. x 1. 2 3 x

ECT. Gran Cursos. Guará I. Prof. Mauro César EQUAÇÕES DO 1º GRAU. x 2 3. 2 x 4. x = 3 3. x 3 2. x 1. 2 3 x ) Operações com Números Inteiros e Fracionários; ) Múltiplos e Divisores, m. m. c. e M.D.C.; ) Números Reais; ) Epressões Numéricas; ) Equações e Sistemas do º Grau. EQUAÇÕES DO º GRAU Equações do º Grau:

Leia mais

Anexos - material para uso dos alunos

Anexos - material para uso dos alunos Processo Seletivo de Formadores da SEEDUC 2015 Material II de Apoio para a Fase de Prova-Aula Especialidade: Matemática Anexos - material para uso dos alunos Fichas para apoio a Atividades Exemplares da

Leia mais

Nome:... Curso Técnico em... Período:...

Nome:... Curso Técnico em... Período:... TÑÉáà Ät wx `tàxåöà vt Uöá vt Nome:... Curso Técnico em... Período:... Cascavel 01/01 A P O S T I L A D E M A T E M Á T I C A BÁSICA I Operações matemáticas envolvendo apenas números: Há duas situações

Leia mais

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 * Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota (wykrota@uol.com.br) Curitiba

Leia mais

CONTRIBUIÇÃO DAS ESCOLAS ESTADUAIS PARA O TEXTO DAS DIRETRIZES CURRICULARES PARA A EDUCAÇÃO BÁSICA DO ESTADO DO AMAPÁ MATEMÁTICA

CONTRIBUIÇÃO DAS ESCOLAS ESTADUAIS PARA O TEXTO DAS DIRETRIZES CURRICULARES PARA A EDUCAÇÃO BÁSICA DO ESTADO DO AMAPÁ MATEMÁTICA CONTRIBUIÇÃO DAS ESCOLAS ESTADUAIS PARA O TEXTO DAS DIRETRIZES CURRICULARES PARA A EDUCAÇÃO BÁSICA DO ESTADO DO AMAPÁ MATEMÁTICA 1. IDENTIDADE DO COMPONENTE CURRICULAR O domínio básico do significado simbólico

Leia mais

Padrões de Desempenho Estudantil

Padrões de Desempenho Estudantil Matemática - 4ª série/5º ano do Ensino Fundamental PAEBES 2013 Padrões de Desempenho Estudantil Abaixo do Básico Básico Proficiente Avançado Os Padrões de Desempenho são categorias definidas a partir de

Leia mais

DEFENSORIA PÚBLICA DO RS RACIOCÍNIO LÓGICO-MATEMÁTICO SUMÁRIO

DEFENSORIA PÚBLICA DO RS RACIOCÍNIO LÓGICO-MATEMÁTICO SUMÁRIO DEFENSORIA PÚBLICA DO RS RACIOCÍNIO LÓGICO-MATEMÁTICO SUMÁRIO MATEMÁTICA 1. Conjuntos Numéricos Q (Racionais) e R (Reais), 3 - Números Naturais e Inteiros, 3 - Números Racionais, 15 - Números Reais, 20

Leia mais

www.japassei.pt MATEMÁTICA - 6º ANO

www.japassei.pt MATEMÁTICA - 6º ANO www.japassei.pt MATEMÁTICA - 6º ANO Este e-book é parte integrante da plataforma de educação Já Passei e propriedade da DEVIT - Desenvolvimento de Tecnologias de Informação, Unipessoal Lda. Disciplina:

Leia mais

FÍSICA. Questões de 01 a 04

FÍSICA. Questões de 01 a 04 GRUPO 1 TIPO A FÍS. 1 FÍSICA Questões de 01 a 04 01. Considere uma partícula presa a uma mola ideal de constante elástica k = 420 N / m e mergulhada em um reservatório térmico, isolado termicamente, com

Leia mais

www.estrategiaconcursos.com.br

www.estrategiaconcursos.com.br CONCURSO CARGOS EDITAL TRT/11ª Região (AM) RACIOCÍNIO LÓGICO: Esta prova visa avaliar a habilidade do candidato em entender a estrutura lógica de relações arbitrárias entre pessoas, lugares, objetos ou

Leia mais

Explorações de alunos

Explorações de alunos A partir dos exemplos sugeridos e explorados pelos alunos pretende-se que possam conjecturar que, dadas duas funções reais de variável real f e g, o domínio da função quociente pode ser dado por: f f g

Leia mais

Nível B3 PROPORCIONALIDADE INVERSA

Nível B3 PROPORCIONALIDADE INVERSA Nível B PROPORCIONALIDADE INVERSA Grandezas inversamente proporcionais Duas grandezas e y são inversamente proporcionais se o produto dos valores correspondentes é constante e diferentes de zero. Essa

Leia mais

PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA

PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA 5º ano 2012/2013 UNIDADE: Números e Operações 1 - NÚMEROS NATURAIS OBJECTIVOS GERAIS: - Compreender e ser capaz de usar propriedades dos números inteiros

Leia mais

2. Representação Numérica

2. Representação Numérica 2. Representação Numérica 2.1 Introdução A fim se realizarmos de maneira prática qualquer operação com números, nós precisamos representa-los em uma determinada base numérica. O que isso significa? Vamos

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis

Leia mais

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido.

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido. FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR TRAÇO DE FRAÇÃO DENOMINADOR DENOMINADOR Indica em quantas partes o todo foi dividido. NUMERADOR - Indica quantas partes foram consideradas. TRAÇO DE FRAÇÃO Indica

Leia mais

Questões Complementares de Geometria

Questões Complementares de Geometria Questões Complementares de Geometria Professores Eustácio e José Ocimar Resolução comentada Outubro de 009 Questão 1_Enem 000 Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma

Leia mais

4000 litros. 9min = 2400 litros 15 min. 80%. 200 litros = 160 litros. A quantidade total de água necessária, após a redução é de 2 560 litros.

4000 litros. 9min = 2400 litros 15 min. 80%. 200 litros = 160 litros. A quantidade total de água necessária, após a redução é de 2 560 litros. MATEMÁTICA 1 c Para manter funcionando um chuveiro elétrico durante um banho de 15 minutos e um forno de microondas durante 5 minutos, as quantidades de água que precisam passar pelas turbinas de certa

Leia mais

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna Apostila de Matemática Aplicada Volume Edição 00 Prof. Dr. Celso Eduardo Tuna Capítulo - Revisão Neste capítulo será feita uma revisão através da resolução de alguns eercícios, dos principais tópicos já

Leia mais