INTELIGÊNCIA ARTIFICIAL

Tamanho: px
Começar a partir da página:

Download "INTELIGÊNCIA ARTIFICIAL"

Transcrição

1 INTELIGÊNCIA ARTIFICIAL REDES NEURAIS Caracterização Intuitiva: Em termos intuitivos, Redes Neurais Artificiais (RNAs) são modelos matemáticos inspirados nos princípios de funcionamento dos neurônios biológicos e na estrutura do cérebro. Prof. Ronaldo R. Goldschmidt Caracterização Intuitiva: Capacidade Cerebral Estes modelos têm capacidade de adquirir, armazenar e utilizar conhecimento experimental. Buscam simular computacionalmente habilidades humanas tais como aprendizado, generalização, associação e abstração. interconexões / seg Sanguessuga 00 bilhões de neurônios Homem (0 4,0 6 ) número de interconexões

2 Modelo Biológico: Modelo Biológico: Modelo Biológico: Modelo Biológico: 2

3 Analogia com a Natureza: Analogia com a Natureza: Cérebro Neurônio Biológico Rede de Neurônios 0 bilhões neurônios Aprendizado Generalização Redes Neurais Artificiais Neurônio Artificial Estrutura em Camadas centenas/milhares Aprendizado Generalização Sinapses Neurônio Biológico Corpo Somático Dendritos Axônio Pesos 2 3 Neurônio Artificial Propagação Ativação Associação Reconhecimento de Padrões Associação Reconhecimento de Padrões Definição Formal (Hecht-Nielsen, 990): Uma Rede Neural Artificial é uma estrutura que processa informação de forma paralela e distribuída e que consiste de unidades computacionais (as quais podem possuir memória local e executar operações locais) interconectadas por canais unidirecionais chamados de conexões. Cada unidade possui uma única conexão de saída, que pode ser dividida em quantas conexões laterais se fizer necessário, sendo que cada uma destas conexões transporta o mesmo sinal (sinal de saída da unidade). Devido à similaridade com a estrutura do cérebro, as Redes Neurais exibem características similares ao do comportamento humano, tais como: 3

4 Procura Paralela e Endereçamento pelo Conteúdo: O cérebro não possui endereço de memória e não procura a informação seqüencialmente. O conhecimento fica distribuído pelos neurônios artificiais da rede. Aprendizado: A rede aprende por experiência, não necessitando explicitar os algoritmos para executar uma determinada tarefa. Associação: Generalização: A rede é capaz de fazer associações entre padrões de natureza distinta. Redes Neurais são capazes de generalizar o seu conhecimento a partir de exemplos anteriores Habilidade de lidar com ruídos e distorções, respondendo corretamente a padrões novos. Exemplos: Voz Pessoa Elocução verbal representação escrita Pintura classificação em autêntica ou falsificação 4

5 Abstração: Capacidade de abstrair a essência de um conjunto de entradas, isto é, a partir de padrões ruidosos, extrair a informação do padrão sem ruído. Outras características das RNAs: São construídas, não programadas. Oferecem soluções aproximadas, não exatas. Oferecem soluções que podem ou não estar corretas. Não são aplicáveis a qualquer problema. Exemplos de Aplicações Gerais: Estrutura de uma Rede Neural: Reconhecimento de Padrões Atividade Classificação de Padrões Correção de Padrões Neural I H O Previsão de Séries Temporais I 2 H 2 O 2 Aproximação de Funções Suporte à Decisão I 3 H 3 O 3 Dentre outras... Entrada Pesos Escondida Pesos Saída 5

6 Elementos Básicos de um Neurônio Artificial: Neurônio Artificial Posição k Elementos Básicos de um Neurônio Artificial: Conexões entre Processadores - a cada conexão existe um peso sináptico que determina o efeito da entrada sobre o processador W ik Pesos k Propagação Net k Ativação s k=f(net k) i W ik k 2k 3k O k W ik expressa a força da conexão entre os neurônios i e k Alguns autores referenciam W ik como W ki Exemplos: W 8 = W 59 = Elementos Básicos de um Neurônio Artificial: Regra de Propagação Combina as entradas de um processador com os pesos sinápticos associados às conexões que chegam a tal processador. Elementos Básicos de um Neurônio Artificial: Estado de Ativação S k Função de Ativação - determina o novo valor do Estado de Ativação do processador S k = F (net k ) net k = W ik * O i net k é a saída do combinador linear, onde: net k Potencial de ativação do processador k Saída do processador i Peso da conexão entre os neurônios i e k O i W ik Onda quadrada binária (degrau) 0 net Linear por partes (rampa) 0 O = 0.2 W 3=.2 O 2= - W 23= net 3 = (O *W 3 ) + (O 2 *W 23 ) = (0.2*.2) + ((-)*(-0.3)) = = 0.54 Sigmóide y 0 net Tangente Hiperbólica y 0 net - 6

7 Arquiteturas de RN s Classificação quanto ao número de camadas: Arquiteturas de RN s Classificação quanto ao tipo de conexão: Redes de camada única Feedforard (acíclica) Redes de múltiplas camadas Feedback (cíclica) Arquiteturas de RN s Classificação quanto ao tipo de conectividade: Processamento Neural: Pode ser dividido em duas fases: Parcialmente conectada Processo de atualização dos pesos sinápticos para a aquisição do conhecimento - Aquisição da Informação (t+) = (t) + (t), onde (t) é o ajuste aplicado aos pesos Completamente conectada Processo de cálculo da saída da rede, dado um certo padrão de entrada - Recuperação da Informação 7

8 Processo de Aprendizagem Passos do processo de aprendizagem: a rede neural é estimulada por um ambiente a rede neural sofre modificações nos seus parâmetros livres a rede neural responde de uma maneira nova ao ambiente 3. REDES PERCEPTRON DE MÚLTIPLAS CAMADAS Considerações Gerais Os ajustes dos pesos são feitos em todas as camadas da rede, de forma proporcional em relação ao erro gerado a cada instante. Utilização do algoritmo de aprendizado Back-Propagation (Retro-Propagação do Erro) Estes passos se repetem até que algum critério de parada seja alcançado. Exemplos de critérios de parada: Número de iterações máximo alcançado Erro produzido pela rede atinge um patamar abaixo de limiar definido 5. MODELOS DE RNAs 5. MODELOS DE RNAs MLP Número de Camadas Uma camada intermediária é suficiente para aproximar qualquer função contínua. Duas são suficientes para aproximar qualquer função. A grande maioria dos problemas práticos requer apenas uma camada intermediária. A utilização de duas camadas intermediárias é necessária quando a função a ser aproximada possui descontinuidades. MLP Treinamento das Redes O algoritmo de treinamento de redes MLP mais popular é o back-propagation, que por ser supervisionado, utiliza pares de entrada e saída para, por meio de correção de erros, ajustar os pesos da rede. No back-propagation, o treinamento utiliza uma generalização da regra e ocorre em duas fases: forard e backard. 8

9 5. MODELOS DE RNAs 6. CONSIDERAÇÕES FINAIS Estratégias de Treinamento Quanto à seleção dos conjuntos para treinamento e teste Treinamento e teste separados (razão 70% e 30%) Treinamento, teste e validação (50%, 30% e 20%) Treinamento e teste juntos (poucos dados) Separar dados em N conjuntos exemplo com 3: A, B e C Treinar com A+B, testar com C Treinar com A+C, testar com B Treinar com B+C, testar com A Quanto à arquitetura da rede Número de camadas escondidas (, 2 ou mais?) Número de elementos por camada Funções de ativação Exemplos de Ferramentas para Desenvolvimento de RNAs JOONE ICADEMO MATLAB NEURALWARE NEURAL PLANNER JUSTNN WEKA Dentre inúmeras outras CONSIDERAÇÕES FINAIS BIBLIOGRAFIA BÁSICA: HAYKIN, S. Redes Neurais: Princípios e Prática. 2ª. ed. Porto Alegre: Bookman, 200. BRAGA, A.; CARVALHO, A.; LUDERMIR, T. Redes Neurais Artificiais Teoria e Aplicações. Rio de Janeiro:LTC, BIBLIOGRAFIA COMPLEMENTAR: REZENDE, S. Sistemas Inteligentes Fundamentos e Aplicações. São Paulo: Manole, OLIVEIRA, H., CALDEIRA, A., MACHADO M., SOUZA, R., TANSCHEIT, R. Inteligência Computacional Aplicada à Administração, Economia e Engenharia em Matlab. São Paulo: Thomson, LUGER, G. F. Inteligência Artificial. Porto Alegre: Bookmann, GOLDSCHMIDT, R. Uma Introdução à Inteligência Computacional: Fundamentos, Ferramentas e Aplicações. IST-Rio,

3 Redes Neurais Artificiais

3 Redes Neurais Artificiais 3 Redes Neurais Artificiais 3.1. Introdução A capacidade de implementar computacionalmente versões simplificadas de neurônios biológicos deu origem a uma subespecialidade da inteligência artificial, conhecida

Leia mais

serotonina (humor) dopamina (Parkinson) serotonina (humor) dopamina (Parkinson) Prozac inibe a recaptação da serotonina

serotonina (humor) dopamina (Parkinson) serotonina (humor) dopamina (Parkinson) Prozac inibe a recaptação da serotonina Redes Neurais O modelo biológico O cérebro humano possui cerca 100 bilhões de neurônios O neurônio é composto por um corpo celular chamado soma, ramificações chamadas dendritos (que recebem as entradas)

Leia mais

Redes Neurais Artificiais (RNA) Definições. Prof. Juan Moisés Mauricio Villanueva

Redes Neurais Artificiais (RNA) Definições. Prof. Juan Moisés Mauricio Villanueva Redes Neurais Artificiais (RNA) Definições Prof. Juan Moisés Mauricio Villanueva jmauricio@cear.ufpb.br 1 Conteúdo 1. 2. 3. 4. 5. 6. Introdução Modelos básicos e regras de aprendizagem Rede neural de retro

Leia mais

Introdução à Redes Neurais. Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana

Introdução à Redes Neurais. Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana Introdução à Redes Neurais Artificiais Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana 2 Introdução Redes Neurais Artificiais (RNAs)

Leia mais

Introdução às Redes Neurais Artificiais

Introdução às Redes Neurais Artificiais Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Introdução às Redes Neurais Artificiais DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Tópicos

Leia mais

Aula 1 Introdução - RNA

Aula 1 Introdução - RNA Aula 1 Introdução - RNA Sumário 1- Conceitos Iniciais; 2- Neurônio Biológico; 3- Neurônio Artificial; 4- Funções de Ativação; 5- Comparação Neurônio Biológico e Artificial. 1- Conceitos Iniciais - Computadores

Leia mais

4 Redes Neurais Artificiais

4 Redes Neurais Artificiais 4 Redes Neurais Artificiais Inteligência computacional pode ser definida como um conjunto de modelos, algoritmos, técnicas, ferramentas e aplicações em sistemas computadorizados que emulem características

Leia mais

Inteligência Computacional

Inteligência Computacional Inteligência Computacional INTRODUÇÃO ÀS REDES NEURAIS ARTIFICIAIS Renato Dourado Maia Faculdade de Ciência e Tecnologia de Montes Claros Fundação Educacional Montes Claros Na Aula Passada... O que é uma

Leia mais

Previsão de Vazões utilizando Redes Neurais Artificiais MLP e NSRBN

Previsão de Vazões utilizando Redes Neurais Artificiais MLP e NSRBN Previsão de Vazões utilizando Redes Neurais Artificiais MLP e NSRBN Alan Caio Rodrigues MARQUES 1, Gelson da Cruz JUNIOR 2, Cassio Dener Noronha VINHAL 3 Escola de Engenharia Elétrica e de Computação 1

Leia mais

Redes Neurais: MLP. Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação

Redes Neurais: MLP. Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Redes Neurais: MLP DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Tópicos Redes diretas de múltiplas

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica REDES NEURAIS ARTIFICIAIS AULA 03 Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 INTRODUÇÃO Aprendizagem é um processo pelo qual os parâmetros livres de uma rede neural são adaptados através de um processo

Leia mais

Algoritmos de Aprendizado. CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico. Regra de HEBB.

Algoritmos de Aprendizado. CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico. Regra de HEBB. CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico Conceitos Básicos Neurônio Artificial, Modos de Interconexão Processamento Neural Recall e Learning Regras de Aprendizado

Leia mais

4 Redes Neurais Artificiais RNAs

4 Redes Neurais Artificiais RNAs 66 4 Redes Neurais Artificiais RNAs Redes neurais artificial (RNA) são algoritmos que se baseiam no comportamento do cérebro humano. Dessa forma, imita a estrutura massivamente paralela do cérebro, com

Leia mais

Aprendizado de Máquina (Machine Learning)

Aprendizado de Máquina (Machine Learning) Ciência da Computação Aprendizado de Máquina (Machine Learning) Aula 03 Aprendizado Supervisionado / : Modelo MCP e Perceptron Max Pereira Neurônio Booleano de McCulloch- Pitts (Modelo MCP) Proposto em

Leia mais

Redes Neurais MLP: Exemplos e Características

Redes Neurais MLP: Exemplos e Características Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Redes Neurais MLP: Exemplos e Características DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1

Leia mais

Classificação Linear. André Tavares da Silva.

Classificação Linear. André Tavares da Silva. Classificação Linear André Tavares da Silva andre.silva@udesc.br Roteiro Introduzir os o conceito de classificação linear. LDA (Linear Discriminant Analysis) Funções Discriminantes Lineares Perceptron

Leia mais

UM MODELO NEURAL PARA A PREVISÃO DA DEMANDA DE ENERGIA ELÉTRICA NA CIDADE DE FRANCA

UM MODELO NEURAL PARA A PREVISÃO DA DEMANDA DE ENERGIA ELÉTRICA NA CIDADE DE FRANCA UM MODELO NEURAL PARA A PREVISÃO DA DEMANDA DE ENERGIA ELÉTRICA NA CIDADE DE FRANCA SOUZA, REGIANE MÁXIMO YOSHINO, RUI TADASHI HANISC,H, WERNER SIEGFRIED ETO, REGINA FUMIE Palavras-chaves: Artificial Neural

Leia mais

Inteligência Artificial

Inteligência Artificial Universidade Federal de Campina Grande Departamento de Sistemas e Computação Pós-Graduação em Ciência da Computação Inteligência Artificial Aprendizagem (Redes Neurais) Prof. a Joseana Macêdo Fechine Régis

Leia mais

Algoritmos de Aprendizado. Formas de Aprendizado. Aprendizado Batch x Incremental. Aprendizado Batch x Incremental

Algoritmos de Aprendizado. Formas de Aprendizado. Aprendizado Batch x Incremental. Aprendizado Batch x Incremental Algoritmos de Aprendizado Regra de Hebb Perceptron Delta Rule (Least Mean Square Back Propagation Formas de Aprendizado Existe dois métodos básicos de aplicação do algoritmo Back Propagation: Aprendizado

Leia mais

Redes Neurais Artificiais Sistemas Inteligentes Especialização em Automação Industrial SISTEMAS INTELIGENTES PROFESSOR FLÁVIO MURILO

Redes Neurais Artificiais Sistemas Inteligentes Especialização em Automação Industrial SISTEMAS INTELIGENTES PROFESSOR FLÁVIO MURILO Redes Neurais Artificiais Sistemas Inteligentes Especialização em Automação Industrial 1 Redes Neurais - Definição O que é Rede Neural ou Rede Neuronal Artificial (RNA)? É um modelo computacional que objetiva

Leia mais

RECONHECIMENTO DE GÊNERO ATRAVÉS DA VOZ

RECONHECIMENTO DE GÊNERO ATRAVÉS DA VOZ RECONHECIMENTO DE GÊNERO ATRAVÉS DA VOZ Marcela Ribeiro Carvalho marcela@enecar.com.br IFG/Câmpus Goiânia Hipólito Barbosa Machado Filho hipolito.barbosa@ifg.edu.br IFG/Câmpus Goiânia Programa Institucional

Leia mais

Classificação de Padrões. Abordagem prática com Redes Neurais Artificiais

Classificação de Padrões. Abordagem prática com Redes Neurais Artificiais Classificação de Padrões Abordagem prática com Redes Neurais Artificiais Agenda Parte I - Introdução ao aprendizado de máquina Parte II - Teoria RNA Parte III - Prática RNA Parte IV - Lições aprendidas

Leia mais

Redes Neurais Artificiais. Professor: Juan Moises Villanueva

Redes Neurais Artificiais. Professor: Juan Moises Villanueva Redes Neurais Artificiais Mestrando: Lucas Nicolau Email: lucasfnicolau@gmail.com Professor: Juan Moises Villanueva Sumário 1. Sistemas Inteligentes 2. Introdução as Redes Neurais Artificias Neurônio Biológico

Leia mais

Aprendizado de Máquinas. Multi-Layer Perceptron (MLP)

Aprendizado de Máquinas. Multi-Layer Perceptron (MLP) Universidade Federal do Paraná (UFPR) Departamento de Informática (DInf) Aprendizado de Máquinas Multi-Layer Perceptron (MLP) David Menotti, Ph.D. web.inf.ufpr.br/menotti Redes Neuronais Cérebro humano.

Leia mais

Multi-Layer. Perceptrons. Algoritmos de Aprendizado. Perceptrons. Perceptrons

Multi-Layer. Perceptrons. Algoritmos de Aprendizado. Perceptrons. Perceptrons Algoritmos de Aprendizado Regra de Hebb Perceptron Delta Rule (Least Mean Square) Back Propagation Multi-Layer Perceptrons Redes de apenas uma camada só representam funções linearmente separáveis Redes

Leia mais

Professor José Gomes de Carvalho Jr. Modelos Conexionistas - Redes Neurais 1 INTRODUÇÃO

Professor José Gomes de Carvalho Jr. Modelos Conexionistas - Redes Neurais 1 INTRODUÇÃO Modelos Conexionistas - Redes Neurais 1 INTRODUÇÃO Redes Neurais Artificiais ou simplesmente Redes Neurais (também conhecidas como modelos conexionistas) têm sido, ao longo dos últimos anos, uma área de

Leia mais

RECONHECIMENTO DE TRAJETÓRIA COM REDES NEURAIS

RECONHECIMENTO DE TRAJETÓRIA COM REDES NEURAIS 1 RECONHECIMENTO DE TRAJETÓRIA COM REDES NEURAIS Giovanni Crestan Leonardo Enomoto Araki Thiago Antonio Grandi De Tolosa Wânderson de Oliveira Assis Wilson Carlos Siqueira Lima Júnior IMT Instituto Mauá

Leia mais

Inteligência Artificial. IA Conexionista: Perceptron de Múltiplas Camadas Mapas Auto-Organizáveis. Renan Rosado de Almeida

Inteligência Artificial. IA Conexionista: Perceptron de Múltiplas Camadas Mapas Auto-Organizáveis. Renan Rosado de Almeida Inteligência Artificial IA Conexionista: Redes Neurais Artificiais Perceptron de Múltiplas Camadas Mapas Auto-Organizáveis Renan Rosado de Almeida rralmeida@inf.ufrgs.br Perceptron de Múltiplas Camadas

Leia mais

Fundamentos de Inteligência Artificial [5COP099]

Fundamentos de Inteligência Artificial [5COP099] Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Departamento de Computação - UEL Disciplina Anual Assunto Aula 16 Redes Neurais Artificiais (MLP) 2 de 24 (MLP) Sumário Introdução

Leia mais

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA Projeto de Redes Neurais Projeto de Redes Neurais Baseado apenas em dados Exemplos para treinar uma rede devem ser compostos por

Leia mais

Fundamentos das Redes Neurais: exemplos em Java

Fundamentos das Redes Neurais: exemplos em Java Fundamentos das Redes Neurais: exemplos em Java Recife 2008 Copyringt by 2007 Mêuser Valença Impresso no Brasil Printed in Brazil Editor Tarcísio Pereira Diagramação Maria do Carmo de Oliveira Capa Valeska

Leia mais

Redes Neurais Artificiais. Capítulos 1 e 2

Redes Neurais Artificiais. Capítulos 1 e 2 Redes Neurais Artificiais Introdução Capítulos 1 e 2 Redes Neurais Artificiais (RNA) São modelos computacionais inspirados nos mecanismos de aprendizagem do cérebro humano. São modelos computacionais que

Leia mais

Redes Neurais Artificial

Redes Neurais Artificial Redes Neurais Artificial Tópicos: Introdução ao estudo de RNA sua origem e inspiração biológica Características gerais das RN e descrição do neurônio artificial Aprendizado de RN e tipos de Aprendizado

Leia mais

PREVISÃO CLIMÁTICA DE PRECIPITAÇÃO USANDO REDE NEURAL

PREVISÃO CLIMÁTICA DE PRECIPITAÇÃO USANDO REDE NEURAL PREVISÃO CLIMÁTICA DE PRECIPITAÇÃO USANDO REDE NEURAL Juliana A. ANOCHI 1, Sabrina B. M. SAMBATTI 1, Eduardo F. P. da LUZ 1, Haroldo F. de CAMPOS VELHO 1 Instituto Nacional de Pesquisas Espaciais - INPE

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica REDES NEURAIS ARTIFICIAIS PERCEPTRONS Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 Forma mais simples de configuração das RNAs Rosenblatt (1958) retina área de projeção área de associação respostas

Leia mais

Paradigmas de Aprendizagem

Paradigmas de Aprendizagem Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Paradigmas de Aprendizagem Redes Neurais Artificiais Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

3 Redes Neurais Introdução

3 Redes Neurais Introdução 3 Redes Neurais 3.. Introdução As redes neurais artificiais, ou comumente conhecidas como Neural Networs, foram motivadas em princípio pela extraordinária capacidade do cérebro humano para executar tarefas

Leia mais

3 REDES NEURAIS ARTIFICIAIS

3 REDES NEURAIS ARTIFICIAIS 50 3 REDES NEURAIS ARTIFICIAIS Este capitulo apresenta uma descrição sucinta da teoria básica de Redes Neurais Artificiais e sobre a criação do Comitê de Redes Neurais. Se o leitor estiver familiarizado

Leia mais

REDES NEURAIS ARTIFICIAIS: UMA CONTRIBUIÇÃO AO PROCESSO DE DECISÕES FINANCEIRAS

REDES NEURAIS ARTIFICIAIS: UMA CONTRIBUIÇÃO AO PROCESSO DE DECISÕES FINANCEIRAS REDES NEURAIS ARTIFICIAIS: UMA CONTRIBUIÇÃO AO PROCESSO DE DECISÕES FINANCEIRAS WILSON KENDY TACHIBANA VERIDIANA DE FÁTIMA ORLANDI Resumo: As redes neurais artificiais são modelos baseados no comportamento

Leia mais

REDES NEURAIS. É um conjunto complexo de células que determina o funcionamento e comportamento dos seres vivos. Sua unidade fundamental é o neurônio

REDES NEURAIS. É um conjunto complexo de células que determina o funcionamento e comportamento dos seres vivos. Sua unidade fundamental é o neurônio REDES NEURAIS Sistema Nervoso 2 O que é? É um conjunto complexo de células que determina o funcionamento e comportamento dos seres vivos Engloba o cérebro Sua unidade fundamental é o neurônio Se diferencia

Leia mais

APLICAÇÃO DAS REDES NEURAIS DE BASE RADIAL NA METEOROLOGIA. PALAVRAS-CHAVE: Redes Neurais Artificiais; Rede Neural de Base Radial; Meteorologia.

APLICAÇÃO DAS REDES NEURAIS DE BASE RADIAL NA METEOROLOGIA. PALAVRAS-CHAVE: Redes Neurais Artificiais; Rede Neural de Base Radial; Meteorologia. APLICAÇÃO DAS REDES NEURAIS DE BASE RADIAL NA METEOROLOGIA Emerson Yoshio Maeda (IC, FUNDAÇÃO ARAUCÁRIA), (UNESPAR/FECILCAM), math.maeda@gmail.com Juliano Fabiano da Mota (OR), (UNESPAR/FECILCAM), jfmota@fecilcam.br

Leia mais

SISTEMA PARA CLASSIFICAÇÃO DE MÉIS BASEADO EM REDES NEURAIS

SISTEMA PARA CLASSIFICAÇÃO DE MÉIS BASEADO EM REDES NEURAIS Revista CSBEA v. 2, n. 1 (2016) 1 SISTEMA PARA CLASSIFICAÇÃO DE MÉIS BASEADO EM REDES NEURAIS E. F. DIAS 1, M. M. de ALMEIDA 2 e E. R. DUARTE 3 1 Universidade Tecnológica Federal do Paraná, Campus Ponta

Leia mais

Automação Inteligente de Processos e Sistemas

Automação Inteligente de Processos e Sistemas Automação Inteligente de Processos e Sistemas Prof. Dr. Ivan Nunes da Silva USP/EESC/SEL insilva@sc.usp.br 3 de agosto de 203. Sistemas Inteligentes Conjunto de ferramentas computacionais que tentam simular

Leia mais

Comparação de Modelos Neurais Aplicados a Resistência de Fornos de Redução do Alumínio Primário

Comparação de Modelos Neurais Aplicados a Resistência de Fornos de Redução do Alumínio Primário Trabalho apresentado no DINCON, Natal - RN, 2015. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Comparação de Modelos Neurais Aplicados a Resistência de Fornos de

Leia mais

FÁBIO BARROS TEBALDI ESTUDO DE REDES NEURAIS ARTIFICIAS PARA VERIFICAÇÃO E CLASSIFICAÇÃO DE ASSINATURAS ATRAVÉS DE IMAGENS

FÁBIO BARROS TEBALDI ESTUDO DE REDES NEURAIS ARTIFICIAS PARA VERIFICAÇÃO E CLASSIFICAÇÃO DE ASSINATURAS ATRAVÉS DE IMAGENS FUNDAÇÃO DE ENSINO EURÍPIDES SOARES DA ROCHA CENTRO UNIVERSITARIO EURÍPIDES DE MARÍLIA UNIVEM CURSO DE CIÊNCIA DA COMPUTAÇÃO BACHARELADO FÁBIO BARROS TEBALDI ESTUDO DE REDES NEURAIS ARTIFICIAS PARA VERIFICAÇÃO

Leia mais

Rede RBF (Radial Basis Function)

Rede RBF (Radial Basis Function) Rede RBF (Radial Basis Function) André Tavares da Silva andre.silva@udesc.br Roteiro Introdução à rede neural artificial RBF Teorema de Cover da separabilidade de padrões RBF x MLP RBF Função de ativação

Leia mais

ESTUDO DE ALGORITMO MLP COMO APROXIMADOR DE FUNÇÃO

ESTUDO DE ALGORITMO MLP COMO APROXIMADOR DE FUNÇÃO Congresso Técnico Científico da Engenharia e da Agronomia CONTECC 2016 Rafain Palace Hotel & Convention Center- Foz do Iguaçu - PR 29 de agosto a 1 de setembro de 2016 ESTUDO DE ALGORITMO MLP COMO APROXIMADOR

Leia mais

Inteligência Computacional

Inteligência Computacional Inteligência Computacional INTRODUÇÃO ÀS REDES NEURAIS ARTIFICIAIS Renato Dourado Maia Faculdade de Ciência e Tecnologia de Montes Claros Fundação Educacional Montes Claros Motivação Básica A mente humana,

Leia mais

Redes Neurais Artificiais. Professor: Juan Moises Villanueva

Redes Neurais Artificiais. Professor: Juan Moises Villanueva Redes Neurais Artificiais Mestrando: Lucas Nicolau Email: lucasfnicolau@gmail.com Professor: Juan Moises Villanueva Rede Neural Direta Arquitetura com múltiplas camadas com fluxo de informação apenas em

Leia mais

RNA aplicadas. Sistemas que aprendem sobre tendências e regras de negócio

RNA aplicadas. Sistemas que aprendem sobre tendências e regras de negócio RNA aplicadas Sistemas que aprendem sobre tendências e regras de negócio Agenda: O que é RNA; Onde e quando utilizar; Como aplicar; Exemplo de código; Case; Cuidados e observações. O que é RNA? Redes Neurais

Leia mais

APLICAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA ESTIMAR MATRIZ ORIGEM-DESTINO DE CARGA

APLICAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA ESTIMAR MATRIZ ORIGEM-DESTINO DE CARGA APLICAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA ESTIMAR MATRIZ ORIGEM-DESTINO DE CARGA Daniel Neves Schmitz Gonçalves Luiz Antonio Silveira Lopes Marcelino Aurelio Vieira da Silva APLICAÇÃO DE REDES NEURAIS

Leia mais

Modelagem da Rede Neural. Modelagem da Rede Neural. Back Propagation. Modelagem da Rede Neural. Modelagem da Rede Neural. Seleção de Variáveis:

Modelagem da Rede Neural. Modelagem da Rede Neural. Back Propagation. Modelagem da Rede Neural. Modelagem da Rede Neural. Seleção de Variáveis: Back Propagation Fatores importantes para a modelagem da Rede Neural: Seleção de variáveis; veis; Limpeza dos dados; Representação das variáveis veis de entrada e saída; Normalização; Buscando melhor Generalização

Leia mais

5 Redes Neurais Artificiais

5 Redes Neurais Artificiais 5 Redes Neurais Artificiais 5.1. Introdução A motivação original desta metodologia 1 foi a tentativa de modelar a rede de neurônios humanos visando compreender o funcionamento do cérebro. Portanto, como

Leia mais

Redes Neurais não Supervisionadas: SOM

Redes Neurais não Supervisionadas: SOM Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Redes Neurais não Supervisionadas: SOM DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Tópicos

Leia mais

Complemento II Noções Introdutória em Redes Neurais

Complemento II Noções Introdutória em Redes Neurais Complemento II Noções Introdutória em Redes Neurais Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

XII Congresso Brasileiro de Meteorologia, Foz de Iguaçu-PR, 2002

XII Congresso Brasileiro de Meteorologia, Foz de Iguaçu-PR, 2002 ESTUDO PRELIMINAR DA UTILIZAÇÃO DE REDES NEURAIS NA PREVISÃO DE TEMPERATURA MÉDIA DIÁRIA PARA A CIDADE DE PELOTAS-RS Ariane Frassoni dos Santos 1, João Gerd Zell de Mattos 1, Paulo Roberto Krebs 2 1 Faculdade

Leia mais

Inteligência Artificial

Inteligência Artificial Universidade Federal de Campina Grande Departamento de Sistemas e Computação Pós-Graduação em Ciência da Computação Inteligência Artificial Aprendizagem (Redes Neurais - Complementar) Prof. a Joseana Macêdo

Leia mais

Inteligência Artificial. Conceitos Gerais

Inteligência Artificial. Conceitos Gerais Inteligência Artificial Conceitos Gerais Inteligência Artificial - IA IA é um campo de estudo multidisciplinar e interdisciplinar, que se apóia no conhecimento e evolução de outras áreas do conhecimento.

Leia mais

Uso de Redes Neurais Artificiais na Determinação dos Zeros de Funções Polinomiais

Uso de Redes Neurais Artificiais na Determinação dos Zeros de Funções Polinomiais Revista Tecnologias em Proeção v n p 8-5 dez 8 Uso de Redes Neurais Artificiais na Determinação dos Zeros de Funções Polinomiais Ircílio Chissolucombe Resumo A Inteligência Artificial tem sido muito utilizada

Leia mais

REDE NEURAL DE ELMAN APLICADA NA PREVISÃO DE PREÇOS DE COMBUSTÍVEIS

REDE NEURAL DE ELMAN APLICADA NA PREVISÃO DE PREÇOS DE COMBUSTÍVEIS REDE NEURAL DE ELMAN APLICADA NA PREVISÃO DE PREÇOS DE COMBUSTÍVEIS Renan Pires de Araújo 1 ; Adrião Duarte Dória Neto 2 1 Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Ciência

Leia mais

Protótipo de Software para Reconhecimento de Impressões Digitais

Protótipo de Software para Reconhecimento de Impressões Digitais Protótipo de Software para Reconhecimento de Impressões Digitais Aluno: Alex Sandro da Silva Orientador: Paulo de Tarso Mendes Luna Semestre - 99/1 Roteiro da Apresentação INTRODUÇÃO CONCEITOS BÁSICOS

Leia mais

Introdução às Redes Neurais Artificiais

Introdução às Redes Neurais Artificiais Introdução às Redes Neurais Artificiais Introdução Prof. João Marcos Meirelles da Silva http://www.professores.uff.br/jmarcos Departamento de Engenharia de Telecomunicações Escola de Engenharia Universidade

Leia mais

SCC Capítulo 5 Perceptron Multicamadas

SCC Capítulo 5 Perceptron Multicamadas Introdução Back-propagation (BP) MLPs Convolução SCC-5809 - Capítulo 5 Perceptron Multicamadas João Luís Garcia Rosa 1 1 SCC-ICMC-USP - joaoluis@icmc.usp.br 2011 João Luís G. Rosa c 2011 - SCC-5809: Redes

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica REDES DE FUNÇÃO DE BASE RADIAL - RBF Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 Funções de Base Global Funções de Base Global são usadas pelas redes BP. Estas funções são definidas como funções

Leia mais

Redes Neurais Artificiais

Redes Neurais Artificiais Redes Neurais Artificiais x 1 w k1 Bias b k +1 +1 x 1 x 2 x 3 x m +1 y 1 y 2 y o Sinais de entrada x 2 x m Fabricio Breve fabricio@rc.unesp.br w k2 w km Pesos sinápticos Σ Junção aditiva v k f(. ) Saída

Leia mais

Ricardo Cavalcanti Costa Modelos Preditivos de Velocidade de Vento para Sistemas Eólicos Baseados em Redes Neurais Artificiais

Ricardo Cavalcanti Costa Modelos Preditivos de Velocidade de Vento para Sistemas Eólicos Baseados em Redes Neurais Artificiais UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE ENERGIAS ALTERNATIVAS E RENOVÁVEIS DEPARTAMENTO DE ENGENHARIA ELÉTRICA Ricardo Cavalcanti Costa Modelos Preditivos de Velocidade de Vento para Sistemas Eólicos

Leia mais

Redes Neurais. Profa. Flavia Cristina Bernardini

Redes Neurais. Profa. Flavia Cristina Bernardini Redes Neurais Profa. Flavia Cristina Bernardini Introdução Cérebro & Computador Modelos Cognitivos Diferentes Cérebro Computador Seqüência de Comandos Reconhecimento de Padrão Lento Rápido Rápido Lento

Leia mais

Aplicação da Técnica de Componentes Principais no Treinamento de uma Rede Neural no Contexto de Assimilação de Dados

Aplicação da Técnica de Componentes Principais no Treinamento de uma Rede Neural no Contexto de Assimilação de Dados Aplicação da Técnica de Componentes Principais no Treinamento de uma Rede Neural no Contexto de Assimilação de Dados 1 Vinicius Carvalho Beck 2 Júlio Renato Q. Marques 3 Fabrício P. Härter Universidade

Leia mais

Modelo de Previsão de Recalques em Estacas Hélice Contínua Utilizando Redes Neurais Artificiais

Modelo de Previsão de Recalques em Estacas Hélice Contínua Utilizando Redes Neurais Artificiais Modelo de Previsão de Recalques em Estacas Hélice Contínua Utilizando Redes Neurais Artificiais Luciana Barbosa Amancio UFPI, Teresina, Brasil, eng.luciana2009@gmail.com Silvrano Adonias Dantas Neto UFC,

Leia mais

Perceptron de Múltiplas Camadas e Backpropagation

Perceptron de Múltiplas Camadas e Backpropagation Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Perceptron de Múltiplas Camadas e Backpropagation Redes Neurais Artificiais Site: http://jeiks.net

Leia mais

ESTUDO DA INFLUÊNCIA DAS VARIÁVEIS OPERACIONAIS DA CALDEIRA DE RECUPERAÇÃO SOBRE A GERAÇÃO DE VAPOR UTILIZANDO REDES NEURAIS ARTIFICIAIS

ESTUDO DA INFLUÊNCIA DAS VARIÁVEIS OPERACIONAIS DA CALDEIRA DE RECUPERAÇÃO SOBRE A GERAÇÃO DE VAPOR UTILIZANDO REDES NEURAIS ARTIFICIAIS ESTUDO DA INFLUÊNCIA DAS VARIÁVEIS OPERACIONAIS DA CALDEIRA DE RECUPERAÇÃO SOBRE A GERAÇÃO DE VAPOR UTILIZANDO REDES NEURAIS ARTIFICIAIS Gustavo Matheus de Almeida 1, Marcelo Cardoso 1, Éder Domingos de

Leia mais

PROPOSTA DE UTILIZAÇÃO DE REDES NEURAIS PARA ANÁLISES FÍSICO- QUÍMICA UTILIZANDO DADOS ESPECTROMÉTRICOS NO UV-VIS

PROPOSTA DE UTILIZAÇÃO DE REDES NEURAIS PARA ANÁLISES FÍSICO- QUÍMICA UTILIZANDO DADOS ESPECTROMÉTRICOS NO UV-VIS PROPOSTA DE UTILIZAÇÃO DE REDES NEURAIS PARA ANÁLISES FÍSICO- QUÍMICA UTILIZANDO DADOS ESPECTROMÉTRICOS NO UV-VIS 1 SILVA, J. N., 2 MONTEIRO, G. S., 3 SILVA, S. K., 4 AVELINO, M. C., 5 FRANÇA, M. I. C,.

Leia mais

Introdução às Redes Neurais Artificiais

Introdução às Redes Neurais Artificiais Introdução às Redes Neurais Artificiais Mapas Auto-Organizáveis Prof. João Marcos Meirelles da Silva http://www.professores.uff.br/jmarcos Departamento de Engenharia de Telecomunicações Escola de Engenharia

Leia mais

INTELIGÊNCIA COMPUTACIONAL

INTELIGÊNCIA COMPUTACIONAL Rafael D. Ribeiro, M.Sc. rafaeldiasribeiro@gmail.com http://www.rafaeldiasribeiro.com.br A Inteligência Computacional (IC), denominada originalmente de Inteligência Artificial (IA), é uma das ciências

Leia mais

Aplicações Práticas com Redes Neurais Artificiais em Java

Aplicações Práticas com Redes Neurais Artificiais em Java com em Java Luiz D Amore e Mauro Schneider JustJava 2009 17 de Setembro de 2009 Palestrantes Luiz Angelo D Amore luiz.damore@metodista.br Mauro Ulisses Schneider mauro.schneider@metodista.br http://blog.mauros.org

Leia mais

Redes Neurais Artificiais. Professor: Juan Moises Villanueva

Redes Neurais Artificiais. Professor: Juan Moises Villanueva Redes eurais Artificiais Mestrando: Lucas icolau Email: lucasfnicolau@gmail.com Professor: Juan Moises Villanueva Sumário 1. Redes Adaline e Madaline 2. Redes eurais Diretas 3. Funções de Ativação Discreta

Leia mais

CLASSIFICAÇÃO DE CROMATOGRAMAS GASOSOS DE ÓLEOS BASEADA EM REDES NEURAIS

CLASSIFICAÇÃO DE CROMATOGRAMAS GASOSOS DE ÓLEOS BASEADA EM REDES NEURAIS Copyright 04, Instituto Brasileiro de Petróleo e Gás - IBP Este Trabalho Técnico Científico foi preparado para apresentação no 3 Congresso Brasileiro de P&D em Petróleo e Gás, a ser realizado no período

Leia mais

Um Sistema Distribuído para Treinamento de Redes Neurais

Um Sistema Distribuído para Treinamento de Redes Neurais Um Sistema Distribuído para Treinamento de Redes Neurais JOSÉ REINALDO LEMES JÚNIOR UFLA - Universidade Federal de Lavras DCC Departamento de Ciência da Computação Cx Postal 3037 CEP 37200-000 Lavras (MG)

Leia mais

AVALIAÇÃO DE CONFIGURAÇÕES DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DE CONSUMO DE ENERGIA DE SISTEMAS DE CLIMATIZAÇÃO

AVALIAÇÃO DE CONFIGURAÇÕES DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DE CONSUMO DE ENERGIA DE SISTEMAS DE CLIMATIZAÇÃO AVALIAÇÃO DE CONFIGURAÇÕES DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DE CONSUMO DE ENERGIA DE SISTEMAS DE CLIMATIZAÇÃO Esteban Fernandez Arancibia ep.fdez@gmail.com Resumo:Este trabalho apresenta um estudo

Leia mais

Inteligência Artificial Redes Neurais Artificiais

Inteligência Artificial Redes Neurais Artificiais Pós-Graduação em Engenharia Elétrica Inteligência Artificial Redes Neurais Artificiais João Marques Salomão Rodrigo Varejão Andreão Arquitetura e composição das RNAs Uma rede neural artificial é composta

Leia mais

O uso de redes neurais artificias em sinais EMG

O uso de redes neurais artificias em sinais EMG O uso de redes neurais artificias em sinais EMG Francisco Vinícius Lopes Costa1, Francisco Carlos Gurgel da Silva Segundo1, Náthalee Cavalcanti de Almeida Lima1 1Departamento de Ciências Exatas e Naturais

Leia mais

AVALIAÇÃO DE CONFIGURAÇÕES DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DO CONSUMO DE ENERGIA DE SISTEMAS DE CLIMATIZAÇÃO

AVALIAÇÃO DE CONFIGURAÇÕES DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DO CONSUMO DE ENERGIA DE SISTEMAS DE CLIMATIZAÇÃO UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA MECÂNICA AVALIAÇÃO DE CONFIGURAÇÕES DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DO CONSUMO DE ENERGIA DE SISTEMAS DE CLIMATIZAÇÃO

Leia mais

6. QUADRIMESTRE IDEAL 7. NÍVEL Graduação 8. Nº. MÁXIMO DE ALUNOS POR TURMA TEORIA: 60 LABORATÓRIO: 30

6. QUADRIMESTRE IDEAL 7. NÍVEL Graduação 8. Nº. MÁXIMO DE ALUNOS POR TURMA TEORIA: 60 LABORATÓRIO: 30 Universidade Federal do ABC Rua Santa Adélia, 166 - Bairro Bangu - Santo André - SP - Brasil CEP 09.210-170 - Telefone/Fax: +55 11 4996-3166 1. CÓDIGO E NOME DA DISCIPLINA MC5001 - SISTEMAS MULTIAGENTES

Leia mais

Estruturando redes neurais artificiais paralelas e independentes para o controle de próteses robóticas

Estruturando redes neurais artificiais paralelas e independentes para o controle de próteses robóticas Estruturando redes neurais artificiais paralelas e independentes para o controle de próteses robóticas Daniel Cristiano Serafim 1 Prof. Dr. Antonio Joaquim da Silva Neto 2 RESUMO O objetivo deste artigo

Leia mais

RECONHECIMENTO DOS SÍMBOLOS MANUSCRITOS DO SISTEMA SIGNWRITING

RECONHECIMENTO DOS SÍMBOLOS MANUSCRITOS DO SISTEMA SIGNWRITING UNIVERSIDADE CATÓLICA DE PELOTAS ESCOLA DE INFORMÁTICA CURSO DE CIÊNCIA DA COMPUTAÇÃO RECONHECIMENTO DOS SÍMBOLOS MANUSCRITOS DO SISTEMA SIGNWRITING por Fabiana Zaffalon Ferreira Rocha Anteprojeto de Graduação

Leia mais

UTILIZAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DE PREÇOS DE FRUTAS E HORTALIÇAS

UTILIZAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DE PREÇOS DE FRUTAS E HORTALIÇAS UTILIZAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DE PREÇOS DE FRUTAS E HORTALIÇAS 1 Leandro Oliveira Araujo; 1 Heder Saito Nunes; 1 Alex Vinicius de Bastos Rangel; 1 Thiago Santiago Barbosa; 1 Aluno

Leia mais

3 Modelos Comparativos: Teoria e Metodologia

3 Modelos Comparativos: Teoria e Metodologia 3 Modelos Comparativos: Teoria e Metodologia Para avaliar o desempenho do modelo STAR-Tree, foram estimados os modelos Naive, ARMAX e Redes Neurais. O ajuste dos modelos ARMAX e das redes neurais foi feito

Leia mais

Estimativa de Recalque em Estacas Utilizando Redes Neurais Artificiais

Estimativa de Recalque em Estacas Utilizando Redes Neurais Artificiais XVIII Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica O Futuro Sustentável do Brasil passa por Minas 19-22 Outubro, Belo Horizonte, Minas Gerais, Brasil ABMS, 2016 Estimativa de Recalque

Leia mais

Teorema de Aprox. Universal. Teorema de Aprox. Universal. Teorema de Aprox. Universal. Teorema de Aprox. Universal. Teorema de Aprox.

Teorema de Aprox. Universal. Teorema de Aprox. Universal. Teorema de Aprox. Universal. Teorema de Aprox. Universal. Teorema de Aprox. SCE-5809 - REDES NEURAIS Redes Neurais Multi-Camadas Parte 3 Profa Roseli Ap Francelin Romero Qual é o número mínimo de camadas num PMC que fornece uma aproximação para qualquer mapeamento contínuo? Cybenko,

Leia mais

Redes Neurais Convolucionais

Redes Neurais Convolucionais André Gustavo Hochuli Orientador: Prof. Dr. Luiz Eduardo Soares de Oliveira Programa de Pós-Graduação em Informática Departamento de Informática UFPR http://www.inf.ufpr.br/aghochuli/caffe/ Redes Neurais

Leia mais

Híbrido Baseado em Rede e Colônia de Formigas

Híbrido Baseado em Rede e Colônia de Formigas Um Sistema Híbrido Baseado em Rede Neural e Colônia de Formigas Trabalho de Conclusão de Curso Engenharia da Computaçãoo Aluno: Saulo Medeiros de Oliveira Corrêa dos Santos Orientador: Prof. Dr. Mêuser

Leia mais

UTILIZAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DE SÉRIES TEMPORAIS

UTILIZAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DE SÉRIES TEMPORAIS UILIAÇÃO DE REDES NEURAIS ARIFICIAIS PARA PREVISÃO DE SÉRIES EMPORAIS Aida Araújo Ferreira(1); Elvis Gonçalves de Lira(2) (1) Instituto Federal de Educação, Ciência e ecnologia (IFPE), Av. Prof Luiz Freire,

Leia mais

XVII Congresso Nacional de Administração e Contabilidade - AdCont e 29 de outubro de Rio de Janeiro, RJ

XVII Congresso Nacional de Administração e Contabilidade - AdCont e 29 de outubro de Rio de Janeiro, RJ Redes Neurais Artificiais na Predição do Preço Futuro de Papéis com Alta e Baixa Volatilidade na Bovespa e na Bolsa de Valores de Nova Iorque Resumo Theo Barbante Papadoulos Graduado em Sistema de Informação

Leia mais

NOÇÕES DE REDES NEURAIS ARTIFICIAIS

NOÇÕES DE REDES NEURAIS ARTIFICIAIS UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS CORNÉLIO PROCÓPIO COORDENAÇÃO DE ELETROTÉCNICA - ENGENHARIA ELÉTRICA LABORATORIO DE SEGURANÇA ILUMINAÇÃO E EFICIÊNCIA ENERGÉTICA NOÇÕES DE REDES NEURAIS

Leia mais

Pontifícia Universidade Católica de São Paulo Programa de TIDD

Pontifícia Universidade Católica de São Paulo Programa de TIDD Disciplina: 2854 - Sistemas Inteligentes e Ambientes Virtuais Turma A Área de Concentração: Processos Cognitivos e Ambientes Digitais Linha de Pesquisa: Inteligência Coletiva e Ambientes Interativos Professor:

Leia mais

Reconhecendo Instrumentos Musicais Através de Redes Neurais Artificiais

Reconhecendo Instrumentos Musicais Através de Redes Neurais Artificiais Reconhecendo Instrumentos Musicais Através de Redes Neurais Artificiais Carlos Roberto Ferreira de Menezes Júnior, Eustáquio São José de Faria, Keiji Yamanaka Faculdade de Engenharia Elétrica (Programa

Leia mais

REDES NEURAIS ARTIFICIAIS: PRINCÍPIOS BÁSICOS ARTIFICIAL NEURAL NETWORKS: BASIC PRINCIPLES

REDES NEURAIS ARTIFICIAIS: PRINCÍPIOS BÁSICOS ARTIFICIAL NEURAL NETWORKS: BASIC PRINCIPLES REDES NEURAIS ARTIFICIAIS: PRINCÍPIOS BÁSICOS ARTIFICIAL NEURAL NETWORKS: BASIC PRINCIPLES FLECK, Leandro 1 ; TAVARES, Maria Hermínia Ferreira 2 ; EYNG, Eduardo 3 ; HELMANN, Andrieli Cristina 4 ; ANDRADE,

Leia mais

Software para Auxílio à Pré-alfabetização Infantil Baseado em Reconhecimento Inteligente de Caracteres Manuscritos

Software para Auxílio à Pré-alfabetização Infantil Baseado em Reconhecimento Inteligente de Caracteres Manuscritos Software para Auxílio à Pré-alfabetização Infantil Baseado em Reconhecimento Inteligente de Caracteres Manuscritos Peterson Adriano Belan 1, Edilaine Petinari Nery 1, Sidnei Alves de Araújo 1,2 1 Centro

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 14 Aprendizado de Máquina Avaliação de s Preditivos (Classificação) Hold-out K-fold Leave-one-out Prof. Ricardo M. Marcacini ricardo.marcacini@ufms.br Curso: Sistemas de Informação

Leia mais

Multi-Layer. Perceptron. Sumário. Aplicações de Redes Neurais. Previsão de Séries Temporais. Aplicações de Previsão

Multi-Layer. Perceptron. Sumário. Aplicações de Redes Neurais. Previsão de Séries Temporais. Aplicações de Previsão Aplicações de Redes Neurais Multi-Layer Perceptron Previsão de Séries Temporais Inferência da Qualidade de Produtos de Destilação (Soft Sensors) Classificação de Imagens Determinação da Carga Limite em

Leia mais