INTELIGÊNCIA ARTIFICIAL

Tamanho: px
Começar a partir da página:

Download "INTELIGÊNCIA ARTIFICIAL"

Transcrição

1 INTELIGÊNCIA ARTIFICIAL REDES NEURAIS Caracterização Intuitiva: Em termos intuitivos, Redes Neurais Artificiais (RNAs) são modelos matemáticos inspirados nos princípios de funcionamento dos neurônios biológicos e na estrutura do cérebro. Prof. Ronaldo R. Goldschmidt Caracterização Intuitiva: Capacidade Cerebral Estes modelos têm capacidade de adquirir, armazenar e utilizar conhecimento experimental. Buscam simular computacionalmente habilidades humanas tais como aprendizado, generalização, associação e abstração. interconexões / seg Sanguessuga 00 bilhões de neurônios Homem (0 4,0 6 ) número de interconexões

2 Modelo Biológico: Modelo Biológico: Modelo Biológico: Modelo Biológico: 2

3 Analogia com a Natureza: Analogia com a Natureza: Cérebro Neurônio Biológico Rede de Neurônios 0 bilhões neurônios Aprendizado Generalização Redes Neurais Artificiais Neurônio Artificial Estrutura em Camadas centenas/milhares Aprendizado Generalização Sinapses Neurônio Biológico Corpo Somático Dendritos Axônio Pesos 2 3 Neurônio Artificial Propagação Ativação Associação Reconhecimento de Padrões Associação Reconhecimento de Padrões Definição Formal (Hecht-Nielsen, 990): Uma Rede Neural Artificial é uma estrutura que processa informação de forma paralela e distribuída e que consiste de unidades computacionais (as quais podem possuir memória local e executar operações locais) interconectadas por canais unidirecionais chamados de conexões. Cada unidade possui uma única conexão de saída, que pode ser dividida em quantas conexões laterais se fizer necessário, sendo que cada uma destas conexões transporta o mesmo sinal (sinal de saída da unidade). Devido à similaridade com a estrutura do cérebro, as Redes Neurais exibem características similares ao do comportamento humano, tais como: 3

4 Procura Paralela e Endereçamento pelo Conteúdo: O cérebro não possui endereço de memória e não procura a informação seqüencialmente. O conhecimento fica distribuído pelos neurônios artificiais da rede. Aprendizado: A rede aprende por experiência, não necessitando explicitar os algoritmos para executar uma determinada tarefa. Associação: Generalização: A rede é capaz de fazer associações entre padrões de natureza distinta. Redes Neurais são capazes de generalizar o seu conhecimento a partir de exemplos anteriores Habilidade de lidar com ruídos e distorções, respondendo corretamente a padrões novos. Exemplos: Voz Pessoa Elocução verbal representação escrita Pintura classificação em autêntica ou falsificação 4

5 Abstração: Capacidade de abstrair a essência de um conjunto de entradas, isto é, a partir de padrões ruidosos, extrair a informação do padrão sem ruído. Outras características das RNAs: São construídas, não programadas. Oferecem soluções aproximadas, não exatas. Oferecem soluções que podem ou não estar corretas. Não são aplicáveis a qualquer problema. Exemplos de Aplicações Gerais: Estrutura de uma Rede Neural: Reconhecimento de Padrões Atividade Classificação de Padrões Correção de Padrões Neural I H O Previsão de Séries Temporais I 2 H 2 O 2 Aproximação de Funções Suporte à Decisão I 3 H 3 O 3 Dentre outras... Entrada Pesos Escondida Pesos Saída 5

6 Elementos Básicos de um Neurônio Artificial: Neurônio Artificial Posição k Elementos Básicos de um Neurônio Artificial: Conexões entre Processadores - a cada conexão existe um peso sináptico que determina o efeito da entrada sobre o processador W ik Pesos k Propagação Net k Ativação s k=f(net k) i W ik k 2k 3k O k W ik expressa a força da conexão entre os neurônios i e k Alguns autores referenciam W ik como W ki Exemplos: W 8 = W 59 = Elementos Básicos de um Neurônio Artificial: Regra de Propagação Combina as entradas de um processador com os pesos sinápticos associados às conexões que chegam a tal processador. Elementos Básicos de um Neurônio Artificial: Estado de Ativação S k Função de Ativação - determina o novo valor do Estado de Ativação do processador S k = F (net k ) net k = W ik * O i net k é a saída do combinador linear, onde: net k Potencial de ativação do processador k Saída do processador i Peso da conexão entre os neurônios i e k O i W ik Onda quadrada binária (degrau) 0 net Linear por partes (rampa) 0 O = 0.2 W 3=.2 O 2= - W 23= net 3 = (O *W 3 ) + (O 2 *W 23 ) = (0.2*.2) + ((-)*(-0.3)) = = 0.54 Sigmóide y 0 net Tangente Hiperbólica y 0 net - 6

7 Arquiteturas de RN s Classificação quanto ao número de camadas: Arquiteturas de RN s Classificação quanto ao tipo de conexão: Redes de camada única Feedforard (acíclica) Redes de múltiplas camadas Feedback (cíclica) Arquiteturas de RN s Classificação quanto ao tipo de conectividade: Processamento Neural: Pode ser dividido em duas fases: Parcialmente conectada Processo de atualização dos pesos sinápticos para a aquisição do conhecimento - Aquisição da Informação (t+) = (t) + (t), onde (t) é o ajuste aplicado aos pesos Completamente conectada Processo de cálculo da saída da rede, dado um certo padrão de entrada - Recuperação da Informação 7

8 Processo de Aprendizagem Passos do processo de aprendizagem: a rede neural é estimulada por um ambiente a rede neural sofre modificações nos seus parâmetros livres a rede neural responde de uma maneira nova ao ambiente 3. REDES PERCEPTRON DE MÚLTIPLAS CAMADAS Considerações Gerais Os ajustes dos pesos são feitos em todas as camadas da rede, de forma proporcional em relação ao erro gerado a cada instante. Utilização do algoritmo de aprendizado Back-Propagation (Retro-Propagação do Erro) Estes passos se repetem até que algum critério de parada seja alcançado. Exemplos de critérios de parada: Número de iterações máximo alcançado Erro produzido pela rede atinge um patamar abaixo de limiar definido 5. MODELOS DE RNAs 5. MODELOS DE RNAs MLP Número de Camadas Uma camada intermediária é suficiente para aproximar qualquer função contínua. Duas são suficientes para aproximar qualquer função. A grande maioria dos problemas práticos requer apenas uma camada intermediária. A utilização de duas camadas intermediárias é necessária quando a função a ser aproximada possui descontinuidades. MLP Treinamento das Redes O algoritmo de treinamento de redes MLP mais popular é o back-propagation, que por ser supervisionado, utiliza pares de entrada e saída para, por meio de correção de erros, ajustar os pesos da rede. No back-propagation, o treinamento utiliza uma generalização da regra e ocorre em duas fases: forard e backard. 8

9 5. MODELOS DE RNAs 6. CONSIDERAÇÕES FINAIS Estratégias de Treinamento Quanto à seleção dos conjuntos para treinamento e teste Treinamento e teste separados (razão 70% e 30%) Treinamento, teste e validação (50%, 30% e 20%) Treinamento e teste juntos (poucos dados) Separar dados em N conjuntos exemplo com 3: A, B e C Treinar com A+B, testar com C Treinar com A+C, testar com B Treinar com B+C, testar com A Quanto à arquitetura da rede Número de camadas escondidas (, 2 ou mais?) Número de elementos por camada Funções de ativação Exemplos de Ferramentas para Desenvolvimento de RNAs JOONE ICADEMO MATLAB NEURALWARE NEURAL PLANNER JUSTNN WEKA Dentre inúmeras outras CONSIDERAÇÕES FINAIS BIBLIOGRAFIA BÁSICA: HAYKIN, S. Redes Neurais: Princípios e Prática. 2ª. ed. Porto Alegre: Bookman, 200. BRAGA, A.; CARVALHO, A.; LUDERMIR, T. Redes Neurais Artificiais Teoria e Aplicações. Rio de Janeiro:LTC, BIBLIOGRAFIA COMPLEMENTAR: REZENDE, S. Sistemas Inteligentes Fundamentos e Aplicações. São Paulo: Manole, OLIVEIRA, H., CALDEIRA, A., MACHADO M., SOUZA, R., TANSCHEIT, R. Inteligência Computacional Aplicada à Administração, Economia e Engenharia em Matlab. São Paulo: Thomson, LUGER, G. F. Inteligência Artificial. Porto Alegre: Bookmann, GOLDSCHMIDT, R. Uma Introdução à Inteligência Computacional: Fundamentos, Ferramentas e Aplicações. IST-Rio,

3 Redes Neurais Artificiais

3 Redes Neurais Artificiais 3 Redes Neurais Artificiais 3.1. Introdução A capacidade de implementar computacionalmente versões simplificadas de neurônios biológicos deu origem a uma subespecialidade da inteligência artificial, conhecida

Leia mais

serotonina (humor) dopamina (Parkinson) serotonina (humor) dopamina (Parkinson) Prozac inibe a recaptação da serotonina

serotonina (humor) dopamina (Parkinson) serotonina (humor) dopamina (Parkinson) Prozac inibe a recaptação da serotonina Redes Neurais O modelo biológico O cérebro humano possui cerca 100 bilhões de neurônios O neurônio é composto por um corpo celular chamado soma, ramificações chamadas dendritos (que recebem as entradas)

Leia mais

Introdução às Redes Neurais Artificiais

Introdução às Redes Neurais Artificiais Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Introdução às Redes Neurais Artificiais DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Tópicos

Leia mais

Redes Neurais: MLP. Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação

Redes Neurais: MLP. Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Redes Neurais: MLP DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Tópicos Redes diretas de múltiplas

Leia mais

Inteligência Computacional

Inteligência Computacional Inteligência Computacional INTRODUÇÃO ÀS REDES NEURAIS ARTIFICIAIS Renato Dourado Maia Faculdade de Ciência e Tecnologia de Montes Claros Fundação Educacional Montes Claros Na Aula Passada... O que é uma

Leia mais

Algoritmos de Aprendizado. CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico. Regra de HEBB.

Algoritmos de Aprendizado. CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico. Regra de HEBB. CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico Conceitos Básicos Neurônio Artificial, Modos de Interconexão Processamento Neural Recall e Learning Regras de Aprendizado

Leia mais

4 Redes Neurais Artificiais

4 Redes Neurais Artificiais 4 Redes Neurais Artificiais Inteligência computacional pode ser definida como um conjunto de modelos, algoritmos, técnicas, ferramentas e aplicações em sistemas computadorizados que emulem características

Leia mais

Algoritmos de Aprendizado. Formas de Aprendizado. Aprendizado Batch x Incremental. Aprendizado Batch x Incremental

Algoritmos de Aprendizado. Formas de Aprendizado. Aprendizado Batch x Incremental. Aprendizado Batch x Incremental Algoritmos de Aprendizado Regra de Hebb Perceptron Delta Rule (Least Mean Square Back Propagation Formas de Aprendizado Existe dois métodos básicos de aplicação do algoritmo Back Propagation: Aprendizado

Leia mais

UM MODELO NEURAL PARA A PREVISÃO DA DEMANDA DE ENERGIA ELÉTRICA NA CIDADE DE FRANCA

UM MODELO NEURAL PARA A PREVISÃO DA DEMANDA DE ENERGIA ELÉTRICA NA CIDADE DE FRANCA UM MODELO NEURAL PARA A PREVISÃO DA DEMANDA DE ENERGIA ELÉTRICA NA CIDADE DE FRANCA SOUZA, REGIANE MÁXIMO YOSHINO, RUI TADASHI HANISC,H, WERNER SIEGFRIED ETO, REGINA FUMIE Palavras-chaves: Artificial Neural

Leia mais

Redes Neurais Artificiais. Professor: Juan Moises Villanueva

Redes Neurais Artificiais. Professor: Juan Moises Villanueva Redes Neurais Artificiais Mestrando: Lucas Nicolau Email: lucasfnicolau@gmail.com Professor: Juan Moises Villanueva Sumário 1. Sistemas Inteligentes 2. Introdução as Redes Neurais Artificias Neurônio Biológico

Leia mais

Multi-Layer. Perceptrons. Algoritmos de Aprendizado. Perceptrons. Perceptrons

Multi-Layer. Perceptrons. Algoritmos de Aprendizado. Perceptrons. Perceptrons Algoritmos de Aprendizado Regra de Hebb Perceptron Delta Rule (Least Mean Square) Back Propagation Multi-Layer Perceptrons Redes de apenas uma camada só representam funções linearmente separáveis Redes

Leia mais

Inteligência Artificial. IA Conexionista: Perceptron de Múltiplas Camadas Mapas Auto-Organizáveis. Renan Rosado de Almeida

Inteligência Artificial. IA Conexionista: Perceptron de Múltiplas Camadas Mapas Auto-Organizáveis. Renan Rosado de Almeida Inteligência Artificial IA Conexionista: Redes Neurais Artificiais Perceptron de Múltiplas Camadas Mapas Auto-Organizáveis Renan Rosado de Almeida rralmeida@inf.ufrgs.br Perceptron de Múltiplas Camadas

Leia mais

RECONHECIMENTO DE TRAJETÓRIA COM REDES NEURAIS

RECONHECIMENTO DE TRAJETÓRIA COM REDES NEURAIS 1 RECONHECIMENTO DE TRAJETÓRIA COM REDES NEURAIS Giovanni Crestan Leonardo Enomoto Araki Thiago Antonio Grandi De Tolosa Wânderson de Oliveira Assis Wilson Carlos Siqueira Lima Júnior IMT Instituto Mauá

Leia mais

Professor José Gomes de Carvalho Jr. Modelos Conexionistas - Redes Neurais 1 INTRODUÇÃO

Professor José Gomes de Carvalho Jr. Modelos Conexionistas - Redes Neurais 1 INTRODUÇÃO Modelos Conexionistas - Redes Neurais 1 INTRODUÇÃO Redes Neurais Artificiais ou simplesmente Redes Neurais (também conhecidas como modelos conexionistas) têm sido, ao longo dos últimos anos, uma área de

Leia mais

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA Projeto de Redes Neurais Projeto de Redes Neurais Baseado apenas em dados Exemplos para treinar uma rede devem ser compostos por

Leia mais

Paradigmas de Aprendizagem

Paradigmas de Aprendizagem Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Paradigmas de Aprendizagem Redes Neurais Artificiais Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

PREVISÃO CLIMÁTICA DE PRECIPITAÇÃO USANDO REDE NEURAL

PREVISÃO CLIMÁTICA DE PRECIPITAÇÃO USANDO REDE NEURAL PREVISÃO CLIMÁTICA DE PRECIPITAÇÃO USANDO REDE NEURAL Juliana A. ANOCHI 1, Sabrina B. M. SAMBATTI 1, Eduardo F. P. da LUZ 1, Haroldo F. de CAMPOS VELHO 1 Instituto Nacional de Pesquisas Espaciais - INPE

Leia mais

Complemento II Noções Introdutória em Redes Neurais

Complemento II Noções Introdutória em Redes Neurais Complemento II Noções Introdutória em Redes Neurais Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

APLICAÇÃO DAS REDES NEURAIS DE BASE RADIAL NA METEOROLOGIA. PALAVRAS-CHAVE: Redes Neurais Artificiais; Rede Neural de Base Radial; Meteorologia.

APLICAÇÃO DAS REDES NEURAIS DE BASE RADIAL NA METEOROLOGIA. PALAVRAS-CHAVE: Redes Neurais Artificiais; Rede Neural de Base Radial; Meteorologia. APLICAÇÃO DAS REDES NEURAIS DE BASE RADIAL NA METEOROLOGIA Emerson Yoshio Maeda (IC, FUNDAÇÃO ARAUCÁRIA), (UNESPAR/FECILCAM), math.maeda@gmail.com Juliano Fabiano da Mota (OR), (UNESPAR/FECILCAM), jfmota@fecilcam.br

Leia mais

REDES NEURAIS. É um conjunto complexo de células que determina o funcionamento e comportamento dos seres vivos. Sua unidade fundamental é o neurônio

REDES NEURAIS. É um conjunto complexo de células que determina o funcionamento e comportamento dos seres vivos. Sua unidade fundamental é o neurônio REDES NEURAIS Sistema Nervoso 2 O que é? É um conjunto complexo de células que determina o funcionamento e comportamento dos seres vivos Engloba o cérebro Sua unidade fundamental é o neurônio Se diferencia

Leia mais

Protótipo de Software para Reconhecimento de Impressões Digitais

Protótipo de Software para Reconhecimento de Impressões Digitais Protótipo de Software para Reconhecimento de Impressões Digitais Aluno: Alex Sandro da Silva Orientador: Paulo de Tarso Mendes Luna Semestre - 99/1 Roteiro da Apresentação INTRODUÇÃO CONCEITOS BÁSICOS

Leia mais

Inteligência Computacional

Inteligência Computacional Inteligência Computacional INTRODUÇÃO ÀS REDES NEURAIS ARTIFICIAIS Renato Dourado Maia Faculdade de Ciência e Tecnologia de Montes Claros Fundação Educacional Montes Claros Motivação Básica A mente humana,

Leia mais

Comparação de Modelos Neurais Aplicados a Resistência de Fornos de Redução do Alumínio Primário

Comparação de Modelos Neurais Aplicados a Resistência de Fornos de Redução do Alumínio Primário Trabalho apresentado no DINCON, Natal - RN, 2015. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Comparação de Modelos Neurais Aplicados a Resistência de Fornos de

Leia mais

ESTUDO DE ALGORITMO MLP COMO APROXIMADOR DE FUNÇÃO

ESTUDO DE ALGORITMO MLP COMO APROXIMADOR DE FUNÇÃO Congresso Técnico Científico da Engenharia e da Agronomia CONTECC 2016 Rafain Palace Hotel & Convention Center- Foz do Iguaçu - PR 29 de agosto a 1 de setembro de 2016 ESTUDO DE ALGORITMO MLP COMO APROXIMADOR

Leia mais

Inteligência Artificial. Conceitos Gerais

Inteligência Artificial. Conceitos Gerais Inteligência Artificial Conceitos Gerais Inteligência Artificial - IA IA é um campo de estudo multidisciplinar e interdisciplinar, que se apóia no conhecimento e evolução de outras áreas do conhecimento.

Leia mais

Redes Neurais. Profa. Flavia Cristina Bernardini

Redes Neurais. Profa. Flavia Cristina Bernardini Redes Neurais Profa. Flavia Cristina Bernardini Introdução Cérebro & Computador Modelos Cognitivos Diferentes Cérebro Computador Seqüência de Comandos Reconhecimento de Padrão Lento Rápido Rápido Lento

Leia mais

Uso de Redes Neurais Artificiais na Determinação dos Zeros de Funções Polinomiais

Uso de Redes Neurais Artificiais na Determinação dos Zeros de Funções Polinomiais Revista Tecnologias em Proeção v n p 8-5 dez 8 Uso de Redes Neurais Artificiais na Determinação dos Zeros de Funções Polinomiais Ircílio Chissolucombe Resumo A Inteligência Artificial tem sido muito utilizada

Leia mais

SCC Capítulo 5 Perceptron Multicamadas

SCC Capítulo 5 Perceptron Multicamadas Introdução Back-propagation (BP) MLPs Convolução SCC-5809 - Capítulo 5 Perceptron Multicamadas João Luís Garcia Rosa 1 1 SCC-ICMC-USP - joaoluis@icmc.usp.br 2011 João Luís G. Rosa c 2011 - SCC-5809: Redes

Leia mais

INTELIGÊNCIA COMPUTACIONAL

INTELIGÊNCIA COMPUTACIONAL Rafael D. Ribeiro, M.Sc. rafaeldiasribeiro@gmail.com http://www.rafaeldiasribeiro.com.br A Inteligência Computacional (IC), denominada originalmente de Inteligência Artificial (IA), é uma das ciências

Leia mais

ESTUDO DA INFLUÊNCIA DAS VARIÁVEIS OPERACIONAIS DA CALDEIRA DE RECUPERAÇÃO SOBRE A GERAÇÃO DE VAPOR UTILIZANDO REDES NEURAIS ARTIFICIAIS

ESTUDO DA INFLUÊNCIA DAS VARIÁVEIS OPERACIONAIS DA CALDEIRA DE RECUPERAÇÃO SOBRE A GERAÇÃO DE VAPOR UTILIZANDO REDES NEURAIS ARTIFICIAIS ESTUDO DA INFLUÊNCIA DAS VARIÁVEIS OPERACIONAIS DA CALDEIRA DE RECUPERAÇÃO SOBRE A GERAÇÃO DE VAPOR UTILIZANDO REDES NEURAIS ARTIFICIAIS Gustavo Matheus de Almeida 1, Marcelo Cardoso 1, Éder Domingos de

Leia mais

Inteligência Artificial Redes Neurais Artificiais

Inteligência Artificial Redes Neurais Artificiais Pós-Graduação em Engenharia Elétrica Inteligência Artificial Redes Neurais Artificiais João Marques Salomão Rodrigo Varejão Andreão Arquitetura e composição das RNAs Uma rede neural artificial é composta

Leia mais

Aplicações Práticas com Redes Neurais Artificiais em Java

Aplicações Práticas com Redes Neurais Artificiais em Java com em Java Luiz D Amore e Mauro Schneider JustJava 2009 17 de Setembro de 2009 Palestrantes Luiz Angelo D Amore luiz.damore@metodista.br Mauro Ulisses Schneider mauro.schneider@metodista.br http://blog.mauros.org

Leia mais

6. QUADRIMESTRE IDEAL 7. NÍVEL Graduação 8. Nº. MÁXIMO DE ALUNOS POR TURMA TEORIA: 60 LABORATÓRIO: 30

6. QUADRIMESTRE IDEAL 7. NÍVEL Graduação 8. Nº. MÁXIMO DE ALUNOS POR TURMA TEORIA: 60 LABORATÓRIO: 30 Universidade Federal do ABC Rua Santa Adélia, 166 - Bairro Bangu - Santo André - SP - Brasil CEP 09.210-170 - Telefone/Fax: +55 11 4996-3166 1. CÓDIGO E NOME DA DISCIPLINA MC5001 - SISTEMAS MULTIAGENTES

Leia mais

Introdução às Redes Neurais Artificiais

Introdução às Redes Neurais Artificiais Introdução às Redes Neurais Artificiais Mapas Auto-Organizáveis Prof. João Marcos Meirelles da Silva http://www.professores.uff.br/jmarcos Departamento de Engenharia de Telecomunicações Escola de Engenharia

Leia mais

Pontifícia Universidade Católica de São Paulo Programa de TIDD

Pontifícia Universidade Católica de São Paulo Programa de TIDD Disciplina: 2854 - Sistemas Inteligentes e Ambientes Virtuais Turma A Área de Concentração: Processos Cognitivos e Ambientes Digitais Linha de Pesquisa: Inteligência Coletiva e Ambientes Interativos Professor:

Leia mais

Um Sistema Distribuído para Treinamento de Redes Neurais

Um Sistema Distribuído para Treinamento de Redes Neurais Um Sistema Distribuído para Treinamento de Redes Neurais JOSÉ REINALDO LEMES JÚNIOR UFLA - Universidade Federal de Lavras DCC Departamento de Ciência da Computação Cx Postal 3037 CEP 37200-000 Lavras (MG)

Leia mais

Multi-Layer. Perceptron. Sumário. Aplicações de Redes Neurais. Previsão de Séries Temporais. Aplicações de Previsão

Multi-Layer. Perceptron. Sumário. Aplicações de Redes Neurais. Previsão de Séries Temporais. Aplicações de Previsão Aplicações de Redes Neurais Multi-Layer Perceptron Previsão de Séries Temporais Inferência da Qualidade de Produtos de Destilação (Soft Sensors) Classificação de Imagens Determinação da Carga Limite em

Leia mais

3 Modelos Comparativos: Teoria e Metodologia

3 Modelos Comparativos: Teoria e Metodologia 3 Modelos Comparativos: Teoria e Metodologia Para avaliar o desempenho do modelo STAR-Tree, foram estimados os modelos Naive, ARMAX e Redes Neurais. O ajuste dos modelos ARMAX e das redes neurais foi feito

Leia mais

AVALIAÇÃO DE CONFIGURAÇÕES DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DO CONSUMO DE ENERGIA DE SISTEMAS DE CLIMATIZAÇÃO

AVALIAÇÃO DE CONFIGURAÇÕES DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DO CONSUMO DE ENERGIA DE SISTEMAS DE CLIMATIZAÇÃO UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA MECÂNICA AVALIAÇÃO DE CONFIGURAÇÕES DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DO CONSUMO DE ENERGIA DE SISTEMAS DE CLIMATIZAÇÃO

Leia mais

Estimativa de Recalque em Estacas Utilizando Redes Neurais Artificiais

Estimativa de Recalque em Estacas Utilizando Redes Neurais Artificiais XVIII Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica O Futuro Sustentável do Brasil passa por Minas 19-22 Outubro, Belo Horizonte, Minas Gerais, Brasil ABMS, 2016 Estimativa de Recalque

Leia mais

UTILIZAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DE SÉRIES TEMPORAIS

UTILIZAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DE SÉRIES TEMPORAIS UILIAÇÃO DE REDES NEURAIS ARIFICIAIS PARA PREVISÃO DE SÉRIES EMPORAIS Aida Araújo Ferreira(1); Elvis Gonçalves de Lira(2) (1) Instituto Federal de Educação, Ciência e ecnologia (IFPE), Av. Prof Luiz Freire,

Leia mais

Estruturando redes neurais artificiais paralelas e independentes para o controle de próteses robóticas

Estruturando redes neurais artificiais paralelas e independentes para o controle de próteses robóticas Estruturando redes neurais artificiais paralelas e independentes para o controle de próteses robóticas Daniel Cristiano Serafim 1 Prof. Dr. Antonio Joaquim da Silva Neto 2 RESUMO O objetivo deste artigo

Leia mais

Uma Introdução a SVM Support Vector Machines. Obs: Baseada nos slides de Martin Law

Uma Introdução a SVM Support Vector Machines. Obs: Baseada nos slides de Martin Law Uma Introdução a SVM Support Vector Machines Obs: Baseada nos slides de Martin Law Sumário Historia das SVMs Duas classes, linearmente separáveis O que é um bom limite para a decisão? Duas classes, não

Leia mais

Híbrido Baseado em Rede e Colônia de Formigas

Híbrido Baseado em Rede e Colônia de Formigas Um Sistema Híbrido Baseado em Rede Neural e Colônia de Formigas Trabalho de Conclusão de Curso Engenharia da Computaçãoo Aluno: Saulo Medeiros de Oliveira Corrêa dos Santos Orientador: Prof. Dr. Mêuser

Leia mais

Reconhecendo Instrumentos Musicais Através de Redes Neurais Artificiais

Reconhecendo Instrumentos Musicais Através de Redes Neurais Artificiais Reconhecendo Instrumentos Musicais Através de Redes Neurais Artificiais Carlos Roberto Ferreira de Menezes Júnior, Eustáquio São José de Faria, Keiji Yamanaka Faculdade de Engenharia Elétrica (Programa

Leia mais

ARTIGO REDES NEURAIS. Edivaldo Teodoro REDES NEURAIS. Como Funciona o Sistema Nervoso

ARTIGO REDES NEURAIS. Edivaldo Teodoro REDES NEURAIS. Como Funciona o Sistema Nervoso REDES NEURAIS Edivaldo Teodoro Resumo Neste artigo procuramos descrever os principais tópicos referentes as redes neurais, desde seu surgimento até propostas de implementações em inúmeras aplicações atuais.

Leia mais

MODELAGEM DO COMPORTAMENTO À FADIGA DE COMPÓSITOS DE FIBRA DE VIDRO A PARTIR DE UM MODELO MISTO DE RNA

MODELAGEM DO COMPORTAMENTO À FADIGA DE COMPÓSITOS DE FIBRA DE VIDRO A PARTIR DE UM MODELO MISTO DE RNA 1 UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA MODELAGEM DO COMPORTAMENTO À FADIGA DE COMPÓSITOS DE FIBRA DE VIDRO A PARTIR DE UM MODELO MISTO DE RNA Dissertação

Leia mais

Redes Neurais Artificiais. Everton Gago

Redes Neurais Artificiais. Everton Gago Redes Neurais Artificiais Everton Gago Como vai ser? O que é RNA? Conglomerado de neurônios!?!? Neurônio: Neurônio: Entradas: X0 = 0 X1 = 1 X2 = 1 Neurônio: Entradas: X0 = 0 X1 = 1 X2 = 1 Pesos: W0 = 0.3

Leia mais

4 ANÁLISE DE SÉRIES TEMPORAIS

4 ANÁLISE DE SÉRIES TEMPORAIS 4 ANÁLISE DE SÉRIES TEMPORAIS 4.1. Introdução Neste capítulo definem-se as séries temporais e discutem-se as características básicas das técnicas de análise, com enfoque nos modelos de Box & Jenkins (1970)

Leia mais

Utilização de Redes Neurais Artificiais para Interpolação de Resultados do Método de Elementos Finitos

Utilização de Redes Neurais Artificiais para Interpolação de Resultados do Método de Elementos Finitos Utilização de Redes Neurais Artificiais para Interpolação de Resultados do Método de Elementos Finitos Leandro M. de Souza Resumo Neste artigo, é proposta uma metodologia que utiliza Redes Neurais Artificiais

Leia mais

DIAGNÓSTICO AUTOMATIZADO DE DOENÇAS NO COLO DO ÚTERO BASEADO EM REDES NEURAIS ARTIFICIAIS E PROCESSAMENTO DE IMAGENS DIGITAIS

DIAGNÓSTICO AUTOMATIZADO DE DOENÇAS NO COLO DO ÚTERO BASEADO EM REDES NEURAIS ARTIFICIAIS E PROCESSAMENTO DE IMAGENS DIGITAIS DIAGNÓSTICO AUTOMATIZADO DE DOENÇAS NO COLO DO ÚTERO BASEADO EM REDES NEURAIS ARTIFICIAIS E PROCESSAMENTO DE IMAGENS DIGITAIS Edroaldo Lummertz da Rocha 1 Evânio Ramos Nicoleit 2 Merisandra Cortes de Mattos

Leia mais

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Francisco A. Rodrigues Departamento de Matemática Aplicada e Estatística - SME 1 Conceitos básicos Naive Bayes K-vizinhos mais

Leia mais

ESTIMATIVA DE RADIAÇÃO SOLAR NA REGIÃO DO MACIÇO DE BATURITÉ: ABORDAGEM VIA REDES NEURAIS ARTIFICIAIS.

ESTIMATIVA DE RADIAÇÃO SOLAR NA REGIÃO DO MACIÇO DE BATURITÉ: ABORDAGEM VIA REDES NEURAIS ARTIFICIAIS. ESTIMATIVA DE RADIAÇÃO SOLAR NA REGIÃO DO MACIÇO DE BATURITÉ: ABORDAGEM VIA REDES NEURAIS ARTIFICIAIS. Arini de Menezes Costa 1, Kaio Martins Ramos 2, Hugo Hermano da Costa Castro 3, Antonio Alisson P.

Leia mais

Sistemas Inteligentes

Sistemas Inteligentes Sistemas Inteligentes UNIDADE 5 Redes Neurais Artificiais (Perceptron Multicamadas Conceitos) Prof. Ivan Nunes da Silva. Rede Perceptron Multicamadas Aspectos de arquitetura Redes Perceptron de Múltiplas

Leia mais

Detecção de Faces Humanas em Imagens Coloridas Utilizando Redes Neurais Artificiais

Detecção de Faces Humanas em Imagens Coloridas Utilizando Redes Neurais Artificiais Detecção de Faces Humanas em Imagens Coloridas Utilizando Redes Neurais Artificiais Wellington da Rocha Gouveia Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia Elétrica

Leia mais

INSTITUTO DE PÓS GRADUAÇÃO ICPG GESTÃO DA TECNOLOGIA DA INFORMAÇÃO

INSTITUTO DE PÓS GRADUAÇÃO ICPG GESTÃO DA TECNOLOGIA DA INFORMAÇÃO INSTITUTO DE PÓS GRADUAÇÃO ICPG GESTÃO DA TECNOLOGIA DA INFORMAÇÃO Prof. Msc. Saulo Popov Zambiasi (saulopz@gmail.com) Informação - ICPG - Criciuma - SC 1 Conceitos de Inteligência e Inteligência Artificial.

Leia mais

Aula 06 - Máquina Multinível e Von Neumann

Aula 06 - Máquina Multinível e Von Neumann Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Campus Currais Novos Instalação e Organização de Computadores Aula 06 - Máquina Multinível e Von Neumann Prof. Diego Pereira

Leia mais

Redes Neurais. A IA clássica segue o paradigma da computação simbólica

Redes Neurais. A IA clássica segue o paradigma da computação simbólica Abordagens não simbólicas A IA clássica segue o paradigma da computação simbólica Redes Neurais As redes neurais deram origem a chamada IA conexionista, pertencendo também a grande área da Inteligência

Leia mais

Introdução a Redes Neurais Artificiais com a biblioteca Encog em Java

Introdução a Redes Neurais Artificiais com a biblioteca Encog em Java Introdução a Redes Neurais Artificiais com a biblioteca Encog em Java Raquel Machado de Sousa 1 1 Laboratório de Sistemas Inteligentes (LSI) Universidade Federal do Maranhão (UFMA) Av. dos Portugueses

Leia mais

Porta Lógica XOR Digital Neural

Porta Lógica XOR Digital Neural Anais do 12 o Encontro de Iniciação Científica e Pós Graduação do ITA XII ENCITA/2006 Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brasil, Outubro, 16 a 19, 2006 Porta Lógica XOR Digital

Leia mais

Inteligência Computacional para Jogos Eletrônicos

Inteligência Computacional para Jogos Eletrônicos Inteligência Computacional para Jogos Eletrônicos Papéis da IA em Jogos Adversários Aliados Personagens de apoio NPC s (Non-player Character) Comentaristas Controle de câmera Geração de fases Nivelamento

Leia mais

Transformação de Imagens Digitais em Código CNC Aprimoradas com Redes Neurais Artificiais

Transformação de Imagens Digitais em Código CNC Aprimoradas com Redes Neurais Artificiais Transformação de Imagens Digitais em Código CNC Aprimoradas com Redes Neurais Artificiais Abstract. Jader Teixeira 1, Alex Vinícios Telocken 1 1 Universidade de Cruz Alta (UNICRUZ) jader033139@unicruz.edu.br,

Leia mais

REDES NEURAIS ARTIFICIAIS APLICADAS À PREVISÃO DE VAZÕES SAZONAIS ATRAVÉS DA RELAÇÃO CHUVA-VAZÃO

REDES NEURAIS ARTIFICIAIS APLICADAS À PREVISÃO DE VAZÕES SAZONAIS ATRAVÉS DA RELAÇÃO CHUVA-VAZÃO REDES NEURAIS ARTIFICIAIS APLICADAS À PREVISÃO DE VAZÕES SAZONAIS ATRAVÉS DA RELAÇÃO CHUVA-VAZÃO Camila da Cruz Santos¹, Jacson Hudson Inácio Ferreira², Keiji Yamanaka³, José Roberto Camacho³ ¹Instituto

Leia mais

Ambiente MATLAB. Redes Neurais. Tela Principal do MATLAB MATLAB 6.5. MATLAB MATrix LABoratory. Programação baseada em Matrizes

Ambiente MATLAB. Redes Neurais. Tela Principal do MATLAB MATLAB 6.5. MATLAB MATrix LABoratory. Programação baseada em Matrizes Redes Neurais MATLAB 6.5 Ambiente MATLAB MATLAB MATrix LABoratory Programação baseada em Matrizes Vetores e escalares também podem ser considerados matrizes, xn, Nx, x Tela Principal do MATLAB Tela Principal

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA ENGENHARIA DE TELEINFORMÁTICA

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA ENGENHARIA DE TELEINFORMÁTICA UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA ENGENHARIA DE TELEINFORMÁTICA PREDIÇÃO DO SINAL EM UMA REDE LOCAL SEM FIO ATRAVÉS DE REDES NEURAIS ARTIFICIAIS RICARDO BRUNO MARTINS TEIXEIRA FORTALEZA

Leia mais

Décimo Quinto Encontro Regional Ibero-americano do CIGRÉ Foz do Iguaçu-PR, Brasil 19 a 23 de maio de 2013

Décimo Quinto Encontro Regional Ibero-americano do CIGRÉ Foz do Iguaçu-PR, Brasil 19 a 23 de maio de 2013 UTILIZAÇÃO DE REDES NEURAIS PARA MODELAGEM DO COMPORTAMENTO DE ISOLADORES A. H. Reiner* L. H. Meyer* F. H. Molina** *Fundação Universidade Regional de Blumenau ** Centrais Elétricas de Santa Catarina S/A

Leia mais

Protótipo de um robô rastreador de objetos. Orientando: Emerson de Oliveira Orientador : Miguel Wisintainer

Protótipo de um robô rastreador de objetos. Orientando: Emerson de Oliveira Orientador : Miguel Wisintainer Protótipo de um robô rastreador de objetos Orientando: Emerson de Oliveira Orientador : Miguel Wisintainer Estrutura da apresentação Introdução Processamento e análise de imagens Redes neurais e reconhecimento

Leia mais

Tabela de Pré-Requisitos. Interdisciplinar 36 Não há

Tabela de Pré-Requisitos. Interdisciplinar 36 Não há Nome da UC Categoria CH Total Pré-Requisitos Álgebra Linear Eletiva 72 Geometria Analítica Álgebra Linear Computacional Eletiva 72 Cálculo Numérico Álgebra Linear II Eletiva 72 Álgebra Linear Algoritmos

Leia mais

FACULDADE DE INFORMÁTICA E ADMINISTRAÇÃO PAULISTA GUSTAVO DE MARI PEREIRA OSVALDO BINOTTI TEIXEIRA

FACULDADE DE INFORMÁTICA E ADMINISTRAÇÃO PAULISTA GUSTAVO DE MARI PEREIRA OSVALDO BINOTTI TEIXEIRA FACULDADE DE INFORMÁTICA E ADMINISTRAÇÃO PAULISTA GUSTAVO DE MARI PEREIRA OSVALDO BINOTTI TEIXEIRA REDES NEURAIS ARTIFICIAIS APLICADAS NA EVASÃO ESTUDANTIL DO ENSINO SUPERIOR São Paulo 2012 GUSTAVO DE

Leia mais

Organização de Computadores

Organização de Computadores Organização de Computadores Aula 19 Barramentos: Estruturas de Interconexão Rodrigo Hausen 14 de outubro de 2011 http://cuco.pro.br/ach2034 1/40 Apresentação 1. Bases Teóricas 2. Organização de computadores

Leia mais

Introdução às Redes Neurais Artificiais. Eduardo Simas

Introdução às Redes Neurais Artificiais. Eduardo Simas Introdução às Redes Neurais Artificiais Eduardo Simas (eduardo.simas@ufba.br) Sumário O que são as Redes Neurais Artificiais? Para que servem? Processamento da Informação Tipos de Redes Neurais Modos de

Leia mais

Aplicação de redes neurais artificiais para o diagnóstico de patologias traumato-ortopédicas dos membros inferiores

Aplicação de redes neurais artificiais para o diagnóstico de patologias traumato-ortopédicas dos membros inferiores Aplicação de redes neurais artificiais para o diagnóstico de patologias traumato-ortopédicas dos membros inferiores Thearlismar Soares de Araújo, Fabiano Fagundes, Pierre Soares Brandão Curso de Sistemas

Leia mais

Soluções de Equações Diferenciais Usando Redes Neurais de Múltiplas camadas com os métodos da Descida mais íngreme e Levenberg-Marquardt.

Soluções de Equações Diferenciais Usando Redes Neurais de Múltiplas camadas com os métodos da Descida mais íngreme e Levenberg-Marquardt. UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA E ESTATÍSTICA Brigida Cristina Fernandes Batista Soluções de Equações Diferenciais Usando Redes

Leia mais

Modelos de neurônios baseados na taxa de disparos

Modelos de neurônios baseados na taxa de disparos Modelos de neurônios baseados na taxa de disparos Devido à complexidade dos chamados modelos realistas de neurônios e redes neurais, baseados no formalismo de Hodgkin-Huxley, muitos autores preferem usar

Leia mais

O que é uma lesão neurológica???????

O que é uma lesão neurológica??????? PLASTICIDADE NEURAL O que é uma lesão neurológica??????? Sistema Nervoso Central (SNC) Sistema Nervoso Periférico (SNP) Estruturas cerebrais Recuperação funcional? Como ocorre? Quais são as bases fisiológicas?

Leia mais

INTELIGÊNCIA ARTIFICIAL

INTELIGÊNCIA ARTIFICIAL INTELIGÊNCIA ARTIFICIAL Engenharia da Computação Professor: Rosalvo Ferreira de Oliveira Neto Dados pessoais Rosalvo Ferreira de Oliveira Neto Dr. em ciência da computação (UFPE) rosalvo.oliveira@univasf.edu.br

Leia mais

Mecanismos de Interrupção e de Exceção, Barramento, Redes e Sistemas Distribuídos. Sistemas Operacionais, Sistemas

Mecanismos de Interrupção e de Exceção, Barramento, Redes e Sistemas Distribuídos. Sistemas Operacionais, Sistemas Arquitetura de Computadores, Arquitetura de Computadores Organização de Computadores, Conjunto de Instruções, Sistemas Operacionais, Sistemas Operacionais, Sistemas Mecanismos de Interrupção e de Exceção,

Leia mais

Faculdade de Jaguariúna

Faculdade de Jaguariúna Faculdade de Jaguariúna Ciência da Computação REDES NEURAIS ARTIFICIAIS NA PREVISÃO DO CONSUMO DE ENERGIA ELÉTRICA Jaguariúna-SP 2005 2 Luis Fernando Pereira Vicente REDES NEURAIS ARTIFICIAIS NA PREVISÃO

Leia mais

Redes Neurais no WEKA

Redes Neurais no WEKA Redes Neurais WEKA http://www.cs.waikato.ac.nz/ml/weka/ Redes Neurais no WEKA Introdução ao WEKA Base Benchmark Estudo de Casos Análise de Crédito Bancário 1 Redes Neurais no Weka WEKA (Waikaito Environment

Leia mais

CÁLCULO DO EQUILIBRIO DE TROCA-IÔNICA DO SISTEMA Na + -Pb 2+ -Cu 2+ USANDO REDES NEURAIS ARTIFICIAIS.

CÁLCULO DO EQUILIBRIO DE TROCA-IÔNICA DO SISTEMA Na + -Pb 2+ -Cu 2+ USANDO REDES NEURAIS ARTIFICIAIS. CÁLCULO DO EQUILIBRIO DE TROCA-IÔNICA DO SISTEMA Na + -Pb 2+ -Cu 2+ USANDO REDES NEURAIS ARTIFICIAIS. A. B. B. GIOPATTO 1, E. A. SILVA 2, T. D. MARTINS 1 1 Universidade Federal de São Paulo, Departamento

Leia mais

INSTITUTO FEDERAL CEARÁ - IFCE CAMPUS AVANÇADO DE ARACATI CURSO: BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO PROGRAMA DE UNIDADE DIDÁTICA PUD.

INSTITUTO FEDERAL CEARÁ - IFCE CAMPUS AVANÇADO DE ARACATI CURSO: BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO PROGRAMA DE UNIDADE DIDÁTICA PUD. PROGRAMA DE UNIDADE DIDÁTICA PUD DISCIPLINA: INTRODUÇÃO A COMPUTAÇÃO Código: Carga Horária: 40h Número de Créditos: 2 Código pré-requisito: Semestre: Nível: EMENTA S1 Bacharelado PARTE A: 1) Introdução

Leia mais

Sistemas de Informação e Decisão. Douglas Farias Cordeiro

Sistemas de Informação e Decisão. Douglas Farias Cordeiro Sistemas de Informação e Decisão Douglas Farias Cordeiro Decisão Tomamos decisões a todo momento! O que é uma decisão? Uma decisão consiste na escolha de um modo de agir, entre diversas alternativas possíveis,

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO

UNIVERSIDADE FEDERAL DE PERNAMBUCO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO UNIVERSIDADE FEDERAL DE PERNAMBUCO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO O USO DE REDES NEURAIS ARTIFICIAIS NA PREVISÃO DE TENDÊNCIAS NO MERCADO DE AÇÕES DISSERTAÇÃO SUBMETIDA À UFPE PARA

Leia mais

Inteligência? Antonio G. Thomé - 98

Inteligência? Antonio G. Thomé - 98 ? Inteligência? Aurélio Buarque de Holanda É a faculdade aprender, a capacidade de comprender e de adaptar-se, é agudeza e perspicácia. A história da pesquisa em IA não é tão recente quanto se possa pensar.

Leia mais

PREVISÃO DE CASOS DE DENGUE EM ITAJAÍ SC UTILIZANDO REDES NEURAIS ARTIFICIAIS COM SAÍDAS RECORRENTES ÀS ENTRADAS

PREVISÃO DE CASOS DE DENGUE EM ITAJAÍ SC UTILIZANDO REDES NEURAIS ARTIFICIAIS COM SAÍDAS RECORRENTES ÀS ENTRADAS PREVISÃO DE CASOS DE DENGUE EM ITAJAÍ SC UTILIZANDO REDES NEURAIS ARTIFICIAIS COM SAÍDAS RECORRENTES ÀS ENTRADAS Munyque Mittelmann 1, Lucas Grigolon Varela 1, Daniel Gomes Soares 1 1 Instituto Federal

Leia mais

SERVIÇO PÚBLICO FEDERAL INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO AMAPÁ IFAP CÂMPUS MACAPÁ

SERVIÇO PÚBLICO FEDERAL INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO AMAPÁ IFAP CÂMPUS MACAPÁ 13 específica, de segunda-feira a sexta-feira e aos sábados, caso seja necessário para complementação do período letivo e/ou carga horária curricular. Cada aula tem durafao de 50min (cinquenta minutos),

Leia mais

Protótipo de Software de Reconhecimento de Voz Para Navegação em Jogos, Utilizando Rede Neural Artificial

Protótipo de Software de Reconhecimento de Voz Para Navegação em Jogos, Utilizando Rede Neural Artificial Protótipo de Software de Reconhecimento de Voz Para Navegação em Jogos, Utilizando Rede Neural Artificial Orientando: Derlei Brancher Orientador: Prof. Jacques Robert Heckmann - Mestre 1. Introdução Roteiro

Leia mais

Introdução as Redes Neurais Artificiais

Introdução as Redes Neurais Artificiais Introdução as Redes Neurais Artificiais Florianópolis, maio de 2002. 2 Nunca se achou que o degrau da escada se destinasse a alguém permanecer em cima dele, mas sim que se destina a sustentar o pé de um

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS - EM COLEGIADO DO CURSO DE ENGANHARIA DE CONTROLE E AUTOMAÇÃO - CECAU

UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS - EM COLEGIADO DO CURSO DE ENGANHARIA DE CONTROLE E AUTOMAÇÃO - CECAU UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS - EM COLEGIADO DO CURSO DE ENGANHARIA DE CONTROLE E AUTOMAÇÃO - CECAU IDENTIFICAÇÃO DE SISTEMA DE COLUNA DE FLOTAÇÃO UTILIZANDO REDES NEURAIS ARTIFICIAIS

Leia mais

imarag: Um algoritmo baseado em Sistemas Imunológicos Artificiais para treinamento de redes MLP

imarag: Um algoritmo baseado em Sistemas Imunológicos Artificiais para treinamento de redes MLP Trabalho de Conclusão de Curso Engenharia da Computação imarag: Um algoritmo baseado em Sistemas Imunológicos Artificiais para treinamento de redes MLP Gilliard Alan de Melo Lopes Orientador: Prof. Dr.

Leia mais

AVALIAÇÃO DE IMÓVEIS UTILIZANDO ANÁLISE MULTICRITÉRIO E REDES NEURAIS ARTIFICIAIS

AVALIAÇÃO DE IMÓVEIS UTILIZANDO ANÁLISE MULTICRITÉRIO E REDES NEURAIS ARTIFICIAIS XXX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO Maturidade e desafios da Engenharia de Produção: competitividade das empresas, condições de trabalho, meio ambiente. São Carlos, SP, Brasil, 12 a15 de outubro

Leia mais

FABIANO CORDEIRO MOREIRA

FABIANO CORDEIRO MOREIRA 1 FABIANO CORDEIRO MOREIRA RECONHECIMENTO E CLASSIFICAÇÃO DE PADRÕES DE IMAGENS DE NÚCLEOS DE LINFÓCITOS DO SANGUE PERIFÉRICO HUMANO COM A UTILIZAÇÃO DE REDES NEURAIS ARTIFICIAIS FLORIANÓPOLIS - SC 2002

Leia mais

Universidade de São Paulo USP Escola de Engenharia de São Carlos EESC Departamento de Engenharia Elétrica e de Computação

Universidade de São Paulo USP Escola de Engenharia de São Carlos EESC Departamento de Engenharia Elétrica e de Computação Universidade de São Paulo USP Escola de Engenharia de São Carlos EESC Departamento de Engenharia Elétrica e de Computação Trabalho de Conclusão de Curso Aplicação de uma rede neural artificial para otimização

Leia mais

DANILO COSTA BREDA AUTOMAÇÃO RESIDENCIAL: APLICAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA CONTROLE DE CLIMATIZAÇÃO.

DANILO COSTA BREDA AUTOMAÇÃO RESIDENCIAL: APLICAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA CONTROLE DE CLIMATIZAÇÃO. CENTRO UNIVERSITÁRIO EURÍPIDES DE MARÍLIA UNIVEM FUNDAÇÃO DE ENSINO EURÍPIDES SOARES DA ROCHA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO DANILO COSTA BREDA AUTOMAÇÃO RESIDENCIAL: APLICAÇÃO DE REDES NEURAIS ARTIFICIAIS

Leia mais

1º Período 2º Período 3º Período 4º Período 5º Período 6º Período 7º Período 8º Período 9º Período 10º Período

1º Período 2º Período 3º Período 4º Período 5º Período 6º Período 7º Período 8º Período 9º Período 10º Período Proposta de nova matriz de 2014 1º Período 2º Período 3º Período 4º Período 5º Período 6º Período 7º Período 8º Período 9º Período 10º Período 1 Arquitetura e 2 Cálculo Diferencial Cálculo Diferencial

Leia mais

Identificação de instrumentos musicais utilizando redes neurais artificiais

Identificação de instrumentos musicais utilizando redes neurais artificiais Identificação de instrumentos musicais utilizando redes neurais artificiais Resumo Anderson Jean de Farias 1 Jorge Fernando Linden 1 Marcio Alessandro Ternus 1 João Olegário O. de Souza 2 Este artigo apresenta

Leia mais

Luís Fernando de Oliveira Jacintho

Luís Fernando de Oliveira Jacintho Luís Fernando de Oliveira Jacintho Redes Neuro-Fuzzy: Um Estudo de Caso em Diagnóstico de Alzheimer Monografia apresentada ao Centro de Matemática, Computação e Cognição - CMCC/UFABC - como parte dos requisitos

Leia mais

Computadores e Programação (DCC/UFRJ)

Computadores e Programação (DCC/UFRJ) Computadores e Programação (DCC/UFRJ) Aula 3: 1 2 3 Abstrações do Sistema Operacional Memória virtual Abstração que dá a cada processo a ilusão de que ele possui uso exclusivo da memória principal Todo

Leia mais

FICHA DE COMPONENTE CURRICULAR

FICHA DE COMPONENTE CURRICULAR 495 Arquitetura de Redes TCP/IP 3 3 Ao final da disciplina o estudante será capaz de: - Reconhecer e compreender os principais conceitos e aplicações em TCP/IP - Compreender os fundamentos da interconexão

Leia mais

APLICAÇÃO DE REDE NEURAL NARX PARA A PREVISÃO DO PREÇO DA SOJA

APLICAÇÃO DE REDE NEURAL NARX PARA A PREVISÃO DO PREÇO DA SOJA João Pessoa/PB, Brasil, de 3 a 6 de outubro de 26 APLICAÇÃO DE REDE NEURAL NARX PARA A PREVISÃO DO PREÇO DA SOJA Leticia Biagi Vilela (UFMS ) leticiabiagiufms@gmailcom Tiago Henrique de Abreu Mateus (UFMS

Leia mais