MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID

Tamanho: px
Começar a partir da página:

Download "MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID"

Transcrição

1 1. Dados de identificação. MINISTÉRIO DA EDUCAÇÃO PROPOSTA DIDÁTICA 1.1 Nome do bolsista. Bruno Santana do Prado. 1.2 Público alvo: 8 e 9 ano. 1.3 Duração: 2,5 horas. 1.4 Conteúdo desenvolvido: Teorema de Pitágoras. 2. Objetivo(s) da proposta didática. Conhecer um pouco da história do Teorema de Pitágoras; Compreender o Teorema de Pitágoras; Realizar aplicações do Teorema de Pitágoras. 3. Desenvolvimento da proposta didática. (10 min) Acomodação dos alunos. A oficina será desenvolvida em cinco momentos. (10 min) Primeiro momento: Quem foi Pitágoras? Quem foi Pitágoras? Pitágoras foi um importante matemático e filósofo grego. Nasceu no ano de 570 a.c na ilha de Samos, na região da Ásia Menor (Magna Grécia). Provavelmente, morreu em 497 ou 496 a.c em Metaponto (região sul da Itália). Embora sua biografia seja marcada por diversas lendas e fatos não comprovados pela História, temos dados e informações importantes sobre sua vida. Com 18 anos de idade, Pitágoras já conhecia e dominava muitos conhecimentos matemáticos e filosóficos da época. Através de estudos astronômicos, afirmava que o planeta Terra era esférico e suspenso no Espaço (ideia pouco conhecida na época). Encontrou uma certa ordem no universo, observando que as estrelas, assim como a Terra, girava ao redor do Sol.

2 Recebeu muita influência científica e filosófica dos filósofos gregos Tales de Mileto, Anaximandro e Anaxímenes. Enquanto visitava o Egito, impressionado com as pirâmides, desenvolveu o famoso Teorema de Pitágoras. De acordo com este teorema é possível calcular o lado de um triângulo retângulo, conhecendo os outros dois. Desta forma, ele conseguiu provar que a soma dos quadrados dos catetos é igual ao quadrado da hipotenusa. Atribui-se também a ele o desenvolvimento da tábua de multiplicação, o sistema decimal e as proporções aritméticas. Sua influência nos estudos futuros da matemática foi enorme, pois foi um dos grandes construtores da base dos conhecimentos matemáticos, geométricos e filosóficos que temos atualmente. Ele procurava explicar tudo através dos números. (30 min) Segundo momento: Conhecendo o teorema de Pitágoras. O Teorema de Pitágoras O Teorema de Pitágoras é uma importante ferramenta utilizada na Matemática, principalmente na área da Geometria. Esse teorema é atribuído ao filósofo grego Pitágoras de Samos e relaciona a medida dos catetos e da hipotenusa através da seguinte lei de formação: a soma dos quadrados dos catetos é igual ao quadrado da hipotenusa.

3 Construção do Teorema de Pitágoras com dobraduras. O objetivo da dobradura é que possamos localizar um triângulo marcando seus catetos e a hipotenusa, para termos um melhor entendimento da fórmula do Teorema de Pitágoras. Construir um quadrado em uma folha de papel marcando um triângulo e um quadrado, da seguinte maneira: Pegue uma folha de papel, e dobre-a seguindo as etapas explicadas abaixo. (1º) Pegue uma folha de papel e dobre um triângulo depois recorte esse triângulo e dobre novamente como explicado na figura abaixo. (2º) Após recortar o triângulo dobre-o novamente como na figura abaixo depois de dobrado mais duas vezes o triângulo abra a folha e dobre-a no meio formando um retângulo, dobre-a novamente como na figura a seguir. (3º) Após ter sido formado outro retângulo dobre a folha formando um quadrado e depois abra a folha para então localizar um triângulo onde vai ter a hipotenusa e os catetos, localize os catetos e a hipotenusa pintando-os.

4 (4º) Depois de dobrada a folha, tente localizar em meio às marcações na folha o seguinte triângulo (em vermelho) e os quadrados em cada um dos seus lados (em amarelo). Pinte-os: Perceba que o quadrado localizado no maior lado do triângulo, na hipotenusa, possui uma área igual a soma das áreas dos dois quadrados situados nos outros lados do triângulo, os catetos. Enquanto o quadrado dos catetos possuem cada um 2 pequenos triângulos amarelos, o quadrado da hipotenusa possui 4. (20 min) Terceiro momento: Demonstração do Teorema de Pitágoras. Com a utilização de um quebra-cabeças, será mostrado aos alunos a validade do resultado do Teorema de Pitágoras. Serão disponibilizadas aos alunos as peças abaixo, sendo que com as peças dos quadrados dos catetos, os alunos deverão montar o quadrado da hipotenusa.

5 (30 min) Quarto momento: aplicação do Teorema de Pitágoras Serão propostas três situações-problema para que os alunos exercitem aplicações do Teorema de Pitágoras. 1) A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. Qual é o comprimento da escada? Resolução: x² = 15² + 8² x² = x² = 289 x = 17 metros 2) Um ciclista acrobático vai atravessar de um prédio a outro com uma bicicleta especial, percorrendo a distância sobre um cabo de aço, como demonstra o esquema a seguir:

6 Qual é a medida mínima do comprimento do cabo de aço? Resolução x² = 10² + 40² x² = x² = 1700 x = 41,23 (aproximadamente). 3) Qual era a altura do poste/ Resolução: x² = 3² + 4² x² =

7 x² = 25 x = 5 MINISTÉRIO DA EDUCAÇÃO Logo, a altura h do poste era: h = = 9m (50 min) Quinto momento: aplicação do jogo Corrida Pitagórica Corrida Pitagórica MATERIAL: Tabuleiro, marcador para os jogadores, 2 dados e 40 cartas com problemas matemáticos envolvendo o teorema de Pitágoras. OBJETIVO: Explorar, estudar e revisar o teorema de Pitágoras. REGRAS: 1. Máximo cinco jogadores por tabuleiro. 2. Para dar início cada jogador deve lançar um dado, o jogador que obtiver o maior número começa o jogo. 3. Todos os marcadores devem estar na casa preta, sendo que cada marcador representa um jogador. 4. O jogador por sua vez deve lançar dois dados, os valores obtidos serão respectivamente dois catetos de um triângulo retângulo. 5. O jogador deverá calcular o valor da hipotenusa deste triângulo, aplicando o teorema de Pitágoras. 6. O número de casa a serem avançadas será o valor inteiro correspondente à hipotenusa. (Exemplo: Sejam os catetos 5 e 2, a hipotenusa vale 5,385165, logo o jogador andará 5 casas). 7. Se o jogador cair em uma casa: Azul: volta duas casas

8 Verde: avança duas casas. MINISTÉRIO DA EDUCAÇÃO Vermelha: fica uma rodada sem jogar. Branca: o jogador tira uma carta da mesa e responde a questão descrita na carta, se ele errar volta para a casa onde estava antes. 8. Observação: Se o jogador cair em uma casa azul deverá voltar duas casas, isto é, cairá em uma casa de cor diferente, encerrando assim sua vez. (Exemplo: se ele sair de uma casa azul voltar às duas casas e cair em uma branca, ele não responderá a pergunta, apenas ficará sem jogar). 4. Referências Bibliográficas BRASIL ESCOLA. Aplicações de Teorema de Pitágoras. Disponível em: <httpss://www.brasilescola.uol.com.br>. Acesso em: 15 abr BRASIL, Secretaria de Educação Fundamental. Parâmetros curriculares nacionais: Matemática. Brasília: MEC/SEF, MATEMÁTICA CONHECIMENTO PARA TODOS. O teorema de Pitágoras em uma folha de papel. Disponível em: <http://mfmatematica.blogspot. com.br/2009/07/o-teorema-de-pitagoras-em-uma-folha-de.html>. Acesso em: 15 abr SUA PESQUISA. Pitágoras Biografia. Disponível em: <http://www.sua pesquisa.com/pesquisa/pitagoras.htm>. Acesso em: 14 abr

PITÁGORAS: UM MATEMÁTICO INSUPERÁVEL. ¹Discente do Curso de Matemática da UEG-UnU de Santa Helena de Goiás

PITÁGORAS: UM MATEMÁTICO INSUPERÁVEL. ¹Discente do Curso de Matemática da UEG-UnU de Santa Helena de Goiás 7ª JORNADA ACADÊMICA 2013 18 a 23 de Novembro Unidade Universitária de Santa Helena de Goiás Crescimento Regional Inovação e tecnologia no mercado de trabalho PITÁGORAS: UM MATEMÁTICO INSUPERÁVEL Gleiciane

Leia mais

Teorema de Pitágoras: Encaixando e aprendendo

Teorema de Pitágoras: Encaixando e aprendendo Reforço escolar M ate mática Teorema de Pitágoras: Encaixando e aprendendo Dinâmica 7 9º ano 2º Bimestre Aluno DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9ª Geométrico Teorema de Pitágoras

Leia mais

COLÉGIO ESTADUAL VISCONDE DE BOM RETIRO - PIBID

COLÉGIO ESTADUAL VISCONDE DE BOM RETIRO - PIBID COLÉGIO ESTADUAL VISCONDE DE BOM RETIRO - PIBID Plano de aula De setembro à outubro de 2013 Bolsistas: Fernanda Menegotto, Jéssica Tumelero, Jéssica da Silva, Patricia Balbinot e Vera de Oliveira. Supervisora:

Leia mais

CADERNO DE EXERCÍCIOS 3A

CADERNO DE EXERCÍCIOS 3A CADERNO DE EXERCÍCIOS 3A Ensino Fundamental Ciências da Natureza I Conteúdo Habilidade da Questão Matriz da EJA/FB 1 Análise de gráficos de linhas H52 2 Coordenadas H33 3 Volume do paralelepípedo H22 4

Leia mais

OFICINA UMA NOVA ABORDAGEM DO TEOREMA DE PITÁGORAS: APLICAÇÕES, DESAFIOS E DEMONSTRAÇÕES.

OFICINA UMA NOVA ABORDAGEM DO TEOREMA DE PITÁGORAS: APLICAÇÕES, DESAFIOS E DEMONSTRAÇÕES. Luing Argôlo Santos (UESC) discipuluing@yahoo.com.br OFICINA UMA NOVA ABORDAGEM DO TEOREMA DE PITÁGORAS: APLICAÇÕES, DESAFIOS E DEMONSTRAÇÕES. Público alvo: Professores da educação básica, graduados e

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

HISTÓRIA DA MATEMÁTICA I MAT 341 INTRODUÇÃO

HISTÓRIA DA MATEMÁTICA I MAT 341 INTRODUÇÃO HISTÓRIA DA MATEMÁTICA I MAT 341 INTRODUÇÃO 2016 3 Antonio Carlos Brolezzi IME-USP Grécia Antiga: berço da Matemática sistematizada Fontes principais: referências históricas em escritos filosóficos ou

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Bianca Bitencourt da Silva 1.2 Público alvo: Alunos de 7º a 9º ano e Magistério 1.3 Duração: 2 aulas de 2 h e 30 min cada 1.4 Conteúdo

Leia mais

1. Um exemplo de número irracional é (A) 4, (B) 4, (C) 4, (D) 3,42 4,

1. Um exemplo de número irracional é (A) 4, (B) 4, (C) 4, (D) 3,42 4, 1. Um exemplo de número irracional é (A) 4,2424242... (B) 4,2426406... (C) 4,2323... (D) 3,42 4,2426406... Solução: Número irracional é o número decimal infinito e não periódico. (A) A parte decimal é

Leia mais

PROPOSTA DIDÁTICA. (100 min) Desenvolvimento de atividades exploratórias envolvendo conceitos de fração

PROPOSTA DIDÁTICA. (100 min) Desenvolvimento de atividades exploratórias envolvendo conceitos de fração PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Jéssica Marilda Gomes Mendes 1.2 Público alvo: 6º/ 7º ano 1.3 Duração: 2,5 horas 1.4 Conteúdo desenvolvido: Frações 2. Objetivo(s) da proposta

Leia mais

Matemática. Geometria plana

Matemática. Geometria plana Matemática Geometria plana 01.Os valores que podem representar os lados de um triângulo obtusângulo são a) 1 cm, 2 cm e 3 cm. b) 2 cm, 3 cm e 4 cm. c) 3 cm, 4 cm e 5 cm. d) 4 cm, 5 cm e 6 cm. e) 5 cm,

Leia mais

TEOREMA DE PITÁGORAS: Semelhança de Triângulos

TEOREMA DE PITÁGORAS: Semelhança de Triângulos 1 ANAIS DOS TRABALHOS DE CONCLUSÃO DO CURSO DE ESPECIALIZAÇÃO EM MATEMÁTICA versão 2010-2012, p.? -? - UAB - UNIVERSIDADE ABERTA DO BRASIL - UFSJ NEAD TEOREMA DE PITÁGORAS: Semelhança de Triângulos Maria

Leia mais

Exercícios de Aplicação do Teorema de Pitágoras

Exercícios de Aplicação do Teorema de Pitágoras Exercícios de Aplicação do Teorema de Pitágoras Prof. a : Patrícia Caldana 1. Um terreno triangular tem frentes de 12 m e 16 m em duas ruas que formam um ângulo de 90. Quanto mede o terceiro lado desse

Leia mais

MINISTÉRIO DA EDUCAÇÃO

MINISTÉRIO DA EDUCAÇÃO PROPOSTA DIDÁTICA 1 Dados de Identificação 1.1 Nome do bolsista: Gabriel Prates Brener 1.2 Público alvo: 6º ao 9º ano do Ensino Fundamental e Magistério 1.3 Duração: 5 horas 1.4 Conteúdo desenvolvido:

Leia mais

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Fernanda Aranzate)

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Fernanda Aranzate) 12 PC Sampaio Alex Amaral Rafael Jesus Semana (Fernanda Aranzate) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos

Leia mais

PROPOSTA DIDÁTICA. A atividade será divididas em etapas. Cada etapa e o tempo previsto estão descritos a seguir.

PROPOSTA DIDÁTICA. A atividade será divididas em etapas. Cada etapa e o tempo previsto estão descritos a seguir. PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Tanara da Silva Dicetti 1.2 Público alvo: 6 e 7 anos 1.3 Duração: 2 Horas 1.4 Conteúdo desenvolvido: Áreas de figuras planas 2. Objetivo(s)

Leia mais

FILOSOFIA E MATEMÁTICA NA OBRA DE PITÁGORAS: RELATO DE UMA EXPERIÊNCIA DE FORMAÇÃO PARA A DOCÊNCIA

FILOSOFIA E MATEMÁTICA NA OBRA DE PITÁGORAS: RELATO DE UMA EXPERIÊNCIA DE FORMAÇÃO PARA A DOCÊNCIA FILOSOFIA E MATEMÁTICA NA OBRA DE PITÁGORAS: RELATO DE UMA EXPERIÊNCIA DE FORMAÇÃO PARA A DOCÊNCIA Autor: Victor Fabrício Alexandre Sales Licenciando em Matemática/IFRN E-mail: victorfabricio22@gmail.com

Leia mais

DEMONSTRAÇÃO DOS TEOREMAS DE NAPOLEÃO E PITÁGORAS COM AUXÍLIO DO GEOGEBRA

DEMONSTRAÇÃO DOS TEOREMAS DE NAPOLEÃO E PITÁGORAS COM AUXÍLIO DO GEOGEBRA DEMONSTRAÇÃO DOS TEOREMAS DE NAPOLEÃO E PITÁGORAS COM AUXÍLIO DO GEOGEBRA Ana Clecia Capistrano de Maria 1, Leandro Santos Ribeiro 2, Ana Clívia Capistrano de Maria 3. 1. Instituto Federal de Educação,

Leia mais

Estas caixas são interessantes, para aumenta-las, cada vez soma-se um número ímpar, em sequência: 1 1+3= = = =25

Estas caixas são interessantes, para aumenta-las, cada vez soma-se um número ímpar, em sequência: 1 1+3= = = =25 Pitágoras Bombons e tabuleiros. Pitágoras ficou muito conhecido pelo teorema que leva seu nome, talvez esse seja o teorema mais conhecido da matemática. O teorema de Pitágoras. De acordo com este teorema,

Leia mais

TEOREMA DE PITÁGORAS AULA ESCRITA

TEOREMA DE PITÁGORAS AULA ESCRITA TEOREMA DE PITÁGORAS AULA ESCRITA 1. Introdução O Teorema de Pitágoras é uma ferramenta importante na matemática. Ele permite calcular a medida de alguma coisa que não conseguimos com o uso de trenas ou

Leia mais

ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos)

ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) 1 ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) Objetivos Introduzir o conceito de números inteiros negativos; Desenvolvimento O professor confeccionará o jogo com os alunos ou distribuirá os jogos

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA

ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA Nome: Nº 1ª Série Data: / / Professores: Diego, Luciano e Sami Nota: (Valor 1,0) 3º bimestre 3º BIMESTRE 1. Apresentação: Prezado aluno, A estrutura da recuperação

Leia mais

1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e :

1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e : Matemática 2 Pedro Paulo GEOMETRIA PLANA XIII 1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS Seja um triângulo retângulo, com ângulos agudos e. Traçando a altura relativa à hipotenusa, formamos os triângulos retângulos

Leia mais

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede:

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede: 1. Um ciclista partindo de um ponto A, percorre 21 km para o norte; a seguir, fazendo um ângulo de 90, percorre mais 28 km para leste, chegando ao ponto B. Qual a distância, em linha reta, do ponto B ao

Leia mais

Complemento Matemático 03 Ciências da Natureza I TEOREMA DE PITÁGORAS Física - Ensino Médio Material do aluno

Complemento Matemático 03 Ciências da Natureza I TEOREMA DE PITÁGORAS Física - Ensino Médio Material do aluno 01. Para essa atividade sugerimos inicialmente que você observe a ilustração abaio e responda aos questionamentos: 1 cm 1 cm a. Calcule a área dos dois quadrados menores que estão em destaque: b. Some

Leia mais

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida. 8 ENSINO FUNDAMENTAL 8-º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 8 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

PLANTÕES DE JULHO MATEMÁTICA

PLANTÕES DE JULHO MATEMÁTICA Página 1 PLANTÕES DE JULHO MATEMÁTICA Nome: Nº: Série: 9º ANO Profª CAROL MARTINS Data: JULHO 2016 Teorema de Pitágoras e Relações Métricas no Triângulo Retângulo 1) Determine o valor x da medida do lado

Leia mais

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos temos que D B C. (Equação 1)

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos temos que D B C. (Equação 1) UFJF MÓDULO III DO PISM TRIÊNIO 0-0 PROVA DE MATEMÁTICA Questão Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel é igual

Leia mais

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática 1 Dia (10 mim) Acomodação dos alunos e realização da chamada.

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática 1 Dia (10 mim) Acomodação dos alunos e realização da chamada. PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Camila Dorneles da Rosa 1.2 Público alvo: Alunos do 6 ao 9 ano e Magistério. 1.3 Duração: 5 horas aula 1.4 Conteúdo desenvolvido: Operações

Leia mais

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10min) Acomodação dos alunos e realização da chamada.

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10min) Acomodação dos alunos e realização da chamada. PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 8º e 9º ano 1.3 Turno: manhã 1.4 Data: 09/10 Lauro Dornelles e 14/10 Oswaldo Aranha 1.5 Tempo

Leia mais

+ Do que xxx e escadas

+ Do que xxx e escadas Reforço escolar M ate mática + Do que xxx e escadas Dinâmica 6 1º Série 2º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 1ª Campo Geométrico Razões trigonométricas no triângulo retângulo

Leia mais

UMA PROPOSTA DIDÁTICA PARA O ENSINO DO TRIÂNGULO RETÂNGULO E TEOREMA DE PITÁGORAS UTILIZANDO O FUTEBOL 1

UMA PROPOSTA DIDÁTICA PARA O ENSINO DO TRIÂNGULO RETÂNGULO E TEOREMA DE PITÁGORAS UTILIZANDO O FUTEBOL 1 UMA PROPOSTA DIDÁTICA PARA O ENSINO DO TRIÂNGULO RETÂNGULO E TEOREMA DE PITÁGORAS UTILIZANDO O FUTEBOL 1 Julia Dammann 2, Felipe Copceski Rossatto 3, Eliane Miotto Kamphorst 4, Carmo Henrique Kamphorst

Leia mais

De razão a relação: da sala de TV a sala de aula.

De razão a relação: da sala de TV a sala de aula. Reforço escolar M ate mática De razão a relação: da sala de TV a sala de aula. Dinâmica 6 9º Ano º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9º Geométrico Teorema de Pitágoras

Leia mais

ESTUDO DIRIGIDO DO CAPITULO 24:

ESTUDO DIRIGIDO DO CAPITULO 24: ESTUDO DIRIGIDO DO CAPITULO 24: 1) Quais as relações existentes entre Filosofia e ciência? A Filosofia, como conhecemos, teve origem na Grécia Antiga como resultado de uma intensa mudança de pensamento.

Leia mais

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos, temos que D B C. (Equação 1)

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos, temos que D B C. (Equação 1) UFJF MÓDULO III DO PISM TRIÊNIO 01-01 PROVA DE MATEMÁTICA Questão 1 Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel

Leia mais

Nome: Nº: Turma: Este caderno contém questões de: Português Matemática História Geografia Ciências - Espanhol

Nome: Nº: Turma: Este caderno contém questões de: Português Matemática História Geografia Ciências - Espanhol Nome: Nº: Turma: Este caderno contém questões de: Português Matemática História Geografia Ciências - Espanhol 1 Os exercícios deverão ser feitos no livro e/ou no caderno. Livro didático: Língua Portuguesa

Leia mais

TEOREMA DE TALES. Um feixe de paralelas determina sobre duas transversais segmentos proporcionais.

TEOREMA DE TALES. Um feixe de paralelas determina sobre duas transversais segmentos proporcionais. TEOREMA DE TALES O teorema de tales foi desenvolvido por Tales de Mileto, que foi um filósofo, astrónomo e matemático grego muito importante, que viveu antes de Cristo, no século VI. É conhecido como o

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Camila Dorneles da Rosa 1.2 Público alvo: alunos do 6 e 7 ano. 1.3 Duração: 2 horas. 1.4 Conteúdo desenvolvido: Números Primos. 2. Objetivo(s)

Leia mais

Tô na área! Dinâmica 6. Professor. 9º Ano 4º Bimestre. DISCIPLINA Ano CAMPO CONCEITO DINÂMICA. 9º do Ensino Fundamental

Tô na área! Dinâmica 6. Professor. 9º Ano 4º Bimestre. DISCIPLINA Ano CAMPO CONCEITO DINÂMICA. 9º do Ensino Fundamental Tô na área! Reforço escolar M ate mática Dinâmica 6 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e áreas de figuras planas Professor

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 22/05/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 22/05/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 22/05/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA Dado um pentágono regular ABCDE, constrói-se uma circunferência pelos vértices B e E de

Leia mais

DATA: 17/ 12 / 2016 VALOR: 20,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9º ANO TURMAS:

DATA: 17/ 12 / 2016 VALOR: 20,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9º ANO TURMAS: DISCIPLINA: MATEMÁTICA PROFESSORES: MÁRIO,ADRIANA E MAGNO DATA: 17/ 12 / 2016 VALOR: 20,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9º ANO TURMAS: ALUNO (A): Nº: 01. RELAÇÃO DO CONTEÚDO PARA RECUPERAÇÃO

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 22/05/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 22/05/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 22/05/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA Dado um pentágono regular ABCDE, constrói-se uma circunferência pelos vértices B e E de

Leia mais

Oficina Geoplano. As atividades apresentadas têm o objetivo de desenvolver as seguintes habilidades:

Oficina Geoplano. As atividades apresentadas têm o objetivo de desenvolver as seguintes habilidades: Oficina Geoplano 1. Introdução O objetivo desta oficina é trabalhar com os alunos alguns conceitos ligados a medidas de comprimento e área de figuras planas, bem como investigar o Teorema de Pitágoras.

Leia mais

A álgebra nas profissões

A álgebra nas profissões A álgebra nas profissões A UUL AL A Nesta aula, você vai perceber que, em diversas profissões e atividades, surgem problemas que podem ser resolvidos com o auxílio da álgebra. Alguns problemas são tão

Leia mais

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período ANO LETIVO 2015/2016 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período Metas / Objetivos Conceitos / Conteúdos Aulas Previstas Números e

Leia mais

Unidade 3 Geometria: semelhança de triângulos

Unidade 3 Geometria: semelhança de triângulos Sugestões de atividades Unidade Geometria: semelhança de triângulos 9 MTEMÁTI 1 Matemática 1. (Unirio-RJ) eseja-se medir a distância entre duas cidades e sobre um mapa, sem escala. Sabe-se que 80 km e

Leia mais

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?

Leia mais

Produtos Notáveis. 2 Proposta de ensino Proposta da atividade: O Quadrado da soma Quadrado da diferença. 4

Produtos Notáveis. 2 Proposta de ensino Proposta da atividade: O Quadrado da soma Quadrado da diferença. 4 Programa de Iniciação a Docência em Matemática (UEM 2010)- Outubro 9: 1 9. c PIBID-MAT www.dma.uem.br/pibid Produtos Notáveis Priscila Costa Ferreira de Jesus e Tatiane Oliveira Santos Resumo: Neste trabalho

Leia mais

2 = 1,41. 4) Qual é o comprimento da sombra de uma árvore de 5 m de altura quando o sol está 30º acima do horizonte? Dado

2 = 1,41. 4) Qual é o comprimento da sombra de uma árvore de 5 m de altura quando o sol está 30º acima do horizonte? Dado Exercicios - Relações Trigonométricas no Triangulo Retangulo 1) Um avião está a 7000 m de altura e inicia a aterrissagem, em aeroporto ao nível do mar. O ângulo de descida é 6º. A que distância da pista

Leia mais

CRONOGRAMA DE RECUPERAÇÃO ATIVIDADE DE RECUPERAÇÃO

CRONOGRAMA DE RECUPERAÇÃO ATIVIDADE DE RECUPERAÇÃO CRONOGRAMA DE RECUPERAÇÃO SÉRIE: 1ª série do EM DISCIPLINA: MATEMÁTICA 2 Cadernos Assuntos 3 e 4 Áreas e perímetros de figuras planas Lei dos senos e cossenos Trigonometria no triângulo retângulo Teorema

Leia mais

COLÉGIO ESTADUAL VISCONDE DE BOM RETIRO - PIBID. Professoras: Fernanda Menegotto, Jéssica Tumelero, Leidi Simonini, Maiara Ghiggi e Patricia Balbinot.

COLÉGIO ESTADUAL VISCONDE DE BOM RETIRO - PIBID. Professoras: Fernanda Menegotto, Jéssica Tumelero, Leidi Simonini, Maiara Ghiggi e Patricia Balbinot. COLÉGIO ESTADUAL VISCONDE DE BOM RETIRO - PIBID Plano de aula ABRIL E MAIO de 2014 Professoras: Fernanda Menegotto, Jéssica Tumelero, Leidi Simonini, Maiara Ghiggi e Patricia Balbinot. Supervisora: Raquel

Leia mais

Embrulhando uma Esfera!

Embrulhando uma Esfera! Reforço escolar M ate mática Embrulhando uma Esfera! Dinâmica 6 2ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 2 a do Ensino Médio Geométrico. Geometria Espacial: Esferas. Aluno Primeira

Leia mais

Plano de Aula 1 IDENTIFICAÇÃO

Plano de Aula 1 IDENTIFICAÇÃO Ministério da Educação Secretária de Educação Profissional e Tecnologia Instituto Federal Catarinense - Campus Avançado Sombrio Curso de Licenciatura em Matemática Plano de Aula 1 IDENTIFICAÇÃO Instituto

Leia mais

Uma introdução histórica 1

Uma introdução histórica 1 A U L A Uma introdução histórica Meta da aula Apresentar alguns problemas clássicos que motivaram as estruturas algébricas modernas que formam o conteúdo do curso de Álgebra II. objetivos Ao final desta

Leia mais

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas. Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados

Leia mais

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) Acomodação dos alunos em semicírculo e realização da chamada.

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) Acomodação dos alunos em semicírculo e realização da chamada. PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Bianca Bitencourt da Silva 1.2 Público alvo: Alunos do 8º e 9º ano 1.3 Duração: 2 horas 1.4 Conteúdo desenvolvido: Área de triângulos equiláteros,

Leia mais

QUESTÕES TRIÂNGULO RETÂNGULO

QUESTÕES TRIÂNGULO RETÂNGULO QUESTÕES TRIÂNGULO RETÂNGULO 1. (Ita 015) Seja ABCD um trapézio isósceles com base maior AB medindo 15, o lado AD medindo 9 e o ângulo ADB ˆ reto. A distância entre o lado AB e o ponto E em que as diagonais

Leia mais

LISTA DE EXERCÍCIOS PARA PROVA FINAL/2015

LISTA DE EXERCÍCIOS PARA PROVA FINAL/2015 ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL Rua Prof Guilherme Butler, 792 - Barreirinha - CEP 82.700-000 - Curitiba/PR Fone: (41) 3053-8636 - e-mail: ease.acp@adventistas.org.br

Leia mais

SAMOS SAMANTHACHANG RODRIGUES DE PAULA MARCO ANTÔNIO PEREIRA ARAÚJO JÚLIO CÉSAR DA SILVA

SAMOS SAMANTHACHANG RODRIGUES DE PAULA MARCO ANTÔNIO PEREIRA ARAÚJO JÚLIO CÉSAR DA SILVA 1 SAMOS SAMANTHACHANG RODRIGUES DE PAULA MARCO ANTÔNIO PEREIRA ARAÚJO JÚLIO CÉSAR DA SILVA 2 UNIVERSIDADE SEVERINO SOMBRA Programa de Pós-Graduação Stricto Sensu Mestrado Profissional em Educação Matemática

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Gabriel Prates Brener 1.2 Público alvo: 8º e 9º Ano 1.3 Duração: 2,5 horas 1.4 Conteúdo desenvolvido: Polinômios. 2. Objetivo(s) da proposta

Leia mais

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO DISCIPLINA: GEOMETRIA SÉRIE: 1º ANO (B, C e D) 2015 PROFESSORES: Crislany Bezerra Moreira Dias BIM. 1º COMPETÊNCIAS/ HABILIDADES D48 - Identificar

Leia mais

ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO. Introdução Potenciação. Radiciação

ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO. Introdução Potenciação. Radiciação ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO Nome: Nº - Série/Ano Data: / / 2017. Professor(a): Cauê / Yuri / Marcello / Diego / Rafael Os conteúdos essenciais do semestre. ÁLGEBRA: Capítulo

Leia mais

Lista de Exercícios 3 - Gabriel Mendes (1º Ano)

Lista de Exercícios 3 - Gabriel Mendes (1º Ano) Lista de Exercícios 3 - Gabriel Mendes (1º Ano) 1 - (Unicamp-SP) Uma pessoa de 1,65 m de altura observa o topo de um edifício conforme o esquema abaixo. Para sabermos a altura do prédio, devemos somar

Leia mais

RELATÓRIO: OFICINA DE TRIGONOMETRIA. Bolsistas: Clarice F. Vivian. Isabel Teixeira. Murilo Medeiros

RELATÓRIO: OFICINA DE TRIGONOMETRIA. Bolsistas: Clarice F. Vivian. Isabel Teixeira. Murilo Medeiros UNIVERSIDADE FEDERAL DO PAMPA UNIPAMPA CAMPUS CAÇAPAVA DO SUL CURSO DE LICENCIATURA EM CIÊNCIAS EXATAS PIBID MATEMÁTICA RELATÓRIO: OFICINA DE TRIGONOMETRIA Bolsistas: Clarice F. Vivian Isabel Teixeira

Leia mais

MINICURSO - ÁLGEBRA E FUNÇÕES O TEOREMA DE PITAGORAS E OS TERNOS PITAGÒRICOS: APROFUNDANDO CONCEITOS MATEMÁTICOS PARA O 9º ANO DA EDUCAÇÃO BÁSICA.

MINICURSO - ÁLGEBRA E FUNÇÕES O TEOREMA DE PITAGORAS E OS TERNOS PITAGÒRICOS: APROFUNDANDO CONCEITOS MATEMÁTICOS PARA O 9º ANO DA EDUCAÇÃO BÁSICA. MINICURSO - ÁLGEBRA E FUNÇÕES O TEOREMA DE PITAGORAS E OS TERNOS PITAGÒRICOS: APROFUNDANDO CONCEITOS MATEMÁTICOS PARA O 9º ANO DA EDUCAÇÃO BÁSICA. JORGE HENRIQUE DUARTE, JAELSON DANTAS DE ALMEIDA (SE-PE,

Leia mais

30's Volume 18 Matemática

30's Volume 18 Matemática 0's Volume 18 Matemática wwwcursomentorcom 0 de dezembro de 2014 Q1 Num cilindro reto de base circular, cujo diâmetro mede 2 m, e de altura igual a 10 m, faz-se um furo central, vazando-se esse cilindro,

Leia mais

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Reforço escolar M ate mática Números irracionais Dinâmica 3 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 1ª do Ensino Médio Numérico Aritmético Números Irracionais Aluno Primeira Etapa

Leia mais

Relações Trigonométricas nos Triângulos

Relações Trigonométricas nos Triângulos Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos

Leia mais

COOPERATIVA EDUCACIONAL DE PORTO SEGURO

COOPERATIVA EDUCACIONAL DE PORTO SEGURO OOPERTIV EDUIONL DE PORTO SEGURO luno: no: 9ºno Turma: iclo: ÁRE: Prof.: Pablo Santos 1. Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º = 0,75

Leia mais

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE MATEMÁTICA - PROF: JOICE 1- Resolva, em R, as equações do º grau: 7x 11x = 0. x² - 1 = 0 x² - 5x + 6 = 0 - A equação do º grau x² kx + 9 = 0, assume as seguintes condições de existência dependendo do valor

Leia mais

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas.

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. 1) Determine o valor de x nas seguintes figuras: 2) Determine o valor de x nas seguintes

Leia mais

O CASO INVERSO DA QUEDA LIVRE

O CASO INVERSO DA QUEDA LIVRE O CASO INVERSO DA QUEDA LIVRE Vamos analisar o caso em que se lança um corpo para o alto, na vertical. Tomemos o seguinte exemplo: uma pedra é lançada para o alto, na vertical, com uma velocidade inicial

Leia mais

Nº de aulas de 45 minutos previstas 66. 1º Período. 1- Isometrias Nº de aulas de 45 minutos previstas 18

Nº de aulas de 45 minutos previstas 66. 1º Período. 1- Isometrias Nº de aulas de 45 minutos previstas 18 Escola Secundária de Lousada Planificação anual disciplina de Matemática Ano: 8º Ano lectivo: 01-013 CALENDARIZAÇÃO Nº de aulas de 5 minutos previstas 1 1º Período º Período 3º Período 9 7 DISTRIBUIÇÃO

Leia mais

Estudo da Trigonometria (I)

Estudo da Trigonometria (I) Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 2º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 2º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 2º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 2º Ano do Ensino Médio

Leia mais

Plano de Aula 1 IDENTIFICAÇÃO

Plano de Aula 1 IDENTIFICAÇÃO Ministério da Educação Secretária de Educação Profissional e Tecnologia Instituto Federal Catarinense - Câmpus Avançado Sombrio Curso de Licenciatura em Matemática Plano de Aula 1 IDENTIFICAÇÃO Instituto

Leia mais

7º Ano. Planificação Matemática 2014/2015. Escola Básica Integrada de Fragoso 7º Ano

7º Ano. Planificação Matemática 2014/2015. Escola Básica Integrada de Fragoso 7º Ano 7º Ano Planificação Matemática 2014/2015 Escola Básica Integrada de Fragoso 7º Ano Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números e Operações Números racionais - Simétrico da soma e da diferença

Leia mais

Pela proporcionalidade existente no Teorema, temos a seguinte situação:

Pela proporcionalidade existente no Teorema, temos a seguinte situação: TEOREMA DE TALES Tales de Mileto foi um importante filósofo, astrônomo e matemático grego que viveu antes de Cristo. Ele usou seus conhecimentos sobre Geometria e proporcionalidade para determinar a altura

Leia mais

1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) ) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70

1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) ) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70 OLIMPÍADA DE MATEMÁTICA 2015 GABARITO 5º E 6º ANOS Questão Resposta 1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) 450 13) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70 OLIMPÍADA

Leia mais

Vamos conhecer mais sobre triângulos!

Vamos conhecer mais sobre triângulos! Vamos conhecer mais sobre triângulos! Aula 18 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Fonte: http://cache0.stormap.sapo.pt/fotostore0/fotos//f1/87/c6/06166_dfcbk.png Meta Apresentar

Leia mais

Desafios Matemáticos!

Desafios Matemáticos! Desafios Matemáticos! 8º ano Manual electrónico de Matemática gratuito Autor: Paulo Ferro 009 Desafios Matemáticos! - http://matematica.over-blog.com Introdução Olá! Eu chamo-me Jaguaretê e sou uma onça.

Leia mais

UNITAU APOSTILA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO PROF. CARLINHOS

UNITAU APOSTILA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br/capitcar 1 TRIGONOMETRIA A palavra Trigonometria

Leia mais

Teorema de tales e semelhança de polígonos

Teorema de tales e semelhança de polígonos Reforço escolar M ate mática Teorema de tales e semelhança de polígonos Dinâmica 7 9º Ano 1º Bimestre Aluno Matemática Ensino Fundamental 9ª Geométrico Semelhança de polígonos. PRIMEIRA ETAPA COMPARTILHAR

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Novas Tecnologias no Ensino da Matemática 2º semestre 2004/2005 Patrícia Alexandra Simões Lopes n.º 27830 Índice: Introdução - Introdução Histórica; - Introdução ao Trabalho;

Leia mais

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra Salesianos de Mogofores - 2016/2017 MATEMÁTICA - 8.º Ano Ana Soares (ana.soares@mogofores.salesianos.pt ) Catarina Coimbra (catarina.coimbra@mogofores.salesianos.pt ) Rota de aprendizage m por Projetos

Leia mais

Para discutir a lei dos cossenos, vamos pensar sobre a seguinte situação: Dado o triângulo ABC, determine a medida do lado a desse triângulo.

Para discutir a lei dos cossenos, vamos pensar sobre a seguinte situação: Dado o triângulo ABC, determine a medida do lado a desse triângulo. LEI DOS COSSENOS CONTEÚDO Lei dos cossenos AMPLIANDO SEUS CONHECIMENTOS Para discutir a lei dos cossenos, vamos pensar sobre a seguinte situação: Dado o triângulo ABC, determine a medida do lado a desse

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS ESCOLA SARGENTO MAX WOLF FILHO

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS ESCOLA SARGENTO MAX WOLF FILHO MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS ESCOLA SARGENTO MAX WOLF FILHO EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO DE SARGENTOS 016-17 SOLUÇÃO DAS QUESTÕES DE MATEMÁTICA Sejam

Leia mais

Uma atividade radical!

Uma atividade radical! Reforço escolar M ate mática Uma atividade radical! Dinâmica 4 9º Ano 1º Bimestre Matemática Ensino Fundamental 9ª Algébrico Simbólico Radicais. PRIMEIRA ETAPA COMPARTILHAR IDEIAS ATIVIDADE QUEBRA CABEÇA

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA

MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA A A` r B B` s C C` t A B P C S t r 1 r 2 x 6-5 15 3 r 3 B a β b ka B β kb A α c γ C A α kc γ C B B A C A C B a ka B A c C A kc C B B kc ka c

Leia mais

FICHAS DE HISTÓRIA DA MATEMÁTICA: UMA PROPOSTA PARA AS AULAS DE MATEMÁTICA

FICHAS DE HISTÓRIA DA MATEMÁTICA: UMA PROPOSTA PARA AS AULAS DE MATEMÁTICA ISSN 2316-7785 FICHAS DE HISTÓRIA DA MATEMÁTICA: UMA PROPOSTA PARA AS AULAS DE MATEMÁTICA Resumo expandido Isabel Cristina Thiel 1 UDESC Universidade do Estado de Santa Catarina isabelthiel@gmail.com Regina

Leia mais

7º ANO. Lista extra de exercícios

7º ANO. Lista extra de exercícios 7º ANO Lista extra de exercícios 1. Um famoso problema de lógica consiste na seguinte situação. Um viajante precisava pagar sua estadia de uma semana (7 dias) em um hotel, sendo que só possuía uma barra

Leia mais

INSTITUTO GEREMARIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II

INSTITUTO GEREMARIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II INSTITUTO GEREMARIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 9º Ano: Nº Professora: Marcos Vinício Data: / /2016 COMPONENTE CURRICULAR:

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,

Leia mais

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Área: conceito e áreas do quadrado

Leia mais

AGRUPAMENTO DE ESCOLAS DE SANTO ANTÓNIO - PAREDE ESCOLA EB23 DE SANTO ANTÓNIO - PAREDE

AGRUPAMENTO DE ESCOLAS DE SANTO ANTÓNIO - PAREDE ESCOLA EB23 DE SANTO ANTÓNIO - PAREDE NOTA: O formulário e a tabela trigonométrica encontram-se nas páginas e 3 da prova e não nas páginas 3 e 4 como é referido nas Instruções Gerais. 1. 1.1. A ViajEuropa vendeu, nos 3 meses indicados, um

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA Curitiba 2014 TÓPICOS DE GEOMETRIA PLANA Ângulos classificação: Ângulo reto: mede 90. Med(AôB) = 90 Ângulo agudo:

Leia mais

Aritmética. Somas de Quadrados

Aritmética. Somas de Quadrados Aritmética Somas de Quadrados Carlos Humberto Soares Júnior PROFMAT - SBM Objetivo Determinar quais números naturais são soma de dois quadrados. PROFMAT - SBM Aritmética, Somas de Quadrados slide 2/14

Leia mais

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA:

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: ANO LETIVO 2015/2016 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período Metas / Objetivos Conceitos / Conteúdos Aulas Previstas Números e

Leia mais

Trigonometria no Triângulo Retângulo

Trigonometria no Triângulo Retângulo Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais