GT 01 Educação matemática no ensino fundamental: anos iniciais e anos finais.

Tamanho: px
Começar a partir da página:

Download "GT 01 Educação matemática no ensino fundamental: anos iniciais e anos finais."

Transcrição

1 OS NÚMEROS INTEIROS E O JOGO DO VAI-VEM GT 01 Educação matemática no ensino fundamental: anos iniciais e anos finais. Sabrina Bobsin Salazar, Eduardo da Silva Schneider, Resumo Este minicurso tem origem em uma atividade docente proposta em uma turma de Educação de Jovens e Adultos (EJA) do ensino fundamental em uma escola da rede municipal de Porto Alegre, RS, relatada em (SALAZAR, 2010) e é destinado a professores de matemática dos anos finais do ensino fundamental. Nesta atividade foi proposta uma maneira de construção dos números inteiros de uma forma prazeroza e significativa, que buscava não só a apresentação e atribuição de significado aos números negativos, mas sim o entendimento de um conjunto de números, positivos e negativos, construídos de uma mesma forma. Esse entendimento dos números inteiros como um conjunto de números com uma mesma característica fica bem expresso na sua definição matemática por classes de equivalência e é bastante importante para a atribuição de significados a esses números. No entanto, nas salas de aula do ensino fundamental é bastante comum a ênfase apenas nos números negativos, o que também ocorre em livros didáticos deste nível, como (SPINELLI e SOUZA, 2002) e (MORI e ONAGA, 2007). Conforme descrito em (SALAZAR, 2010), a utilização do jogo do Vai-Vem despertou o interesse dos alunos e proporcionou uma aprendizagem significativa, e precisa matematicamente, dos números inteiros. A fim de compartilhar esta atividade com outros colegas professores elaboramos este minicurso, que inicia com uma breve revisão da definição matemática, por classes de equivalência, dos números inteiros e, após, explora o jogo do Vai-Vem, discutindo a construção de tal definição matemática a partir de um material concreto.

2 É importante salientar que se pode escrever de diversas formas a mesma definição dos números inteiros por classes de equivalência. Neste minicurso adotaremos a seguinte forma, que é proposta por (FLUCH, 2007). Definição 1.1: Seja A um conjunto. Uma relação ~ no conjunto A é dita relação de equivalência se é reflexiva, simétrica e transitiva, ou seja: (i) x ~ x, x A (ii) x ~ y y ~ x, x, y A (iii) x ~ y, y ~ z x ~ z, x, y, z A Vamos definir a relação ~ no conjunto N N por ( m,n) ~ ( m',n' ) m + n' = m' + n. Teorema 1.2: A relação ~ definida acima é uma relação de equivalência em N N. A demonstração deste teorema é bastante trivial e requer apenas a utilização das propriedades da adição para números naturais. equivalência Definição 1.3: O conjunto dos números inteiros é o conjunto das classes de ( N N) ~ Z =. Como exemplos de classes de equivalência em Z temos: ( 0,0) = {( m, m );m N} = 0 ( 1,0) = {( m + 1, m );m N} = 1 ( 0,1) = {( m, m + 1 );m N} = 1 Os elementos de Z serão chamados de números inteiros. Tendo em vista tal definição, partimos para a exploração do jogo do Vai-Vem. O Jogo do Vai-Vem é composto de um tabuleiro, dois dados de cores diferentes, digamos branco e vermelho e pinos, que representam os jogadores. O tabuleiro consiste em uma sequência de 25 casas. A casa central é chamada Início e possui a cor amarela. As 12 casas mais próximas a casa central, 6 para cada lado, possuem a cor laranja. As 12 casas restantes, 6 em cada extremo do tabuleiro, possuem cores verde, em um extremo, ou azul, no outro extremo. As regras do jogo são as seguintes: O número mínimo de jogadores é dois. Todos os jogadores iniciam colocando seu pino na casa Início.

3 Cada jogador, na sua vez, deve lançar os dois dados simultaneamente, o dado branco representa quantas casas em direção ao extremo verde o jogador deve movimentar seu pino e o dado vermelho representa quantas casas em direção ao extremo azul o jogador deve movimentar seu pino. Para facilitar, convenciona-se que o movimento em direção ao extremo verde é para frente e que o movimento em direção ao extremo azul é para trás. O jogador que parar em qualquer casa verde ganha o jogo e o jogo termina. O jogador que parar qualquer casa azul sai do jogo. Se sobrar apenas um jogador no tabuleiro, este ganha o jogo e o jogo termina. A vez de cada jogador só termina após executar o movimento advindo dos dois dados, mesmo que durante a movimentação alcance um dos extremos do tabuleiro. Então, por exemplo, se o jogador está a uma casa do extremo verde e tira dois no dado branco e três no dado vermelho, ele pára a duas casas do extremo verde e não ganha. Neste minicurso, pretende-se enfatizar a relação entre o Jogo do Vai-vem com as classes de equivalência que definem os números inteiros, mas após jogar algumas rodadas isso fica bastante claro: o número do dado branco corresponde à primeira posição do par ordenado e o número do dado vermelho corresponde à segunda. O número inteiro definido por esse representante da classe de equivalência aparece no movimento final do jogador através das noções de para frente, para trás. Neste ponto, é preciso discutir como partir dessas noções concretas, para podermos chegar no conceito matemático abstrato. Para isso pretendemos completar as tabelas 2.1 e 2.2 com os participantes. Veja que para preencher a terceira linha da tabela 2.1 é preciso pensar em mais uma noção presente no jogo, a noção de não sai do lugar. Tabela 2.1 Dado branco (para frente) Dado vermelho (para trás) Movimento Final Tabela Dado branco (para frente) Dado vermelho (para trás) Movimento Final

4 para trás 5 não sai do lugar Ainda neste momento, os números inteiros ainda não tem a forma com a qual estamos habituados, falta-lhes uma simbologia própria. Pretendemos enfatizar, neste minicurso, que a introdução de símbolos específicos para representar os números inteiros pode ser feita de forma bastante natural quando se trabalha com o jogo do Vai-Vem, usando o sinal + para representar o movimento para frente, o sinal para o movimento para trás e o símbolo 0 para não sai do lugar. Isso também deverá ser feito completando tabelas com os participantes, neste caso as tabelas 2.3 e 2.4. Tabela 2.3 Dado branco (+) Dado vermelho ( ) Movimento Final Tabela 2.4 Dado branco (+) Dado vermelho ( ) Movimento Final Nesta etapa do minicurso, apenas uma observação deve ser feita: para que o conjunto dos números inteiros fique completamente construído, basta estender o conceito formado através do jogo do Vai-Vem para todos os números naturais, pois o jogo apenas trata dos números relacionados ao número de faces dos dados. Espera-se, com a conclusão do minicurso, que os participantes conheçam o jogo do Vai-Vem e sua aplicabilidade no ensino-aprendizagem dos números inteiros, podendo utilizá-lo em suas salas de aula. Referências

5 FLUCH, M. Construction of real numbers from the natural numbers. Disponível em: < Acesso em 17/01/2011. Saraiva, MORI, I. e ONAGA, D. S. Matemática: Idéias e Desafios, 6ª. série. São Paulo: SALAZAR, S. B. A construção dos números inteiros por classes de equivalência em uma turma de EJA usando o jogo do Vai-Vem. X Encontro Nacional de Educação Matemática. Salvador, BA, SPINELLI,W. e SOUZA, M. H. Matemática, 6ª. série. São Paulo: Ática, 2002.

X Encontro Nacional de Educação Matemática Educação Matemática, Cultura e Diversidade Salvador BA, 7 a 9 de Julho de 2010

X Encontro Nacional de Educação Matemática Educação Matemática, Cultura e Diversidade Salvador BA, 7 a 9 de Julho de 2010 A CONSTRUÇÃO DOS NÚMEROS INTEIROS POR CLASSES DE EQUIVALÊNCIA EM UMA TURMA DE EJA USANDO O JOGO DO VAI-VEM Sabrina Bobsin Salazar Universidade Federal de Pelotas sabrina.salazar@ufpel.edu.br Resumo: Este

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória

UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória Exercícios: 1. Maria inventou uma brincadeira. Digitou alguns algarismos na primeira linha de uma folha. Depois, no segunda linha, fez

Leia mais

VERMELHOS E AZUIS TRABALHANDO COM NÚMEROS INTEIROS E EXPRESSÕES LINEARES. TÂNIA SCHMITT UNIVERSIDADE DE BRASÍLIA

VERMELHOS E AZUIS TRABALHANDO COM NÚMEROS INTEIROS E EXPRESSÕES LINEARES. TÂNIA SCHMITT UNIVERSIDADE DE BRASÍLIA VERMELHOS E AZUIS TRABALHANDO COM NÚMEROS INTEIROS E EXPRESSÕES LINEARES TÂNIA SCHMITT UNIVERSIDADE DE BRASÍLIA tânia@mat.unb.br CAPÍTULO 1 JOGOS E ATIVIDADES PARA INTRODUÇÃO DE NÚMEROS NEGATIVOS A idéia

Leia mais

Foto 1: Jogo: Roda-Roda Equações

Foto 1: Jogo: Roda-Roda Equações Registro PIBID Matemática 2016 ELABORAÇÃO DE JOGOS DIDÁTICOS Foram elaborados Jogos didáticos envolvendo as equações do 2º grau colaborativamente com os alunos do nono ano da escola participante EELAS.

Leia mais

COLÉGIO ESTADUAL VISCONDE DE BOM RETIRO - PIBID

COLÉGIO ESTADUAL VISCONDE DE BOM RETIRO - PIBID COLÉGIO ESTADUAL VISCONDE DE BOM RETIRO - PIBID Plano de aula De setembro à outubro de 2013 Bolsistas: Fernanda Menegotto, Jéssica Tumelero, Jéssica da Silva, Patricia Balbinot e Vera de Oliveira. Supervisora:

Leia mais

DOMINÓ DAS QUATRO CORES

DOMINÓ DAS QUATRO CORES DOMINÓ DAS QUATRO CORES Aparecida Francisco da SILVA 1 Hélia Matiko Yano KODAMA 2 Resumo: O jogo Quatro Cores tem sido objeto de estudo de muitos profissionais que se dedicam à pesquisa da aplicação de

Leia mais

DANÔMIO. Objetivos Aprimorar o conhecimento da multiplicação de monômios.

DANÔMIO. Objetivos Aprimorar o conhecimento da multiplicação de monômios. DANÔMIO Objetivos Aprimorar o conhecimento da multiplicação de monômios. Materiais Dado feito de papel com um monômio em cada face, 6 tabelas que apresentam todas combinações de produtos dos monômios de

Leia mais

ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016

ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016 ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016 PLANIFICAÇÃO DE MATEMÁTICA 7ºANO 1º Período 2º Período 3º Período Apresentação,

Leia mais

-Roteiro do professor-

-Roteiro do professor- NÚMEROS INTEIROS -Roteiro do professor- Introdução teórica: As regras de sinais nas operações com números inteiros, em geral, causam dificuldades de aprendizagem aos alunos, ocasionando seqüelas no desenvolvimento

Leia mais

Potências e logaritmos, tudo a ver!

Potências e logaritmos, tudo a ver! Reforço escolar M ate mática Potências e logaritmos, tudo a ver! Dinâmica 1 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 2ª do Ensino Médio Algébrico simbólico Função Logarítmica

Leia mais

MATEMÁTICA. Aula 2 Teoria dos Conjuntos. Prof. Anderson

MATEMÁTICA. Aula 2 Teoria dos Conjuntos. Prof. Anderson MATEMÁTICA Aula 2 Teoria dos Conjuntos Prof. Anderson CONCEITO Na teoria dos conjuntos, um conjunto é descrito como uma coleção de objetos bem definidos. Estes objetos são chamados de elementos ou membros

Leia mais

Ensino Médio. Fatorial

Ensino Médio. Fatorial As Permutações Comentários: As primeiras atividades matemáticas da humanidade estavam ligadas à contagem de objetos de um conjunto, enumerando seus elementos. As civilizações antigas, como egípcia, babilônia,

Leia mais

DESAFIOS MATEMÁTICOS POR MEIO DOS MATERIAIS DIDÁTICOS BLOCOS LÓGICOS, PEÇAS RETANGULARES E PEÇAS POLIGONAIS

DESAFIOS MATEMÁTICOS POR MEIO DOS MATERIAIS DIDÁTICOS BLOCOS LÓGICOS, PEÇAS RETANGULARES E PEÇAS POLIGONAIS DESAFIOS MATEMÁTICOS POR MEIO DOS MATERIAIS DIDÁTICOS BLOCOS LÓGICOS, PEÇAS RETANGULARES E PEÇAS POLIGONAIS Pedro Ribeiro Barbosa 1 pperiba@ig.com.br Aline de Carvalho Oliveira 2 alynepedcg@gmail.com Renê

Leia mais

Comunidade de Prática Virtual Inclusiva Formação de Professores

Comunidade de Prática Virtual Inclusiva Formação de Professores O Mate erial Dourado Montessor ri O material Dourado ou Montessori é constituído por cubinhos, cubão, que representam: barras, placas e Observe que o cubo é formado por 10 placas, que a placa é formada

Leia mais

ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos)

ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) 1 ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) Objetivos Introduzir o conceito de números inteiros negativos; Desenvolvimento O professor confeccionará o jogo com os alunos ou distribuirá os jogos

Leia mais

Potências e logaritmos, tudo a ver!

Potências e logaritmos, tudo a ver! Reforço escolar M ate mática Potências e logaritmos, tudo a ver! Dinâmica 2ª Série º Bimestre Professor DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico simbólico Função Logarítmica

Leia mais

MEC UFSC PMF/ Secretaria Municipal de Educação

MEC UFSC PMF/ Secretaria Municipal de Educação Jogo: Um a mais, um a menos. Dez a mais, dez a menos. SMOLE, Kátia Stocco. Cadernos do Mathema Jogos de matemática de 1º ao 5º ano. Porto Alegre: Artemed, 2007. Organização da turma: grupos de quatro jogadores

Leia mais

CINCO, NÃO! Uma recriação a partir do Jogo COLORIO de JACKY BONNET

CINCO, NÃO! Uma recriação a partir do Jogo COLORIO de JACKY BONNET CINCO, NÃO! Uma recriação a partir do Jogo COLORIO de JACKY BONNET NÚMERO DE JOGADORES De 2 a 5 jogadores, a partir de 8 anos de idade. DURAÇÃO DA PARTIDA Em torno de 10 minutos. COMPONENTES DO JOGO Um

Leia mais

O USO DE JOGOS NAS AULAS DE MATEMÁTICA: TRABALHANDO COM AS OPERAÇÕES COM NÚMEROS NATURAIS E INTEIROS

O USO DE JOGOS NAS AULAS DE MATEMÁTICA: TRABALHANDO COM AS OPERAÇÕES COM NÚMEROS NATURAIS E INTEIROS na Contemporaneidade: desafios e possibilidades O USO DE JOGOS NAS AULAS DE MATEMÁTICA: TRABALHANDO COM AS OPERAÇÕES COM NÚMEROS NATURAIS E INTEIROS José Márcio da Silva Ramos Diniz Universidade Estadual

Leia mais

UMA ABORDAGEM SOBRE NÚMEROS INTEIROS NUMA TURMA DE 7º ANO EJA Educação Matemática na Educação de Jovens e Adultos GT 11 RESUMO

UMA ABORDAGEM SOBRE NÚMEROS INTEIROS NUMA TURMA DE 7º ANO EJA Educação Matemática na Educação de Jovens e Adultos GT 11 RESUMO UMA ABORDAGEM SOBRE NÚMEROS INTEIROS NUMA TURMA DE 7º ANO EJA Educação Matemática na Educação de Jovens e Adultos GT 11 Alexsandra Ramalho COSTA CEAI Dr. João Pereira de Assis alexsandraramalhoc@gmail.com

Leia mais

DESCRIÇÃO DAS ATIVIDADES:

DESCRIÇÃO DAS ATIVIDADES: DESCRIÇÃO DAS ATIVIDADES: 1) O JOGO DOS PALITOS E A PROBABILIDADE: esta sequência didática apresentada aos anos iniciais (1º/5º ano) do Ensino Fundamental tem como objetivo possibilitar conhecimentos das

Leia mais

Operações com números naturais e Geometria Espacial. Profª Gerlaine Alves

Operações com números naturais e Geometria Espacial. Profª Gerlaine Alves Operações com números naturais e Geometria Espacial Profª Gerlaine Alves Operações com números naturais - Adição A adição está ligada à ideia de juntar, acrescentar. A cada par de parcelas, associamos

Leia mais

Matemática Discreta. Aula 01: Análise Combinatória I. Tópico 02: Arranjos com e sem repetição. Solução. Arranjos com Repetição.

Matemática Discreta. Aula 01: Análise Combinatória I. Tópico 02: Arranjos com e sem repetição. Solução. Arranjos com Repetição. Aula 01: Análise Combinatória I Tópico 02: Arranjos com e sem repetição Agora que demos o pontapé inicial aprendendo os Princípios Fundamentais de Contagem com e sem repetições, vamos ver que o restante

Leia mais

Jogos e Brincadeiras I. 1. Brincadeiras

Jogos e Brincadeiras I. 1. Brincadeiras Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 1 Jogos e Brincadeiras I 1. Brincadeiras Nesta primeira parte da aula resolveremos duas questões retiradas da Olimpíada

Leia mais

SME Introdução à Programação de Computadores Primeiro semestre de Trabalho: jogo Semáforo

SME Introdução à Programação de Computadores Primeiro semestre de Trabalho: jogo Semáforo SME0230 - Introdução à Programação de Computadores Primeiro semestre de 2017 Professora: Marina Andretta (andretta@icmc.usp.br) Monitores: Douglas Buzzanello Tinoco (douglas.tinoco@usp.br) Amanda Carrijo

Leia mais

MINISTÉRIO DA EDUCAÇÃO

MINISTÉRIO DA EDUCAÇÃO PROPOSTA DIDÁTICA 1 Dados de Identificação 1.1 Nome do bolsista: Gabriel Prates Brener 1.2 Público alvo: 6º ao 9º ano do Ensino Fundamental e Magistério 1.3 Duração: 5 horas 1.4 Conteúdo desenvolvido:

Leia mais

Geometria Analítica. Cleide Martins. Turmas E1 e E3. DMat - UFPE Cleide Martins (DMat - UFPE ) VETORES Turmas E1 e E3 1 / 22

Geometria Analítica. Cleide Martins. Turmas E1 e E3. DMat - UFPE Cleide Martins (DMat - UFPE ) VETORES Turmas E1 e E3 1 / 22 Geometria Analítica Cleide Martins DMat - UFPE - 2017.1 Turmas E1 e E3 Cleide Martins (DMat - UFPE - 2017.1) VETORES Turmas E1 e E3 1 / 22 Objetivos 1 Entender a denição de VETOR 2 Aprender a somar dois

Leia mais

Matemática. Questão 1. 7 o ano do Ensino Fundamental Turma. 2 o Bimestre de 2016 Data / / Escola Aluno RESOLUÇÃO:

Matemática. Questão 1. 7 o ano do Ensino Fundamental Turma. 2 o Bimestre de 2016 Data / / Escola Aluno RESOLUÇÃO: EF AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 7 o ano do Ensino Fundamental Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 2 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Qual é

Leia mais

Simulação do Espectro Contínuo emitido por um Corpo Negro 1ª PARTE

Simulação do Espectro Contínuo emitido por um Corpo Negro 1ª PARTE ACTIVIDADE PRÁCTICA DE SALA DE AULA FÍSICA 10.º ANO TURMA A Simulação do Espectro Contínuo emitido por um Corpo Negro Zoom escala do eixo das ordenadas 1ª PARTE Cor do corpo Definir temperatura do corpo

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID 1. Dados de identificação. MINISTÉRIO DA EDUCAÇÃO PROPOSTA DIDÁTICA 1.1 Nome do bolsista. Bruno Santana do Prado. 1.2 Público alvo: 8 e 9 ano. 1.3 Duração: 2,5 horas. 1.4 Conteúdo desenvolvido: Teorema

Leia mais

SOMOS ARTISTAS! URL:

SOMOS ARTISTAS! URL: SOMOS ARTISTAS! A seguinte tarefa envolve os domínios Números e Operações e Geometria e Medida, bem como a resolução de problemas. A sua exploração abrange números maiores que 100 e pode ser articulada

Leia mais

MATERIAL: Tabuleiro e pinos (marcadores). São necessários 20 pinos para os cordeiros e 2 pinos para os tigres.

MATERIAL: Tabuleiro e pinos (marcadores). São necessários 20 pinos para os cordeiros e 2 pinos para os tigres. Cordeiros e tigres MATERIAL: Tabuleiro e pinos (marcadores). São necessários 20 pinos para os cordeiros e 2 pinos para os tigres. 1. O jogo começa com o tabuleiro vazio. 2. Quem está com os tigres ocupa

Leia mais

KIT DOMINÓS E O DOMÍNIO DAS FRAÇÕES. GT 01 - Educação matemática no ensino fundamental: anos iniciais e anos finais

KIT DOMINÓS E O DOMÍNIO DAS FRAÇÕES. GT 01 - Educação matemática no ensino fundamental: anos iniciais e anos finais KIT DOMINÓS E O DOMÍNIO DAS FRAÇÕES GT 01 - Educação matemática no ensino fundamental: anos iniciais e anos finais José Vilani de Farias, IFRN, vilani.farias@ifrn.edu.br Amilde Martins da Fonseca, IFRN,

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Bianca Bitencourt da Silva 1.2 Público alvo: Alunos de 7º a 9º ano e Magistério 1.3 Duração: 2 aulas de 2 h e 30 min cada 1.4 Conteúdo

Leia mais

Pipocas do 9 o ano. Dinâmica 3. Aluno Primeira Etapa Compartilhar idéias. 9 Ano 3º Bimestre

Pipocas do 9 o ano. Dinâmica 3. Aluno Primeira Etapa Compartilhar idéias. 9 Ano 3º Bimestre Reforço escolar M ate mática Pipocas do 9 o ano Dinâmica 3 9 Ano 3º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9º Algébrico-Simbólico Funções Primeira Etapa Compartilhar idéias

Leia mais

Teorema de Pitágoras: Encaixando e aprendendo

Teorema de Pitágoras: Encaixando e aprendendo Reforço escolar M ate mática Teorema de Pitágoras: Encaixando e aprendendo Dinâmica 7 9º ano 2º Bimestre Aluno DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9ª Geométrico Teorema de Pitágoras

Leia mais

Esta disciplina auxilia em todas as outras áreas da Matemática. Isso porque veremos noções de lógica e de demonstrações matemáticas.

Esta disciplina auxilia em todas as outras áreas da Matemática. Isso porque veremos noções de lógica e de demonstrações matemáticas. Noções Básicas Esta disciplina auxilia em todas as outras áreas da Matemática. Isso porque veremos noções de lógica e de demonstrações matemáticas. Numa visão bem geral, veremos: Quais são as principais

Leia mais

Sugestões de materiais e atividades para promover a construção do Sistema de Numeração Decimal pela criança

Sugestões de materiais e atividades para promover a construção do Sistema de Numeração Decimal pela criança Sugestões de materiais e atividades para promover a construção do Sistema de Numeração Decimal pela criança Curso Construção de jogos, materiais e atividades de Matemática para as séries iniciais Querido(a)

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. O Conceito de Vetor. Terceiro Ano do Ensino Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. O Conceito de Vetor. Terceiro Ano do Ensino Médio Material Teórico - Módulo: Vetores em R 2 e R 3 O Conceito de Vetor Terceiro Ano do Ensino Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Segmentos orientados Nesta seção

Leia mais

Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições)

Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Exemplos Definições Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Matemática Elementar - EAD Departamento de Matemática Universidade Federal da Paraíba 4 de setembro de 2014

Leia mais

A BRINCAR COM FRAÇÕES TAMBÉM SE APRENDE

A BRINCAR COM FRAÇÕES TAMBÉM SE APRENDE A BRINCAR COM FRAÇÕES TAMBÉM SE APRENDE Dores Ferreira Agrupamento de escolas de Real Braga doresferreira@gmail.com Fábia Forte Escola E. B. 2, 3 Abel Varzim Barcelos fabia.giao@sapo.pt Paula Rebelo Escola

Leia mais

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco MATEMÁTICA Professor Matheus Secco MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA 1. DIVISIBILIDADE Definição: Sejam a, b inteiros com a 0. Diz-se que a divide b (denota-se por a b) se existe c inteiro tal que

Leia mais

Universidade dos Açores Campus de angra do Heroísmo Ano Letivo: 2013/2014 Disciplina: Aplicações da Matemática Docente: Ricardo Teixeira 3º Ano de

Universidade dos Açores Campus de angra do Heroísmo Ano Letivo: 2013/2014 Disciplina: Aplicações da Matemática Docente: Ricardo Teixeira 3º Ano de Universidade dos Açores Campus de angra do Heroísmo Ano Letivo: 2013/2014 Disciplina: Aplicações da Matemática Docente: Ricardo Teixeira 3º Ano de Licenciatura em Educação Básica - 1º Semestre O jogo é

Leia mais

OBSERVAÇÕES SOBRE A NOTA DE AULA 04 / RELAÇÕES E FUNÇÕES. Aluno: Matrícula: (1) Na folha 1/11, as figuras estão trocadas. Assim, o correto é:

OBSERVAÇÕES SOBRE A NOTA DE AULA 04 / RELAÇÕES E FUNÇÕES. Aluno: Matrícula: (1) Na folha 1/11, as figuras estão trocadas. Assim, o correto é: ENGENHARIA CIVIL MATEMÁTICA BÁSICA / VALE VT TDE Lista - VT 04 13/03/2015 (Turma NOITE) - QUESTÕES OBJETIVAS CONJUNTOS TRABALHO DE PESQUISA - VALE VT ENTREGAR AO PROFESSOR em 25/03/2015 (4ª feira) Aluno:

Leia mais

LFA. Provas formais; Indução; Sintaxe e Semântica Teoria dos Conjuntos

LFA. Provas formais; Indução; Sintaxe e Semântica Teoria dos Conjuntos LFA Provas formais; Indução; Sintaxe e Semântica Teoria dos Conjuntos Técnicas de Demonstração Um teorema é uma proposição do tipo: p q a qual, prova-se, é verdadeira sempre que: p q Técnicas de Demonstração

Leia mais

Nome: Professora: 3º Ano:

Nome: Professora: 3º Ano: Nome: Professora: 3º Ano: 2015 Queridos(as) alunos(as), Nosso 3º ano tem sido muito legal, porque estamos aprendendo muitas coisas novas e interessantes. O nosso projeto Todos podem se comunicar nos proporcionou

Leia mais

ESCOLA MUNICIPAL DE ENSINO FUNDAMENTAL PROFª MARIA MARGARIDA ZAMBON BENINI. Plano de aula nº 10. Potenciação e Radiciação

ESCOLA MUNICIPAL DE ENSINO FUNDAMENTAL PROFª MARIA MARGARIDA ZAMBON BENINI. Plano de aula nº 10. Potenciação e Radiciação ESCOLA MUNICIPAL DE ENSINO FUNDAMENTAL PROFª MARIA MARGARIDA ZAMBON BENINI Plano de aula nº 10 Potenciação e Radiciação Bolsistas: Andressa Santos Vogel e Patricia Lombello Supervisora: Marlete Basso Roman

Leia mais

Concurso Público Conteúdo

Concurso Público Conteúdo Concurso Público 2016 Conteúdo 1ª parte Números inteiros e racionais: operações (adição, subtração, multiplicação, divisão, potenciação); expressões numéricas; múltiplos e divisores de números naturais;

Leia mais

Estas caixas são interessantes, para aumenta-las, cada vez soma-se um número ímpar, em sequência: 1 1+3= = = =25

Estas caixas são interessantes, para aumenta-las, cada vez soma-se um número ímpar, em sequência: 1 1+3= = = =25 Pitágoras Bombons e tabuleiros. Pitágoras ficou muito conhecido pelo teorema que leva seu nome, talvez esse seja o teorema mais conhecido da matemática. O teorema de Pitágoras. De acordo com este teorema,

Leia mais

A UTILIZAÇÃO DE MATERIAIS MANIPULÁVEIS NA FORMAÇÃO INICIAL DE PROFESSORES: JOGO CARA A CARA DE POLIEDROS

A UTILIZAÇÃO DE MATERIAIS MANIPULÁVEIS NA FORMAÇÃO INICIAL DE PROFESSORES: JOGO CARA A CARA DE POLIEDROS A UTILIZAÇÃO DE MATERIAIS MANIPULÁVEIS NA FORMAÇÃO INICIAL DE PROFESSORES: JOGO CARA A CARA DE POLIEDROS Formação de Professores e Educação Matemática (FPM) GT 08 Jailson Lourenço de PONTES jail21.jlo@gmail.com

Leia mais

A UTILIZAÇÃO DE JOGOS DE ESTRATÉGIA VIA COMPUTADOR NA INTRODUÇÃO DE CONCEITOS MATEMÁTICOS EM SALA DE AULA

A UTILIZAÇÃO DE JOGOS DE ESTRATÉGIA VIA COMPUTADOR NA INTRODUÇÃO DE CONCEITOS MATEMÁTICOS EM SALA DE AULA A UTILIZAÇÃO DE JOGOS DE ESTRATÉGIA VIA COMPUTADOR NA INTRODUÇÃO DE CONCEITOS MATEMÁTICOS EM SALA DE AULA JOSINALVA ESTACIO MENEZES UFRPE jomene@nelore.npde.ufrpe.br TEMA: SOFTWARE E HARDWARE Aplicativos

Leia mais

Jogos e invariantes. 6 de Janeiro de 2015

Jogos e invariantes. 6 de Janeiro de 2015 Jogos e invariantes 6 de Janeiro de 2015 Resumo Objetivos principais da aula de hoje: continuar com a ideia de explorar problemas. Apresentar a ideia de invariantes. 1 O jogo de apagar - introdução Quem

Leia mais

ABORDAGEM A CONSTRUÇÃO DO PENSAMENTO MULTIPLICATIVO DESENVOLVIDO PELA CRIANÇA

ABORDAGEM A CONSTRUÇÃO DO PENSAMENTO MULTIPLICATIVO DESENVOLVIDO PELA CRIANÇA ABORDAGEM A CONSTRUÇÃO DO PENSAMENTO MULTIPLICATIVO DESENVOLVIDO PELA CRIANÇA Hélio Oliveira Rodrigues Faculdades Integradas da Vitória de Santo Antão FAINTVISA Instituto Federal de Educação, Ciência e

Leia mais

Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Números - Aula 03 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 28 de Fevereiro de 2014 Primeiro Semestre de 2014 Turma 2013106 - Engenharia Mecânica Corpos Vimos que o

Leia mais

Tipo do produto: Plano de aula

Tipo do produto: Plano de aula PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA - PIBID Plano de Atividades (PIBID/UNESPAR) Tipo do produto: Plano de aula 1 IDENTIFICAÇÃO SUBPROJETO MATEMÁTICA/FECEA: Uma iniciativa concreta ao

Leia mais

PEGUE 10. Quantidade: 08 unidades

PEGUE 10. Quantidade: 08 unidades 1 PEGUE 10 Materiais Um tabuleiro e 66 cartas redondas com os numerais de 1 a 7 nas seguintes quantidades: 1 22 cartas; 6-2 cartas; 2-16 cartas; 7-2 cartas; 3-12 cartas; Coringa 1 carta. 4-7 cartas; 5-4

Leia mais

Legenda 0 à 25% de Acertos Baixo De 26 à 50% de Acertos Intermediário De 51 à 75% de Acertos Adequado De 76 à 100% de Acertos Avançado

Legenda 0 à 25% de Acertos Baixo De 26 à 50% de Acertos Intermediário De 51 à 75% de Acertos Adequado De 76 à 100% de Acertos Avançado Relação de Descritores que apresentam os erros mais frequentes cometidos pelos estudantes nas Avaliações Diagnósticas de 2012 do ProEMI/JF no estado do Ceará Em 2012 foram aplicadas Avaliações Diagnósticas

Leia mais

Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula.

Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula. PRODUTO CARTESIANO PAR ORDENADO Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula. ( x, y ) pode ser indicado para representar uma determinada posição e que esta ordem de primeiro

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Taís Baú Bernardi 1.2 Público alvo: 6 ao 9 ano do Ensino Fundamental e Curso Magistério 1.3 Duração: 5 horas 1.4 Conteúdo desenvolvido:

Leia mais

EDUCAÇÃO INFANTIL PLANO DE ENSINO DISCIPLINA Matemática PROFESSOR Marina da Silva CARGA HORÁRIA TURMA / TURNO ANO LETIVO TOTAL SEMANAL 20 horas

EDUCAÇÃO INFANTIL PLANO DE ENSINO DISCIPLINA Matemática PROFESSOR Marina da Silva CARGA HORÁRIA TURMA / TURNO ANO LETIVO TOTAL SEMANAL 20 horas EDUCAÇÃO INFANTIL PLANO DE ENSINO DISCIPLINA Matemática PROFESSOR Marina da Silva CARGA HORÁRIA TURMA / TURNO ANO LETIVO TOTAL SEMANAL 20 horas Jardim I A - Matutino 2017 CONTEÚDO PROGRAMÁTICO 1º TRIMESTRE

Leia mais

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO COLÉGIO NOSSA SENHORA DA ASSUNÇÃO FAMALICÃO ANADIA FICHA DE TRABALHO N.º2 DE MATEMÁTICA Data: Outubro de 2009 Turmas: 12ºA e 12ºB TÉCNICAS DE CONTAGEM: Arranjos com repetição ; Arranjos sem repetição;

Leia mais

(RE)CONSTRUINDO O CONCEITO DE NÚMERO RACIONAL

(RE)CONSTRUINDO O CONCEITO DE NÚMERO RACIONAL (RE)CONSTRUINDO O CONCEITO DE NÚMERO RACIONAL Ana Clara Pessanha Teixeira de Mendonça Rodrigo Viana Pereira Bruno Alves Dassie Wanderley Moura Rezende 4 Resumo: São notórias as dificuldades dos estudantes

Leia mais

UMA PROPOSTA PARA O ESTUDO DOS PRODUTOS NOTÁVEIS NO ENSINO FUNDAMENTAL, 7ª SÉRIE (8º ANO) ASSOCIADOS AOS CÁLCULOS DE ÁREAS DE FIGURAS

UMA PROPOSTA PARA O ESTUDO DOS PRODUTOS NOTÁVEIS NO ENSINO FUNDAMENTAL, 7ª SÉRIE (8º ANO) ASSOCIADOS AOS CÁLCULOS DE ÁREAS DE FIGURAS UMA PROPOSTA PARA O ESTUDO DOS PRODUTOS NOTÁVEIS NO ENSINO FUNDAMENTAL, 7ª SÉRIE (8º ANO) ASSOCIADOS AOS CÁLCULOS DE ÁREAS DE FIGURAS Elvys Wagner Ferreira da Silva Universidade Estadual do Maranhão elvys.wagner@ibest.com.br

Leia mais

Prova de Aferição de Matemática e Estudo do Meio Prova 26 2.º Ano de Escolaridade 2016

Prova de Aferição de Matemática e Estudo do Meio Prova 26 2.º Ano de Escolaridade 2016 Rubricas dos Professores Vigilantes A PREENCHER PELO ALUNO Nome completo Documento de identificação CC n.º ou BI n.º Emitido em (Localidade) Assinatura do Aluno Prova de Aferição de Matemática e Estudo

Leia mais

Uma perspectiva de ensino para as áreas de conhecimento escolar - Matemática

Uma perspectiva de ensino para as áreas de conhecimento escolar - Matemática Uma perspectiva de ensino para as áreas de conhecimento escolar - Matemática A proposta Para a elaboração do Material Didático de Matemática, da Primeira Fase do Ensino Fundamental, partimos do pressuposto

Leia mais

Aulas 5 e 6 / 28 e 30 de março

Aulas 5 e 6 / 28 e 30 de março Aulas 5 e / 8 e 30 de março 1 Notação de soma e produto Como expressar a seguinte soma de uma maneira mais concisa? 1 + + 3 3 + + 10? Note que as parcelas são semelhantes, e que a única coisa que varia

Leia mais

Caderno de Acompanhamento Progressão Aritmética e Função Afim Escola Estadual Judith Vianna. Estudante: Turma:

Caderno de Acompanhamento Progressão Aritmética e Função Afim Escola Estadual Judith Vianna. Estudante: Turma: Estudante: Turma: Sequências A natureza apresenta padrões e regularidades. Dessa forma, muitas teorias matemáticas são desenvolvidas a partir do estudo desses padrões e regularidades. Por exemplo, o estudo

Leia mais

Como jogar Cainão-Cai

Como jogar Cainão-Cai Como jogar Cainão-Cai Cai-não-cai Pode ser jogado de 2 a 4 jogadores indicado para crianças a partir de 5 anos. Como funciona o jogo O jogo é composto de um uma garrafa de plástico (PET) com um furo no

Leia mais

Matemática. Questão 1. 6 o ano do Ensino Fundamental Turma. 1 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO:

Matemática. Questão 1. 6 o ano do Ensino Fundamental Turma. 1 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: EF AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 6 o ano do Ensino Fundamental Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 1 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Observe

Leia mais

Capítulo 2. Conjuntos Infinitos

Capítulo 2. Conjuntos Infinitos Capítulo 2 Conjuntos Infinitos Não é raro encontrarmos exemplos equivocados de conjuntos infinitos, como a quantidade de grãos de areia na praia ou a quantidade de estrelas no céu. Acontece que essas quantidades,

Leia mais

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho Contagem e Probabilidade Exercícios Adicionais Paulo Cezar Pinto Carvalho Exercícios Adicionais Contagem e Probabilidade Para os alunos dos Grupos 1 e 2 1. Um grupo de 4 alunos (Alice, Bernardo, Carolina

Leia mais

BIOESTATISTICA. Unidade IV - Probabilidades

BIOESTATISTICA. Unidade IV - Probabilidades BIOESTATISTICA Unidade IV - Probabilidades 0 PROBABILIDADE E DISTRIBUIÇÃO DE FREQUÊNCIAS COMO ESTIMATIVA DA PROBABILIDADE Noções de Probabilidade Após realizar a descrição dos eventos utilizando gráficos,

Leia mais

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios

Leia mais

OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE LISTA SEMANAL N o 10 - Data 04/04/2016

OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE LISTA SEMANAL N o 10 - Data 04/04/2016 OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE LISTA SEMANAL N o 1 - Data 4/4/16 PROBLEMA PARA O NÍVEL I Escreve-se um número em cada uma das 16 casas de um tabuleiro 4 4. Para qualquer casa,

Leia mais

e um quadrado vermelho. O número sete precisaria outro símbolo porque não seria possível criá-lo através da multiplicação de outros primos, então foi

e um quadrado vermelho. O número sete precisaria outro símbolo porque não seria possível criá-lo através da multiplicação de outros primos, então foi PRODUTO DIDÁTICO O produto pedagógico produzido ao final desta dissertação será o novo segredo dos números, que recebeu este nome porque foi baseado no trabalho da professora Ester P. Grossi no ano de

Leia mais

CENTRO ESTADUAL DE EDUCAÇÃO TECNOLÓGICA PAULA SOUZA ETEC TRAJANO CAMARGO ETIM EVENTOS HYGOR SANTOS ALMEIDA LEANDRA IRIANE MATTOS VITOR CARDOSO MARTINS

CENTRO ESTADUAL DE EDUCAÇÃO TECNOLÓGICA PAULA SOUZA ETEC TRAJANO CAMARGO ETIM EVENTOS HYGOR SANTOS ALMEIDA LEANDRA IRIANE MATTOS VITOR CARDOSO MARTINS CENTRO ESTADUAL DE EDUCAÇÃO TECNOLÓGICA PAULA SOUZA ETEC TRAJANO CAMARGO ETIM EVENTOS HYGOR SANTOS ALMEIDA LEANDRA IRIANE MATTOS VITOR CARDOSO MARTINS JOGO: PERGUNTE ÀS CORES LIMEIRA SP 2016 HYGOR SANTOS

Leia mais

Na compra dos dois produtos foi gasto R$ 64,00. Apesar dos produtos terem a mesma função, o de maior valor foi R$ 20 reais mais caro.

Na compra dos dois produtos foi gasto R$ 64,00. Apesar dos produtos terem a mesma função, o de maior valor foi R$ 20 reais mais caro. SISTEMA DE EQUAÇÕES CONTEÚDO Sistemas de equações do 1º grau com duas incógnitas AMPLIANDO SEUS CONHECIMENTOS Leia as frases: Havia no evento 00 pessoas, somando homens e mulheres. A diferença entre o

Leia mais

JOGO DIDÁTICO CLASS FISH COMO PROPOSTA PARA O ESTUDO DE PEIXES AGOSTO, 2013 NATAL/RN

JOGO DIDÁTICO CLASS FISH COMO PROPOSTA PARA O ESTUDO DE PEIXES AGOSTO, 2013 NATAL/RN JOGO DIDÁTICO CLASS FISH COMO PROPOSTA PARA O ESTUDO DE PEIXES AGOSTO, 2013 NATAL/RN SUMÁRIO INTRODUÇÃO METODOLOGIA Elaboração do jogo Como funciona o jogo CONSIDERAÇÕES FINAIS REFERÊNCIAS AGRADECIMENTOS

Leia mais

01- Observe o painel de curiosidades de animais que as crianças poderiam encontrar no zoológico:

01- Observe o painel de curiosidades de animais que as crianças poderiam encontrar no zoológico: PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 2º ANO - ENSINO FUNDAMENTAL ========================================================================== 01- Observe o painel de curiosidades

Leia mais

A construção do Sistema de Numeração Decimal SND e Testagem com criança de 6 a 9 anos

A construção do Sistema de Numeração Decimal SND e Testagem com criança de 6 a 9 anos A construção do Sistema de Numeração Decimal SND e Testagem com criança de 6 a 9 anos *as idades são referências, podem variar conforme o contexto Curso Construção de jogos, materiais e atividades de Matemática

Leia mais

Os jogos nas aulas de matemática

Os jogos nas aulas de matemática Os jogos nas aulas de matemática Materiais necessários para esta aula: Giz de cera Papel grande (cartolina, pardo etc.) Dados Cartas de baralho JOGO DOS PONTOS Que habilidades ou conceitos podem ser trabalhados

Leia mais

USANDO JOGOS NA COMPREENSÃO DE EQUAÇÕES DO 1 GRAU

USANDO JOGOS NA COMPREENSÃO DE EQUAÇÕES DO 1 GRAU ciedade Brasileira Educação na Contemporaneidade: desafios e possibilidades USANDO JOGOS NA COMPREENSÃO DE EQUAÇÕES DO 1 GRAU Carla Antunes Fontes Instituto Federal, Ciência e Tecnologia Fluminense carlafontes@globo.com

Leia mais

Definir classes laterais e estabelecer o teorema de Lagrange. Aplicar o teorema de Lagrange na resolução de problemas.

Definir classes laterais e estabelecer o teorema de Lagrange. Aplicar o teorema de Lagrange na resolução de problemas. Aula 05 GRUPOS QUOCIENTES METAS Estabelecer o conceito de grupo quociente. OBJETIVOS Definir classes laterais e estabelecer o teorema de Lagrange. Aplicar o teorema de Lagrange na resolução de problemas.

Leia mais

Prezados Estudantes, Professores de Matemática e Diretores de Escola,

Prezados Estudantes, Professores de Matemática e Diretores de Escola, Prezados Estudantes, Professores de Matemática e Diretores de Escola, Os Problemas Semanais são um incentivo a mais para que os estudantes possam se divertir estudando Matemática, ao mesmo tempo em que

Leia mais

MATEMÁTICA D U Quarenta = 40. Cinquenta = Completa a recta graduada com os números que faltam.

MATEMÁTICA D U Quarenta = 40. Cinquenta = Completa a recta graduada com os números que faltam. D U 4 0 Quarenta 30 + 0 = 40 D U 5 0 Cinquenta 40 + 0 = 50 Completa a recta graduada com os números que faltam. 39 45 50 55 59 2 Completa de modo a obteres as quantidades indicadas. 40 30 + 0 + 20 50 40

Leia mais

Ordem dos Inteiros AULA. 4.1 Introdução. 4.2 Ordem Ordem dos Inteiros

Ordem dos Inteiros AULA. 4.1 Introdução. 4.2 Ordem Ordem dos Inteiros META: Apresentar ordem nos números inteiros e os Princípio de indução e do Menor elemento. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Usar o processo de indução finita dos Inteiros. Justificar

Leia mais

Tô na área! Dinâmica 6. Professor. 9º Ano 4º Bimestre. DISCIPLINA Ano CAMPO CONCEITO DINÂMICA. 9º do Ensino Fundamental

Tô na área! Dinâmica 6. Professor. 9º Ano 4º Bimestre. DISCIPLINA Ano CAMPO CONCEITO DINÂMICA. 9º do Ensino Fundamental Tô na área! Reforço escolar M ate mática Dinâmica 6 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e áreas de figuras planas Professor

Leia mais

Construção de Conceitos em Trigonometria. Departamento de Matemática e Estatística Universidade de Caxias do Sul

Construção de Conceitos em Trigonometria. Departamento de Matemática e Estatística Universidade de Caxias do Sul Construção de Conceitos em Trigonometria Isolda Giani de Lima iglima@ucs.br Solange Galiotto Sartor sgsartor@ucs.br Departamento de Matemática e Estatística Universidade de Caxias do Sul Resumo. Um ambiente

Leia mais

Prova de Aferição de Matemática e Estudo do Meio Prova 26 2.º Ano de Escolaridade 2016

Prova de Aferição de Matemática e Estudo do Meio Prova 26 2.º Ano de Escolaridade 2016 Rubricas dos Professores Vigilantes A PREENCHER PELO ALUNO Nome completo Documento de identificação CC n.º ou BI n.º Emitido em (Localidade) Assinatura do Aluno Prova de Aferição de Matemática e Estudo

Leia mais

O PIBID COMO DIVISOR DE ÁGUAS PARA UMA PEDAGOGIA LIVRE E CRIATIVA

O PIBID COMO DIVISOR DE ÁGUAS PARA UMA PEDAGOGIA LIVRE E CRIATIVA O PIBID COMO DIVISOR DE ÁGUAS PARA UMA PEDAGOGIA LIVRE E CRIATIVA Laurena Fragoso Martinez Blanco Acadêmica do Curso de Pedagogia da UNICENTRO Irati e bolsista do Programa Institucional de Iniciação á

Leia mais

DCC / ICEx / UFMG. O Jogo SimulES. Eduardo Figueiredo.

DCC / ICEx / UFMG. O Jogo SimulES. Eduardo Figueiredo. DCC / ICEx / UFMG O Jogo SimulES Eduardo Figueiredo http://www.dcc.ufmg.br/~figueiredo O Jogo SimulES Simulação de Engenharia de Software http://www.dcc.ufmg.br/~figueiredo/simules/ O jogo foi fortemente

Leia mais

ENFOQUE USANDO CORTES DE DEDEKIND

ENFOQUE USANDO CORTES DE DEDEKIND Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit CONSTRUÇÃO DOS REAIS: UM ENFOQUE

Leia mais

Gráfico de Funções: Seno, Cosseno e Tangente

Gráfico de Funções: Seno, Cosseno e Tangente Reforço escolar M ate mática Gráfico de Funções: Seno, Cosseno e Tangente Dinâmica 6 1ª Série 4º Bimestre Aluno DISCIPLINA Série CAMPO CONCEITO Matemática 1a do Ensino Médio Geométrico Trigonometria na

Leia mais

O jogo do Mico no ensino das Funções Orgânicas: o lúdico como estratégia no PIBID

O jogo do Mico no ensino das Funções Orgânicas: o lúdico como estratégia no PIBID O jogo do Mico no ensino das Funções Orgânicas: o lúdico como estratégia no PIBID Danilo Augusto Matos 1, Vinícius Nunes dos Santos 1, Daniela Marques Alexandrino 2*, Maria Celeste Passos Silva Nascimento

Leia mais

Jogos com Adições 1. JOGOS LIVRES

Jogos com Adições 1. JOGOS LIVRES Jogos com Adições Como explorar este material? 1. JOGOS LIVRES Objectivo: tomar contacto com o material, de maneira livre, sem regras. Durante algum tempo, os alunos brincam com o material, fazendo construções

Leia mais

Explorando os métodos de contagem no jogo senha

Explorando os métodos de contagem no jogo senha Explorando os métodos de contagem no jogo senha Trabalho apresentado como atividade do PIPE na disciplina Matemática Finita do Curso de Matemática no 1º semestre de 2009 Lucas Fernandes Pinheiro Maria

Leia mais

Figura 1 Compras do supermercado Fonte: Microsoft Office

Figura 1 Compras do supermercado Fonte: Microsoft Office CONJUNTOS NUMÉRICOS CONTEÚDOS Número naturais Números inteiros Números racionais Números irracionais Números reais AMPLIANDO SEUS CONHECIMENTOS Os números estão presentes nas mais diversas situações do

Leia mais

TEOREMA DE PITÁGORAS AULA ESCRITA

TEOREMA DE PITÁGORAS AULA ESCRITA TEOREMA DE PITÁGORAS AULA ESCRITA 1. Introdução O Teorema de Pitágoras é uma ferramenta importante na matemática. Ele permite calcular a medida de alguma coisa que não conseguimos com o uso de trenas ou

Leia mais

Matemática Discreta para Ciência da Computação

Matemática Discreta para Ciência da Computação Matemática Discreta para Ciência da Computação P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação

Leia mais