Circuitos Elétricos Circuitos de Segunda Ordem Parte 1
|
|
- Carlos Brás de Carvalho
- 2 Há anos
- Visualizações:
Transcrição
1 Circuitos Elétricos Circuitos de Segunda Ordem Parte 1 Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR)
2 Introdução Circuitos que contem dois elementos armazenadores de energia. São chamados de circuitos de segunda ordem, pois, suas respostas são descritas por equações diferencias que contem derivadas de 2 o grau.
3 Condição Inicial e Final Encontrar os valores iniciais e finais para: v, i, dv/dt, di/dt v(0), i(0), dv/dt, di/dt, v( ), i( ) Lembrete Usar sempre a convenção de sinais dos elementos passivos para v no capacitor e i no indutor. A tensão do capacitor não muda abruptamente A corrente no indutor não muda abruptamente
4 Exemplos: Condição Inicial e Final
5 Analise de um circuito RLC-Série sem fonte resposta natural 0 = 1 = (0) = Aplicando a LTK: =0
6 Diferenciando em relação a t: + + =0 Nosso objetivo é resolver a equação diferencial de segunda ordem acima. Para isso precisamos de duas condições iniciais: () ou () Com as duas condições iniciais podemos resolver a equação diferencial de segunda ordem.
7 Sabemos que dos circuitos de primeira ordem que a solução é da forma exponencial, então, fazendo: onde A e s são constantes a serem determinadas. Substituindo, temos: ou
8 como é a solução que assumimos, somente a expressão entre parenteses pode ser zero. Esta equação é chamada de equação característica, pois suas raízes controlam a característica de i. As duas raízes são:
9 Uma representação mais compacta das raízes: onde: 2 2 As raízes s 1 e s 2 são chamadas de frequencias naturais, medidas em Nepers/s (Np/s). ω 0 é chamada de frequencia de ressonancia, expressa em rad/s. α é o fator de amortecimento
10 Podemos expressar a equação da solução em termos de α e ω 0 como: 2 Os dois valores de s indicam que existem duas soluções possiveis para i, ambas da forma: Uma solução completa necessita de uma combinação linear de i 1 e i 2. Assim, a resposta natural de um circuito RLC-Série é: 1 2 onde as constantes A 1 e A 2 são determinadas a partir dos valores iniciais de i(0) e di(0)/dt.
11 Pode-se observar que existem quatro casos possíveis de combinações para α e ω 0 : 1. Se α>ω 0 temos o caso superamortecido. As raízes da equação característica do circuito são diferentes e reais. 2. Se α = ω 0 temos o caso criticamente amortecido As raízes da equação característica do circuito são iguais e reais. 3. Se α <ω 0 temos o caso subamortecido As raízes são complexas conjugas. 4. Se α = 0 e ω d = ω 0 temos o caso sem amortecimento ou oscilatório puro. As raízes são puramente complexas
12 Caso superamortecido (α >ω 0 ). α>ω 0 implica >4. Quando isso acontece, tanto s 1 quanto s 2 são negativas e reais. A resposta é: = que cai e tende a zero a medida que t aumenta.
13 Caso criticamente amortecido (α = ω 0 ). quando α = ω 0 implica =4 e: 1 = 2 = = 2 A resposta é: = ( )
14 Caso subamortecido (α < ω 0 ). Para α < ω 0 temos <4 e as raízes são: 2 2 onde = 1 e = 2 que é chamada de frequencia de amortecimento. Tanto ω 0 quanto ω d são frequencias naturais. Enquanto ω 0 é chamada de frequencia natural sem amortecimento, ω d é chamada frequencia natural amortecida.
15 A resposta natural é: = 1 ( ) + 2 ( ) = ( ) usando as identidades de Euler: temos: = + = = [ 1 ( + ) + 2 ( )] = [( ) + ( 1 2 ) ] substituindo as constantes (A 1 +A 2 )ej(a 1 +A 2 ) por constantes B 1 e B 2 temos:
16 substituindo as constantes (A 1 +A 2 )ej(a 1 +A 2 ) por constantes B 1 e B 2 temos: = ( ) Com a presença das funções seno e cosseno na resposta, a resposta natural para este caso será exponencialmente amortecida e oscilatória. A resposta tem uma constante de tempo 1 e um período =2.
17 Uma vez determinada a corrente i(t), outros valores podem ser encontrados. Por exemplo: Tensão no resistor: = Tensão no indutor: =/
18 Particularidades de um circuito RLC: 1. O comportamento é caracterizado por amortecimento, onde a energia inicial armazenada é gradualmente dissipada devido a presença de R. O fator de amortecimento α determina a taxa na qual a resposta é amortecida. Se R =0,entãoα = 0 e temos um circuito LC com 1 como frequencia natural sem amortecimento. 2. Resposta oscilatória é possivel devido a presença de L e C que permite que a energia seja trocada entre ambos. 3. É dificil diferenciar as formas de onda das respostas superamortecidas e criticamente amortecida.
19 Circuito RLC-Paralelo Sem Fonte Analise de um circuito RLC-Paralelo sem fonte resposta natural 0 = 0 = 1 () (0) = Aplicando a LCK no nó superior: =0
20 Circuito RLC-Paralelo Sem Fonte Diferenciando em relação a t e dividindo por C, temos: =0 Obtemos a equação característica substituindo a primeira derivada por s e a segunda por s 2 :
21 Circuito RLC-Paralelo Sem Fonte Esta equação é chamada de equação característica, pois suas raízes controlam a característica de i. As duas raízes são: ou 2 2
22 Circuito RLC-Paralelo Sem Fonte onde: ω 0 é chamada de frequencia de ressonancia, expressa em rad/s. α é o fator de amortecimento Novamente, temos quatro soluções possíveis, dependendo da relação entre ω 0 e α.
23 Circuito RLC-Paralelo Sem Fonte Caso superamortecido (α >ω 0 ). α>ω 0 implica >4 2. Quando isso acontece, tanto s 1 quanto s 2 são negativas e reais. A resposta é: = Caso criticamente amortecido (α = ω 0 ). α = ω 0 implica =4 2. As raízes são reais e iguais: = ( )
24 Circuito RLC-Paralelo Sem Fonte Caso subamortecido (α < ω 0 ). Para α < ω 0 temos <4 2 e as raízes são complexas: 2 2 onde = 1 e = 2 que é chamada de frequencia de amortecimento. A resposta é: = ( )
25 Circuito RLC-Paralelo Sem Fonte As constantes A 1 e A 2 podem ser determinados a partir das condições iniciais. Necessitamos v(0) e dv(0)/dt. O primeiro obtemos de: (0) = Obtemos o segundo termo de: ou (0) (0) =0 = ( )
26 Circuito RLC-Paralelo Sem Fonte As formas de onda são similares as do circuito RLC- Série. Uma vez determinada a tensão v(t), outros valores podem ser encontrados. Por exemplo: Corrente no resistor: = Tensão no capacitor: =/
Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS
Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS Prof. José Roberto Marques (direitos reservados) A ENERGIA DAS REDES ELÉTRICAS A transformação da energia de um sistema de uma forma para outra, dificilmente
Circuitos de 2 ª ordem: RLC. Parte 1
Circuitos de 2 ª ordem: RLC Parte 1 Resposta natural de um circuito RLC paralelo Veja circuito RLC paralelo abaixo: A tensão é a mesma e aplicando a soma de correntes que saem do nó superior temos: v R
Circuitos Elétricos Senoides e Fasores
Circuitos Elétricos Senoides e Fasores Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Introdução Corrente contínua x corrente alternada. Ver War of Currentes
Circuitos Elétricos Capacitores e Indutores
Introdução Circuitos Elétricos e Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) e indutores: elementos passivos, mas e indutores não dissipam energia
Circuitos Elétricos Análise de Potência em CA
Introdução Circuitos Elétricos Análise de Potência em CA Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Potência é a quantidade de maior importância em
Circuitos Elétricos Resposta em Frequência Parte 1
Introdução Circuitos Elétricos Resposta em Frequência Parte 1 Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Na análise de circuitos CA estudamos como
Figura 1 Circuito RLC série
ASSOCIAÇÃO EDUCACIONAL DOM BOSCO FACULDADE DE ENGENHARIA DE RESENDE ENGENHARIA ELÉTRICA ELETRÔNICA Disciplina: Laboratório de Circuitos Elétricos Circuitos de Segunda Ordem. Objetivo Os circuitos elétricos
Circuito RLC-Série em Regime CA
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ ESCOLA POLITÉCNICA CURSO DE ENGENHARIA DE COMPUTAÇÃO DISCIPLINA DE CIRCUITOS ELÉTRICOS II Prof. Alessandro L. Koerich Circuito RLC-Série em Regime CA Objetivo
Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4
Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 4 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 4 - Capacitores e Indutores...1 4.1 - Capacitores...1 4.2 - Capacitor
Caracterização temporal de circuitos: análise de transientes e regime permanente. Condições iniciais e finais e resolução de exercícios.
Conteúdo programático: Elementos armazenadores de energia: capacitores e indutores. Revisão de características técnicas e relações V x I. Caracterização de regime permanente. Caracterização temporal de
Circuitos Elétricos Circuitos Magneticamente Acoplados
Introdução Circuitos Elétricos Circuitos Magneticamente Acoplados Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Os circuitos que estudamos até o momento
Laboratório de Circuitos Elétricos II
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ ESCOLA POLITÉCNICA CURSO DE ENGENHARIA DE COMPUTAÇÃO DISCIPLINA DE CIRCUITOS ELÉTRICOS II NOME DO ALUNO: Laboratório de Circuitos Elétricos II Prof. Alessandro
Resposta Transitória de Circuitos com Elementos Armazenadores de Energia
ENG 1403 Circuitos Elétricos e Eletrônicos Resposta Transitória de Circuitos com Elementos Armazenadores de Energia Guilherme P. Temporão 1. Introdução Nas últimas duas aulas, vimos como circuitos com
Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL420. Módulo 2
Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Módulo 2 Thévenin Norton Helmholtz Mayer Ohm Galvani Conteúdo 2 Elementos básicos de circuito e suas associações...1 2.1 Resistores lineares
Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1
Carlos Alexandre Mello 1 Modelagem no Domínio da Frequência A equação diferencial de um sistema é convertida em função de transferência, gerando um modelo matemático de um sistema que algebricamente relaciona
Análise de Circuitos Elétricos III
Análise de Circuitos Elétricos III Prof. Danilo Melges (danilomelges@cpdee.ufmg.br) Depto. de Engenharia Elétrica Universidade Federal de Minas Gerais Introdução à Transformada de Laplace A Transformada
UNIVERSIDADE FEDERAL DE SANTA MARIA - CIRCUITOS ELÉTRICOS I
INDICE UNIDADE 1 - CIRCUITOS CONCENTRADOS E LEIS DE KIRCCHOFF -... 3 1.1. Circuitos Concentrados... 3 1.2. Elementos Concentrados... 3 1.3. Sentido de referência... 4 1.3.1. Sentido de referência para
LABORATÓRIO DE CONTROLE I
UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE CONTROLE I Experimento 1: ESTUDO DE FUNÇÕES DE TRANSFERÊNCIA E ANÁLISE DE RESPOSTA TRANSITÓRIA COLEGIADO DE
5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 1
597 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Movimentos Periódicos Para estudar movimentos oscilatórios periódicos é conveniente ter algum modelo físico em mente. Por exemplo, um
Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia
Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações 1. Movimento Oscilatório. Cinemática do Movimento Harmônico Simples (MHS) 3. MHS e Movimento
Modelos Variáveis de Estado
Modelos Variáveis de Estado Introdução; Variáveis de Estados de Sistemas Dinâmicos; Equação Diferencial de Estado; Função de Transferência a partir das Equações de Estados; Resposta no Domínio do Tempo
Indutores. Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br
Indutores Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br Indutores Consistem de um condutor enrolado com N voltas (espiras) na forma de um solenóide, ou de um tiróide. Podem conter ou não um
UFSM CT DELC. e Mecânicos. ELC 1021 Estudo de Casos em Engenharia Elétrica
UFSM CT DELC Analogia Sistemas entre Elétricos e Mecânicos ELC 1021 Estudo de Casos em Engenharia Elétrica Giovani Baratto 6/25/2007 Introdução As equações diferenciais que governam as tensões e correntes
Análise e Processamento de Bio-Sinais. Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas. Licenciatura em Engenharia Física
Análise e Processamento de Bio-Sinais Mestrado Integrado em Engenharia Biomédica Licenciatura em Engenharia Física Faculdade de Ciências e Tecnologia Slide Slide 1 1 Tópicos: Representação de Sinais por
1 O Movimento dos Corpos
1.3-1 1 O Movimento dos Corpos 1.3 Gotas de chuva e pára-quedistas (v'(t) = - g - rv(t)) Em ambos os casos trata-se de objetos que caem de grandes alturas e que são freados pela resistência aerodinâmica.
Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1
Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.
1 Descrição do Trabalho
Departamento de Informática - UFES 1 o Trabalho Computacional de Algoritmos Numéricos - 13/2 Métodos de Runge-Kutta e Diferenças Finitas Prof. Andréa Maria Pedrosa Valli Data de entrega: Dia 23 de janeiro
Circuitos Elétricos III
Circuitos Elétricos III Prof. Danilo Melges (danilomelges@cpdee.ufmg.br) Depto. de Engenharia Elétrica Universidade Federal de Minas Gerais A Transformada de Laplace em análise de circuitos parte 1 A resistência
Técnico em Eletrotécnica
Técnico em Eletrotécnica Caderno de Questões Prova Objetiva 2015 01 Em uma corrente elétrica, o deslocamento dos elétrons para produzir a corrente se deve ao seguinte fator: a) fluxo dos elétrons b) forças
Aula 8 Análise de circuitos no domínio da frequência e potência em corrente alternada
ELETRICIDADE Aula 8 Análise de circuitos no domínio da frequência e potência em corrente alternada Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul Associação de impedâncias As impedâncias
CIRCUITOS ELÉTRICOS RESOLUÇÃO DE CIRCUITOS TRANSITÓRIOS NO DOMÍNIO DA FREQÜÊNCIA
1 CIRCUITOS ELÉTRICOS RESOLUÇÃO DE CIRCUITOS TRANSITÓRIOS NO DOMÍNIO DA FREQÜÊNCIA Simulação de chaves utilizando a função degrau a) Fonte de tensão que entra em operação em t = 0 Substituindo a chave
Transformada de Laplace. Parte 3
Transformada de Laplace Parte 3 Elementos de circuito no domínio da frequência O resistor no domínio da frequência Pela lei de OHM : v= Ri A transformada da equação acima é V(s) = R I(s) O indutor no domínio
ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA A 12ºANO ANO LETIVO 2015/2016 OBJECTIVOS ESPECÍFICOS
PROBABILIDADES E COMBINATÓRIA ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA A 12ºANO ANO LETIVO 2015/2016 Introdução ao cálculo Conhecer terminologia das probabilidades de Probabilidades
CAPÍTULO IX. Análise de Circuitos RLC
CAPÍTULO IX Análise de Circuitos RLC 9. Introdução Neste capítulo, serão estudados os circuitos RLC s, ou seja, aqueles que possuem resistores, indutores e capacitores. Em geral, a análise desses circuitos
Introdução aos circuitos seletores de frequências. Sandra Mara Torres Müller
Introdução aos circuitos seletores de frequências Sandra Mara Torres Müller Aqui vamos estudar o efeito da variação da frequência da fonte sobre as variáveis do circuito. Essa análise constitui a resposta
Experimento 8 Circuitos RC e filtros de freqüência
Experimento 8 Circuitos RC e filtros de freqüência 1. OBJETIVO O objetivo desta aula é ver como filtros de freqüência utilizados em eletrônica podem ser construídos a partir de um circuito RC. 2. MATERIAL
Universidade Federal de Ouro Preto Escola de Minas Departamento de Engenharia de Controle e Automação. Ronilson Rocha
Universidade Federal de Ouro Preto Escola de Minas Departamento de Engenharia de Controle e Automação PROJETO E CARACTERIZAÇÃO DE CIRCUITOS ELETRÔNICOS CAÓTICOS: O LADO NEGATIVO DO CIRCUITO DE CHUA Ronilson
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIDADE ACADEMICA DE ENGENHARIA ELÉTRICA ELETRÔNICA
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIDADE ACADEMICA DE ENGENHARIA ELÉTRICA ELETRÔNICA LISTA DE EXERCÍCIOS #11 (1) O circuito a seguir é usado como pré-amplificador
CIRCUITOS ELÉTRICOS II
CIRCUITOS ELÉTRICOS II Prof.: Helder Roberto de O. Rocha Engenheiro Eletricista Doutorado em Computação Corrente Elétrica Quantidade de carga elétrica deslocada por unidade de tempo As correntes elétricas
BC 1519 Circuitos Elétricos e Fotônica
BC 1519 Circuitos Elétricos e Fotônica Capacitor / Circuito RC Indutor / Circuito RL 2015.1 1 Capacitância Capacitor: bipolo passivo que armazena energia em seu campo elétrico Propriedade: Capacitância
Concurso Público para Cargos Técnico-Administrativos em Educação UNIFEI 13/06/2010
Questão 21 Conhecimentos Específicos - Técnico em Eletrônica Calcule a tensão Vo no circuito ilustrado na figura ao lado. A. 1 V. B. 10 V. C. 5 V. D. 15 V. Questão 22 Conhecimentos Específicos - Técnico
3) IMPORTÂNCIA DESTE PROGRAMA DE APRENDIZAGEM NA FORMAÇÃO PROFISSIONAL, NESTE MOMENTO DO CURSO
PROGRAMA DE APRENDIZAGEM NOME: SEL0302 Circuitos Elétricos II PROFESSORES: Azauri Albano de Oliveira Junior turma Eletrônica PERÍODO LETIVO: Quarto período NÚMERO DE AULAS: SEMANAIS: 04 aulas TOTAL: 60
Indutor e Capacitor. Prof. Mário Henrique Farias Santos, M.Sc. 31 de Julho de 2009
Indutor e Capacitor Prof. Mário Henrique Farias Santos, M.Sc. 3 de Julho de 2009 Introdução A partir deste momento introduziremos dois elementos dinâmicos de circuitos: indutor e capacitor. Porque são
Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação
Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação Laboratório da Disciplina CTA-147 Controle I Análise da Resposta Transitória (Este laboratório foi uma adaptação
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.
3 - Sistemas em Corrente Alternada. 1 Considerações sobre Potência e Energia. Carlos Marcelo Pedroso. 18 de março de 2010
3 - Sistemas em Corrente Alternada Carlos Marcelo Pedroso 18 de março de 2010 1 Considerações sobre Potência e Energia A potência fornecida a uma carga à qual está aplicada um tensão instantânea u e por
Lei de Coulomb: Campo Elétrico:
Lei de Coulomb: Método para distribuição de cargas: Dividir a distribuição em infinitos dq Analisar feito por dq Dividir em suas componentes dfx e dfy Analisar se há alguma forma de simetria que simplifica
Amplificador Operacional Básico. Amplificador Operacional Básico
Amplificador Operacional Básico Eng.: Roberto Bairros dos Santos. Um empreendimento Bairros Projetos didáticos www.bairrospd.kit.net Este artigo descreve como identificar o amplificador operacional, mostra
Números Complexos. Note com especial atenção o sinal "-" associado com X C. Se escrevermos a expressão em sua forma mais básica, temos: = 1
1 Números Complexos. Se tivermos um circuito contendo uma multiplicidade de capacitores e resistores, se torna necessário lidar com resistências e reatâncias de uma maneira mais complicada. Por exemplo,
UNIVERSIDADE FEDERAL DA PARAÍBA DEPARTAMENTO DE INFORMÁTICA CURSO DE ENGENHARIA DA COMPUTAÇÃO INTRODUÇÃO À MICROELETRÔNICA RELATÓRIO PARCIAL 1
UNIVERSIDADE FEDERAL DA PARAÍBA DEPARTAMENTO DE INFORMÁTICA CURSO DE ENGENHARIA DA COMPUTAÇÃO INTRODUÇÃO À MICROELETRÔNICA RELATÓRIO PARCIAL 1 ALUNO THIAGO PAULINO SILVA GALINDO (ECTHIAGOUFPB@GMAIL.COM)
Equações diferencias são equações que contém derivadas.
Equações diferencias são equações que contém derivadas. Os seguintes problemas são exemplos de fenômenos físicos que envolvem taxas de variação de alguma quantidade: Escoamento de fluidos Deslocamento
Circuitos Elétricos III
Circuitos Elétricos III Prof. Danilo Melges (danilomelges@cpdee.ufmg.br) Depto. de Engenharia Elétrica Universidade Federal de Minas Gerais A Transformada de Laplace em análise de circuitos parte 2 Equivalente
Retificadores (ENG - 20301) Lista de Exercícios de Sinais Senoidais
Retificadores (ENG - 20301) Lista de Exercícios de Sinais Senoidais 01) Considerando a figura abaixo, determine: a) Tensão de pico; b) Tensão pico a pico; c) Período; d) Freqüência. 02) Considerando a
Circuitos Elétricos Leis Básicas
Circuitos Elétricos Leis Básicas Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Introdução Como determinar os valores de tensão, corrente e potência em
Aula 5 Componentes e Equipamentos Eletrônicos
Aula 5 Componentes e Equipamentos Eletrônicos Introdução Componentes Eletrônicos Equipamentos Eletrônicos Utilizados no Laboratório Tarefas INTRODUÇÃO O nível de evolução tecnológica evidenciado nos dias
Potência e Fator de Potência. Fernando Soares dos Reis, Dr. Eng.
Potência e Fator de Potência, Dr. Eng. Sumário Introdução; Objetivos; Revisão de Conceitos Fundamentais de Potência C.C. Potência Instantânea; Potência Média ou Ativa; Transferência Máxima de Potência
11/07/2012. Professor Leonardo Gonsioroski FUNDAÇÃO EDSON QUEIROZ UNIVERSIDADE DE FORTALEZA DEPARTAMENTO DE ENGENHARIA ELÉTRICA.
FUNDAÇÃO EDSON QUEIROZ UNIVERSIDADE DE FORTALEZA DEPARTAMENTO DE ENGENHARIA ELÉTRICA Aulas anteriores Tipos de Sinais (degrau, rampa, exponencial, contínuos, discretos) Transformadas de Fourier e suas
Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 2 Ref. Butkov, cap. 8, seção 8.2
Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 2 Ref. Butkov, cap. 8, seção 8.2 O Método de Separação de Variáveis A ideia central desse método é supor que a solução
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA SÉRIE DE EXERCÍCIO #A22 (1) O circuito a seguir amplifica a diferença de
Introdução teórica aula 6: Capacitores
Introdução teórica aula 6: Capacitores Capacitores O capacitor é um elemento capaz de armazenar energia. É formado por um par de superfícies condutoras separadas por um material dielétrico ou vazio. A
Filtro Passa-Baixa. Figura 1 Circuito do Filtro Passa Baixa
ASSOCIAÇÃO EDUCACIONAL DOM BOSCO FACULDADE DE ENGENHARIA DE RESENDE ENGENHARIA ELÉTRICA ELETRÔNICA Disciplina: Laboratório de Circuitos Elétricos Circuitos em Corrente Alternada 1. Objetivo Entre os filtros
CIRCUITOS DE CORRENTE CONTÍNUA
Departamento de Física da Faculdade de iências da Universidade de Lisboa Electromagnetismo 2007/08 IRUITOS DE ORRENTE ONTÍNU 1. Objectivo Verificar as leis fundamentais de conservação da energia e da carga
UNIVERSIDADE CATÓLICA DE PETRÓPOLIS CENTRO DE ENGENHARIA E COMPUTAÇÃO
UNIVERSIDADE CATÓLICA DE PETRÓPOLIS CENTRO DE ENGENHARIA E COMPUTAÇÃO Amanda 5ª Atividade: Codificador e codificação de linha e seu uso em transmissão digital Petrópolis, RJ 2012 Codificador: Um codoficador
REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS
REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS Neste capítulo será apresentada uma prática ferramenta gráfica e matemática que permitirá e facilitará as operações algébricas necessárias à aplicação dos métodos
5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15
Ondas (continuação) Ondas propagando-se em uma dimensão Vamos agora estudar propagação de ondas. Vamos considerar o caso simples de ondas transversais propagando-se ao longo da direção x, como o caso de
Disciplina: Eletrônica de Potência (ENGC48)
Universidade Federal da Bahia Escola Politécnica Departamento de Engenharia Elétrica Disciplina: Eletrônica de Potência (ENGC48) Tema: Conversores CA-CC Monofásicos Controlados Prof.: Eduardo Simas eduardo.simas@ufba.br
Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s
Representação numérica Cálculo numérico Professor Walter Cunha Um conjunto de ferramentas ou métodos usados para se obter a solução de problemas matemáticos de forma aproximada. Esses métodos se aplicam
4.10 Solução das Equações de Estado através da Transformada de Laplace Considere a equação de estado (4.92)
ADL22 4.10 Solução das Equações de Estado através da Transformada de Laplace Considere a equação de estado (4.92) A transformada de Laplace fornece: (4.93) (4.94) A fim de separar X(s), substitua sx(s)
Circuitos CA I. 1 Resumo da aula anterior. Aula 6. 5 de abril de 2011
Circuitos CA I Aula 6 5 de abril de 20 Resumo da aula anterior Estudamos a teoria formulada por Lammor que permite explicar a existência de diamagnetismo em algumas substancia. Basicamente a teoria supõe
Figura 2.1: Carro-mola
Capítulo 2 EDO de Segunda Ordem com Coeficientes Constantes 2.1 Introdução - O Problema Carro-Mola Considere um carro de massa m preso a uma parede por uma mola e imerso em um fluido. Colocase o carro
Lista de Exercícios Circuito I Capítulo 3. Material retirado das Listas de Exercícios COB781 (diversos livros)-roberto Macoto Ichinose
Lista de Exercícios Circuito I Capítulo 3. Material retirado das Listas de Exercícios COB781 (diversos livros)roberto Macoto Ichinose 1) Calcule a corrente através do resistor de carga R L no circuito
5 Transformadas de Laplace
5 Transformadas de Laplace 5.1 Introdução às Transformadas de Laplace 4 5.2 Transformadas de Laplace definição 5 5.2 Transformadas de Laplace de sinais conhecidos 6 Sinal exponencial 6 Exemplo 5.1 7 Sinal
INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS
INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e
Par Diferencial com Transístores Bipolares
Resumo Par Diferencial com Transístores Bipolares Operação para grandes sinais Resistência diferencial de Entrada e Ganho Equivalência entre Amplificador diferencial e Amplificador em Emissor Comum Ganho
Aula 7 Reatância e Impedância Prof. Marcio Kimpara
ELETRIIDADE Aula 7 Reatância e Impedância Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul 2 Parâmetros da forma de onda senoidal Vp iclo Vpp omo representar o gráfico por uma equação matemática?
Movimentos Periódicos: representação vetorial
Aula 5 00 Movimentos Periódicos: representação vetorial A experiência mostra que uma das maneiras mais úteis de descrever o movimento harmônico simples é representando-o como uma projeção perpendicular
2 - Modelos em Controlo por Computador
Modelação, Identificação e Controlo Digital 2-Modelos em Controlo por Computador 1 2 - Modelos em Controlo por Computador Objectivo: Introduzir a classe de modelos digitais que são empregues nesta disciplina
Associação de resistores
Associação de resistores É comum nos circuitos elétricos a existência de vários resistores, que encontram-se associados. Os objetivos de uma associação de resistores podem ser: a necessidade de dividir
FÍSICA 3 Circuitos Elétricos em Corrente Contínua. Circuitos Elétricos em Corrente Contínua
FÍSICA 3 Circuitos Elétricos em Corrente Contínua Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba EMENTA Carga Elétrica Campo Elétrico Lei de Gauss Potencial Elétrico Capacitância Corrente e resistência
UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Eletricidade
UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA ELÉTRICA Eletricidade Análise de Circuitos alimentados por fontes constantes Prof. Ilha Solteira,
Receptores elétricos
Receptores elétricos Receptor elétrico é qualquer dispositivo que transforma energia elétrica em outra forma de energia que não seja exclusivamente térmica,se lembre que os resistores são os dispositivos
Engenharia Mecânica com linha de formação específica em Engenharia Mecatrônica
Unidade Universitária Escola de Engenharia Curso Engenharia Mecânica com linha de formação específica em Engenharia Mecatrônica Disciplina Circuitos Elétricos Professor(es) Cintia Bertoni Bueno Martha
Linhas de Transmissão
Linhas de Transmissão 1. Objetivo Medir a capacitância, indutância e a impedância num cabo coaxial. Observar a propagação e reflexão de pulsos em cabos coaxiais. 2. Introdução Uma linha de transmissão
Introdução à Eletrônica de Potência
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Eletrônica de Potência Introdução à Eletrônica de Potência Florianópolis, setembro de 2012. Prof.
Portas Lógicas Básicas Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h
Portas Lógicas Básicas Prof. Rômulo Calado Pantaleão Camara Carga Horária: 2h/60h Colegiado de Engenharia da Computação CECOMP Introdução à Algebra de Boole Em lógica tradicional, uma decisão é tomada
Programa de engenharia biomédica. Princípios de instrumentação biomédica cob 781
Programa de engenharia biomédica Princípios de instrumentação biomédica cob 781 5 Circuitos de primeira ordem 5.1 Circuito linear invariante de primeira ordem resposta a excitação zero 5.1.1 O circuito
I Retificador de meia onda
Circuitos retificadores Introdução A tensão fornecida pela concessionária de energia elétrica é alternada ao passo que os dispositivos eletrônicos operam com tensão contínua. Então é necessário retificá-la
Ondas Eletromagnéticas. E=0, 1 B=0, 2 E= B t, 3 E
Ondas Eletromagnéticas. (a) Ondas Planas: - Tendo introduzido dinâmica no sistema, podemos nos perguntar se isto converte o campo eletromagnético de Maxwell em uma entidade com existência própria. Em outras
1 OSCILADOR SEM AMORTECIMENTO. 1.1 A equação do oscilador harmónico e o movimento harmónico simples. 1.2 O plano complexo
1 OSCILADOR SEM AMORTECIMENTO 1.1 A equação do oscilador harmónico e o movimento harmónico simples 1.2 O plano complexo 1.3 Movimento harmónico simples, fasores e movimento circular uniforme 1.4 O circuito
PÓLOS NA REPRESENTAÇÃO DO ESPAÇO DOS ESTADOS
PÓLOS NA REPRESENTAÇÃO DO ESPAÇO DOS ESTADOS. Motiação e necessidade Pólos de um sistema fornecem o comportamento dinâmico do sistema tempo de resposta, frequencia natural, coeficiente de amortecimento
Circuito RC: Processo de Carga e Descarga de Capacitores
Departamento de Física - IE - UFJF As tarefas desta prática têm valor de prova! Leia além deste roteiro também os comentários sobre elaboração de gráficos e principalmente sobre determinação de inclinações
Análise, verificação e comparação de simulações utilizando MATLAB e PSPICE. Rafael Campagnaro de Mendonça
UNIOESTE Universidade Estadual do Oeste do Paraná Centro de Ciências Exatas Campus Universitário de Foz do Iguaçu Engenharia Elétrica Transitórios Professor Rui Jovita Simulações de Circuitos Elétricos
Eletrônica Aula 07 CIN-UPPE
Eletrônica Aula 07 CIN-UPPE Amplificador básico Amplificador básico É um circuito eletrônico, baseado em um componente ativo, como o transistor ou a válvula, que tem como função amplificar um sinal de
Um capacitor não armazena apenas carga, mas também energia.
Capacitores e Dielétricos (continuação) Energia armazenada num capacitor Um capacitor não armazena apenas carga, mas também energia. A energia armazenada num capacitor é igual ao trabalho necessário para
Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.
Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução
Medidas de mitigação de harmônicos
38 Apoio Harmônicos provocados por eletroeletrônicos Capítulo XII Medidas de mitigação de harmônicos Igor Amariz Pires* A maneira mais comum de mitigar harmônicos é por meio da utilização de filtros. O
ABAIXO ENCONTRAM-SE 10 QUESTÕES. VOCÊ DEVE ESCOLHER E RESPONDER APENAS A 08 DELAS
ABAIXO ENCONTRAM-SE 10 QUESTÕES. VOCÊ DEVE ESCOLHER E RESPONDER APENAS A 08 DELAS 01 - Questão Esta questão deve ser corrigida? SIM NÃO Um transformador de isolação monofásico, com relação de espiras N
Modelagem de Sistemas Dinâmicos. Eduardo Camponogara
Equações Diferenciais Ordinárias Modelagem de Sistemas Dinâmicos Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle
Condensadores (capacitores)
es (capacitores) O condensador (capacitor) é um componente de circuito que armazena cargas eléctricas. O parâmetro capacidade eléctrica (C) relaciona a tensão aos terminais com a respectiva carga armazenada.
Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação
Departamento de Engenharia Química e de Petróleo UFF Disciplina: TEQ102- CONTROLE DE PROCESSOS custo Diagrama de Bode Outros Processos de Separação Prof a Ninoska Bojorge 5.A. Traçado das Assíntotas Traçado