1. ORDENAÇÃO POR TROCA ORDENAÇÃO. 1.1 Ordenação por Bolha. Exemplo, 25, 57, 48, 37, 12, 92, 86, 33. Algoritmo. Complexidade de Tempo

Tamanho: px
Começar a partir da página:

Download "1. ORDENAÇÃO POR TROCA ORDENAÇÃO. 1.1 Ordenação por Bolha. Exemplo, 25, 57, 48, 37, 12, 92, 86, 33. Algoritmo. Complexidade de Tempo"

Transcrição

1 ORDENAÇÃO Ordear é o processo de orgaizar uma lista de iformações similares em ordem crescete ou decrescete. Especificamete, dada uma lista de ites r[], r[], r[],, r[-], cada item a lista é chamado registro. Uma chave, [i], é associada a cada registro r[i]. Diz-se que a lista está ordeada pela chave se i precede j implicar que [i] < [j] (ou [i] > [j]) em alguma ordeação as chaves. ORDENAÇÃO POR ROCA. Ordeação por Bolha Em cada um dos exemplos subseqüetes, x é um vetor de iteiros do qual os primeiros devem ser ordeados de modo que x[i] x[j] para i < j <. A idéia básica por trás da ordeação por bolha é percorrer a lista seqüecialmete varias vezes. Cada passagem cosiste em comparar cada elemeto a lista com seu sucessor (x[i] com x[i+]) e trocar os dois elemetos se ele ão estiverem a ordem correta Exemplo, 5, 57, 48, 7,, 9, 86, Primeira Passagem x[] com x[] (5 com 57) ehuma troca x[] com x[] (57 com 48) troca x[] com x[] (57 com 7) troca x[] com x[4] (57 com ) troca x[4] com x[5] (57 com 9) ehuma troca x[5] com x[6] (9 com 86) troca x[6] com x[7] (9 com ) troca Observe que, depois da primeira passagem, o maior elemeto está em sua posição correta. Em geral x[-i] ficara a posição correta depois da iteração i. 5, 57, 48, 7,, 9, 86, O cojuto completo de iterações fica assim: iteração iteração iteração iteração iteração iteração iteração iteração bubble (it x[ ], it ) it j, pass; bool switched = true; Algoritmo for (pass = ; pass < - && switched; pass++) /*repetição extera, cotrola o de passages*/ switched = false; for (j = ; j < - pass - ; j++) /*repetição itera, cotrola cada passagem idividual*/ if (x[j] > x[j+]) /*elemeto fora da ordem é ecessária uma troca*/ switched = true; troca(x[j], x[j+]); Complexidade de empo em o aprimorameto Numero de comparações: (-)/ Numero de trocas: melhor caso: ehuma pior caso: (-)/ Com o aprimorameto Numero de comparações será (-) + (-) + + (-) = (- -)/ Como = O(), etão, o aprimorameto ão muda a complexidade de tempo do algoritmo Coclusão fial: A complexidade do algoritmo de ordeação por bolha = O( )

2 . Quicort A ordeação por troca de partição ou quicsort é provavelmete o algoritmo de ordeação mais utilizado. Idéia Básica Quicsort trabalha particioado um vetor em duas partes e etão as ordeado separadamete. Especificamete, seja x um vetor e o umero de elemetos o vetor a ser classificados. Escolha um elemeto a uma posição especifica detro do vetor, digamos a posição j. Os elemetos de x são particioados de modo que a é colocado a posição j e as seguites codições são observadas:. Cada elemeto as posições até j- são meor ou igual a a.. Cada elemeto as posições j+ até - são maior que a a. O mesmo processo é repetido com os subvetores x[] até x[j-] e x[j+] até x[-] e com quaisquer vetores criados pelo processo em sucessivas iterações, o resultado fial será uma lista ordeada. Algoritmo Básico quicsort (it x[], it: lb, ub) it i; if (lb > ub) retur; j = partitio(x, lb, ub); quicsort(x, lb, j-); quicsort(x, j+, ub); Os parâmetros lb e ub delimitam os sub-vetores detro do vetor origial, detro dos quais a ordeação ocorre. A chamada iicial pode ser feita com quicsort(x,, -); O poto crucial é o algoritmo de partição. Exemplo: Ordeação do vetor iicial ohamos que o primeiro elemeto (5) é escolhido para colocar a sua posição correta, teremos: Como 5 está a sua posição fial, o problema foi decomposto a ordeação dos subvetores: () e ( ). O subvetor () já está classificado. Repetir o processo para x[]x[7] resulta em: 5 (48 7 ) 57 (9 86) Exemplo: e cotiuarmos particioado 5 (48 7 ) 57 (9 86), teremos: 5 (7 ) (9 86) 5 () (9 86) (9 86) (86) Método de Particioameto Cosidere a = x[lb] como o elemeto cuja posição fial é a procurada. Dois poteiros e dow são iicializados como os limites máximo e míimo do subvetor que vamos aalisar. Em qualquer poto da execução, todo elemeto acima de é maior do que a e todo elemeto abaixo de dow é meor ou igual a a.

3 Os dois poteiros e dow são movidos um em direção ao outro da seguite forma:. Icremete dow em uma posição até que x[dow] > a.. Decremete em uma posição até que x[] a.. e a > dow, troque x[dow] por x[]. O processo é repetido até que a codição descrita em. falhe (quado dow). Neste poto x[] será trocado por x[lb], cuja posição fial era procurada, e é retorado em j. Exemplo: a = 5 dow--> dow < dow < dow < dow dow dow--> dow dow < dow < <-- dow dow dow Algoritmo de Particioameto it partitio(it x[], it: lb, ub) it a, dow, ; a = x[lb]; = ub; dow = lb; while (dow < ) while (x[dow] <= a && dow < ub) dow++; while (x[] > a) --; if (dow < ) swap(x[dow], x[]); x[lb] = x[]; x[] = a; retur ; Eficiêcia do Quicsort O tempo de execução do Quicort depede se o particioameto é balaceado ou ão.. O pior caso do Quicort ocorre quado o particioameto gera um cojuto com elemeto e outro com - elemetos para todos os passos do algoritmo. Desde que o particioameto custa O() a recorrêcia este caso tora-se () = (-) + O() como () = O(), ão é difícil mostrar que () = O( ). (() = + (-) = + (-) + (-) ()). O melhor caso ocorre quado o particioameto sempre gera dois sub-cojutos de tamaho /, temos a recorrêcia () = (/) + O() Etão, () = O().

4 4 O m m. Caso Médio. O algoritmo partitio leva tempo proporcioal ao, deotado. ohamos que a lista é separada em duas sublistas de comprimeto e --, respectivamete. Etão, temos () = + () + ( - - ) Mas, ão sabemos o valor exato do. Portato, calculamos a media de todas possibilidades de : ) ( ) ( ubstrai as duas formulas e rearraja: Isso pode ser simplificado para: (Porquê?) ode Etão, () = O(l ) l ~ Aproximado () x dx x dx l l l l Para evitar o pior caso e casos ruis ode elemetos estão em gros ordeados pode-se utilizar uma estratégia probabilística: elecioe, ao ivés do primeiro elemeto para ser a, um elemeto aleatório. Critérios: eleção totalmete radômica: selecioe qualquer elemeto do subvetor usado um gerador de úmeros aleatórios. Desvatagem: tempo de processameto extra para o gerador. eleção da mediaa etre os três elemetos: lb, ub e elemeto o meio. eleção média: usa o valor media do subvetor. odos estes métodos melhoram a performace média. Cometários sobre o Quicsort

5 ORDENAÇÃO POR INERÇÃO Uma ordeação por iserção é a que ordea um cojuto de registros iserido registros um arquivo ordeado já existete.. Iserção imples Exemplo: 4,, 6,, 5, i = temp = 5 i = temp = i = temp = 6 i = temp = i = temp = 4 i = temp = isertsort(it x[ ], it ) /*iicialmete x[-] é cosiderado um arq ordeado de um elemeto*/ /*após passages, os elemetos x[-] a x[-] estarão em seqüêcia*/ it i, j, temp; for (i = -; i >= ; i--) temp = x[i] ; j = i+; while (j <= - && x[j] < temp) x[j - ] = x[j]; j = j+; x[j - ] = temp; /*isere temp a posição correta*/ Eficiêcia do Algoritmo de Iserção imples. Numero de comparações: ( - ) =. Numero de deslocametos Para grade o compoete pricipal do tempo gasto pelo algoritmo é o laço do while (deslocameto dos elemetos à esquerda). Para aalisar complexidade do algoritmo, precisamos calcular a soma dos úmeros de deslocameto para cada um i = -,,. No exemplo aterior: 4,, 6,, 5, i 4 distacia distacia total 9.. Melhor Caso. Numero de deslocameto é zero, uma vez a lista origial já está em ordem.. Pior Caso. Para uma lista de ites, o umero de deslocameto é ( - ) = Isto acotece se a lista está em ordem reversa.. Caso Médio. Cosidere agora o algoritmo. No estagio i ós fazemos exame do elemeto x[i] e movemos a uma distâcia d i,, - i- a sua posição correta. x[i] ão foram tocados pelo algoritmo até este poto assim, ão temos ehuma iformação sobre sua posição apropriada a lista. Ou seja todas as IF possíveis para x[i] são igualmete prováveis. Assim a distacia média movida por x[i] está i i i ( ( - i -))/( - i) = i Etão, em media, o umero total de deslocameto é i i 4 Portato, este é um O( ) algoritmo.. Ordeação de hell (Ordeação de Icremeto Decrescete) O algoritmo de ordeação de hell (ome de seu ivetor Doald hell) foi um dos primeiros a baixar a complexidade de O( ). O algoritmo usa uma seqüêcia de icremetos e ordea os elemetos cujo a distâcia é igual a este icremeto. A cada etapa o icremeto vai dimiuido até chegar a, ao fial de uma etapa com icremeto, dizemos que o cojuto está - ordeado. Uma importate propriedade deste algoritmo é que para < um cojuto -ordeado, que é submetido a uma ordeação com icremeto, permaece -ordeado. 5

6 Por exemplo, se = 5, cico subvetores, cada um cotedo um quito do elemetos do vetor origial, são ordeados. ão eles: ubveotr x[] x[5] x[] ubvetor x[] x[6] x[] ubvetor x[] x[7] x[] ubvetor 4 x[] x[8] x[] ubvetor 5 x[4] x[9] x[4] O i-ésimo elemeto do j-ésimo subvetor é x[(i-)*5+j-]. e um icremeto diferete for escolhido, os subvetores são divididos de modo que o i-ésimo elemeto do j-ésimo subvetor seja x[(i-)*+j-]. Exemplo: 5, 57, 48, 7,, 9, 86, primeira iteração (icremeto = 5) (x[], x[5]) (x[], x[6]) (x[], x[7]) (x[]) (x[4]) seguda iteração (icremeto = ) (x[], x[], x[6]) (x[], x[4], x[7]) (x[], x[5]) terceira iteração (icremeto = ) (x[], x[], x[], x[], x[4], x[5], x[6], x[7]) Exemplo: lista origial passagem icremeto = passagem icremeto = passagem icremeto = Lista classificada void shellsort(it x[ ], it, it icrmts[ ], it umic) /* icrts eh um array cotedo os icremetos */ it icr, j,, spa, temp; for (icr = ; icr < umic; icr++) spa = icrmts[icr]; /* spa eh o tamaho do icremeto */ for (j = spa; j < ; j++) temp = x[j]; /*isere elemeto x[j] em sua posição correta detro de seu subvetor*/ for ( = j - spa; >= && temp < x[]; -= spa) x[+spa] = x[]; x[+spa] = temp; Idéia Básica de Ordeação de hell. A ordeação por iserção simples é altamete eficiete sobre uma lista de elemetos quase ordeado.. Quado o tamaho de lista é pequeo, uma ordeação O( ) é em geral mais eficiete do que uma ordeação O(). Isto acotece porque usualmete as ordeações O( ) são muito simples de programar e exigem bem poucas ações alem de comparações e trocas em cada passagem. Por causa dessa baixa sobrecarga, a costate de proporcioalidade é bem pequea. Em geral, uma ordeação O() é muito complexa e emprega um grade umero de operações adicioais em cada passagem para dimiuir o trabalho das passages subsequetes. edo assim, sua costate de proporcioalidade é maior. Observação: em geral, a ordeação de hell é recomedada para as listas de tamaho moderado, da varias ceteas de elemetos. Eficiêcia de Ordeação de hell A ordem da ordeação de hell pode ser aproximada por O(()) se for usada uma seqüêcia apropriada de icremetos. Para outras seqüêcias de icremetos, o tempo de execução pode provar-se como O(.5 ). 6

Ordenação por Troca. Bubblesort Quicksort

Ordenação por Troca. Bubblesort Quicksort Ordeação por roca Bubblesort Quicksort ORDENAÇÃO Ordear é o processo de orgaizar uma lista de iformações similares em ordem crescete ou decrescete. Especificamete, dada uma lista de ites r[0], r[], r[2],...,

Leia mais

ORDENAÇÃO 1. ORDENAÇÃO POR TROCA

ORDENAÇÃO 1. ORDENAÇÃO POR TROCA ORDENAÇÃO Ordear é o processo de orgaizar uma lista de iformações similares em ordem crescete ou decrescete. Especificamete, dada uma lista de ites r[0], r[], r[],..., r[-], cada item a lista é chamado

Leia mais

Quicksort. Algoritmos e Estruturas de Dados II

Quicksort. Algoritmos e Estruturas de Dados II Quicksort Algoritmos e Estruturas de Dados II História Proposto por Hoare em 960 e publicado em 962 É o algoritmo de ordeação itera mais rápido que se cohece para uma ampla variedade de situações Provavelmete

Leia mais

Ordenação (Parte 1) Prof. Túlio Toffolo BCC202 Aula 13 Algoritmos e Estruturas de Dados I

Ordenação (Parte 1) Prof. Túlio Toffolo  BCC202 Aula 13 Algoritmos e Estruturas de Dados I Ordeação (Parte 1) Prof. Túlio Toffolo http://www.toffolo.com.br BCC0 Aula 13 Algoritmos e Estruturas de Dados I Critério de Ordeação Ordea-se de acordo com uma chave: typedef it TChave; typedef struct

Leia mais

Ordenação. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR

Ordenação. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR Ordeação David Meotti Algoritmos e Estruturas de Dados II DIf UFPR Critério de Ordeação Ordea-se de acordo com uma chave: typedef it ChaveTipo; typedef struct ChaveTipo Chave; /* outros compoetes */ Item;

Leia mais

ANÁLISE DE COMPLEXIDADE DE ALGORITMOS

ANÁLISE DE COMPLEXIDADE DE ALGORITMOS 1 FEUP/LEEC Algoritmos e Estruturas de Dados 2001/2002 ANÁLISE DE COMPLEXIDADE DE ALGORITMOS João Pascoal Faria http://www.fe.up.pt/~jpf 2 Itrodução Algoritmo: cojuto claramete especificado de istruções

Leia mais

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT-234 Estruturas de Dados, Aálise de Algoritmos e Complexidade Estrutural Carlos Alberto Aloso Saches CT-234 5) Ordeação Resoluções simples, Lower boud, MergeSort, RadixSort Algus algoritmos de ordeação

Leia mais

Ordenação e Busca em Arquivos

Ordenação e Busca em Arquivos Ordeação e Busca em Arquivos Cristia D. A. Ciferri Thiago A. S. Pardo Leadro C. Citra M.C.F. de Oliveira Moacir Poti Jr. Ordeação Facilita a busca Pode ajudar a dimiuir o úmero de acessos a disco Busca

Leia mais

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central. Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe

Leia mais

Estudando complexidade de algoritmos

Estudando complexidade de algoritmos Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade

Leia mais

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências 14 Calcular a mediaa do cojuto descrito pela distribuição de freqüêcias a seguir. 8,0 10,0 10 Sabedo-se que é a somatória das, e, portato, = 15+25+16+34+10 = 100, pode-se determiar a posição cetral /2

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos

Leia mais

Introdução a Complexidade de Algoritmos

Introdução a Complexidade de Algoritmos Itrodução a Complexidade de Algoritmos Estruturas de Dados Prof. Vilso Heck Juior Apresetação Revisão - O Algoritmo; A Complexidade; Exercício. Complexidade de Algoritmos REVISÃO - O ALGORITMO O Algoritmo

Leia mais

Busca binária. Busca em arquivos. Busca binária. Busca binária. Ordenação e busca em arquivos

Busca binária. Busca em arquivos. Busca binária. Busca binária. Ordenação e busca em arquivos Algoritmos e Estruturas de Dados II Profa. Debora Medeiros Ordeação e Busca em Arquivos Idexação de Arquivos I: Ídices Simples Ordeação e busca em arquivos É relativamete fácil buscar elemetos em cojutos

Leia mais

Organização de Arquivos

Organização de Arquivos Orgaização de Arquivos Cristia D. A. Ciferri Thiago A. S. Pardo Leadro C. Citra M.C.F. de Oliveira Moacir Poti Jr. Por que Orgaizar Arquivos? Cosidere o seguite stream (fluxo) de bytes AmesJoh123 MapleStillwaterOK74075MasoAla90

Leia mais

PROF. DR. JACQUES FACON

PROF. DR. JACQUES FACON 1 PUCPR- Potifícia Uiversidade Católica Do Paraá PPGIA- Programa de Pós-Graduação Em Iformática Aplicada PROF. DR. JACQUES FACON LIMIARIZAÇÃO POR MATRIZ DE CO-OCORRÊNCIA Resumo: O método da matriz de co-ocorrêcia,

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

Análise Infinitesimal II LIMITES DE SUCESSÕES

Análise Infinitesimal II LIMITES DE SUCESSÕES -. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b, 0 y f x Isso sigifica que S, ilustrada

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

Fontes Bibliográficas. Estruturas de Dados Aula 14: Recursão. Introdução. Introdução (cont.)

Fontes Bibliográficas. Estruturas de Dados Aula 14: Recursão. Introdução. Introdução (cont.) Fotes Bibliográficas Estruturas de Dados Aula 14: Recursão Livros: Projeto de Algoritmos (Nivio Ziviai): Capítulo 2; Estruturas de Dados e seus Algoritmos (Szwarefiter, et. al): Capítulo 1; Algorithms

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT-234 Estruturas de Dados, Aálise de Algoritmos e Complexidade Estrutural Carlos Alberto Aloso Saches CT-234 3) Estruturas de dados elemetares Filas, pilhas e árvores Alocação estática versus diâmica

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT34 Estruturas de Dados, Aálise de Aoritmos e Complexidade Estrutural Carlos Alberto Aloso Saches CT34 6) Ordeação HeapSort, QuicSort, Rede Bitôica A estrutura heap Heap é uma árvore biária com duas propriedades:

Leia mais

Matemática E Extensivo V. 1

Matemática E Extensivo V. 1 Extesivo V. 0) a) r b) r c) r / d) r 7 0) A 0) B P.A. 7,,,... r a + ( ). a +. + 69 a 5 P.A. (r, r, r ) r ( r + r) 6r r r r 70 Exercícios 05) a 0 98 a a a 06) E 07) B 08) B 7 0 0; 8? P.A. ( 7, 65, 58,...)

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2007.

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2007. Ageda Aálise e Técicas de Algoritmos Motivação para aálise de de algoritmos Aálise assitótica Algus exemplos simples Jorge Figueiredo Aálise de de Algoritmos Dois aspectos importates: Um problema pode,

Leia mais

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT-234 Estruturas de Dados, Aálise de Algoritmos e Complexidade Estrutural Carlos Alberto Aloso Saches CT-234 4) Árvores balaceadas AVL, Rubro-Negras, B-Trees Operações em árvores biárias de busca Numa

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

FICHA DE TRABALHO 11º ANO. Sucessões

FICHA DE TRABALHO 11º ANO. Sucessões . Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus

Leia mais

Exame Final Nacional de Matemática Aplicada às Ciências Sociais Época especial

Exame Final Nacional de Matemática Aplicada às Ciências Sociais Época especial Exame Fial Nacioal de Matemática Aplicada às Ciêcias Sociais 016 - Época especial Proposta de resolução 1. Aplicado o primeiro método para o apurameto do vecedor, temos: N o. de votos 615 300 435 150 Total

Leia mais

Introdução à Computação

Introdução à Computação Itrodução à Computação Recursividade Aula de hoje Recursividade Fução orial Voto de cofiaça recursivo Fução de Fiboacci Desvatages Professor: Adré de Carvalho Recursão Muitas estratégias de programação

Leia mais

Sumário. 2 Índice Remissivo 19

Sumário. 2 Índice Remissivo 19 i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

n IN*. Determine o valor de a

n IN*. Determine o valor de a Progressões Aritméticas Itrodução Chama-se seqüêcia ou sucessão umérica, a qualquer cojuto ordeado de úmeros reais ou complexos. Exemplo: A=(3, 5, 7, 9,,..., 35). Uma seqüêcia pode ser fiita ou ifiita.

Leia mais

Elementos de Análise - Verão 2001

Elementos de Análise - Verão 2001 Elemetos de Aálise - Verão 00 Lista Thomas Robert Malthus, 766-834, foi professor de Ecoomia Política em East Idia College e em seu trabalho trouxe à luz os estudos sobre diâmica populacioal. Um de seus

Leia mais

PROGRAMAÇÃO E ALGORITMOS (LEII) Universidade da Beira Interior, Departamento de Informática Hugo Pedro Proença, 2016/2017

PROGRAMAÇÃO E ALGORITMOS (LEII) Universidade da Beira Interior, Departamento de Informática Hugo Pedro Proença, 2016/2017 PROGRAMAÇÃO E ALGORITMOS (LEII) Uiversidade da Beira Iterior, Departameto de Iformática Hugo Pedro Proeça, 2016/2017 Resumo Ordeação e Pesquisa Pesquisa Liear Pesquisa Biária Iserção Ordeada IsertSort

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Introdução à Probabilidade e à Estatística I

Introdução à Probabilidade e à Estatística I Itrodução à Probabilidade e à Estatística I Resolução Lista 1 Professor: Pedro Moretti & Chag Chia 1. (a) Podemos iserir dados o software R e costruir um histograma com 5 itervalos: Frequecy 0 2 4 6 8

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros 1. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico

Leia mais

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas . ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes XIX Semaa Olímpica de Matemática Nível U Algumas Técicas com Fuções Geratrizes Davi Lopes O projeto da XIX Semaa Olímpica de Matemática foi patrociado por: Algumas Técicas com Fuções Geratrizes Davi Lopes

Leia mais

Implementação de Planilha de Cálculos Simplificada

Implementação de Planilha de Cálculos Simplificada INF 1620 Estruturas de Dados Semestre 08.2 Primeiro Trabalho Implemetação de Plailha de Cálculos Simplificada Uma plailha de cálculos é um programa muito utilizado em aplicações fiaceiras e aquelas que,

Leia mais

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes: Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo

Leia mais

Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório

Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório Uiversidade Federal de Lavras Departameto de Estatística Prof. Daiel Furtado Ferreira 1 a Aula Prática Técicas de somatório Notação e propriedades: 1) Variáveis e ídices: o símbolo x j (leia x ídice j)

Leia mais

ESTATÍSTICA. PROF. RANILDO LOPES U.E PROF EDGAR TITO

ESTATÍSTICA. PROF. RANILDO LOPES  U.E PROF EDGAR TITO ESTATÍSTICA PROF. RANILDO LOPES http://ueedgartito.wordpress.com U.E PROF EDGAR TITO Medidas de tedêcia cetral Medidas cetrais são valores que resumem um cojuto de dados a um úico valor que, de alguma

Leia mais

5 Teoria dos Valores Extremos

5 Teoria dos Valores Extremos Teoria dos Valores Extremos 57 5 Teoria dos Valores Extremos A Teoria dos Valores Extremos vem sedo bastate utilizada em campos ligados a evetos raros. Sua estatística é aplicada a estimação de evetos

Leia mais

Tipos abstratos de dados (TADs)

Tipos abstratos de dados (TADs) Tipos abstratos de dados (TADs) Um TAD é uma abstração de uma estrutura de dados Um TAD especifica: Dados armazeados Operações sobre os dados Codições de erros associadas à opers Exemplo: TAD que modela

Leia mais

Experimento 1 Estudo da Lei de Hooke

Experimento 1 Estudo da Lei de Hooke Experimeto 1 Estudo da Lei de Hooke 1.1 Objetivos Físicos Verificação experimetal da lei de Hooke para uma mola helicoidal: Medida experimetal do módulo de rigidez do material μ. 1. Objetivos Didáticos

Leia mais

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

Provas de Matemática Elementar - EAD. Período

Provas de Matemática Elementar - EAD. Período Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova

Leia mais

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia. 6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

Sequências, PA e PG material teórico

Sequências, PA e PG material teórico Sequêcias, PA e PG material teórico 1 SEQUÊNCIA ou SUCESSÃO: é todo cojuto ode cosideramos os seus elemetos colocados, ou dispostos, uma certa ordem. Cosiderado a sequêcia (; 3; 5; 7;...), dizemos que:

Leia mais

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Laboratório de Física e Química

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Laboratório de Física e Química Uiversidade São Judas Tadeu Faculdade de Tecologia e Ciêcias Exatas Laboratório de Física e Química Aálise de Medidas Físicas Quado fazemos uma medida, determiamos um úmero para caracterizar uma gradeza

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual

Leia mais

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra Distribuição amostral de Um dos procedimetos estatísticos mais comus é o uso de uma média da amostra ( ) para fazer iferêcias sobre uma população de média µ. Esse processo é apresetado a figura abaio.

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais O problema da iferêcia estatística: fazer uma afirmação sobre os parâmetros da população θ (média, variâcia, etc) através da amostra. Usaremos uma AAS de elemetos sorteados dessa

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

Medidas de Posição. É igual ao quociente entre a soma dos valores do conjunto e o número total dos valores.

Medidas de Posição. É igual ao quociente entre a soma dos valores do conjunto e o número total dos valores. Medidas de Posição São as estatísticas que represetam uma série de dados orietado-os quato à posição da distribuição em relação ao eixo horizotal do gráfico da curva de freqüêcia As medidas de posições

Leia mais

n i=1 X i n X = n 1 i=1 X2 i ( n i=1 X i) 2 n

n i=1 X i n X = n 1 i=1 X2 i ( n i=1 X i) 2 n Exercício 1. As otas fiais de um curso de Estatística foram as seguites 7, 5, 4, 5, 6, 1, 8, 4, 5, 4, 6, 4, 5, 6, 4, 6, 6, 4, 8, 4, 5, 4, 5, 5 e 6. a. Determie a mediaa, os quartis e a média. Resposta:

Leia mais

Arquivo de Índice (Revisão) Indexação de Arquivos II: Arquivos de Índice Grandes. Arquivos de Índice Grandes

Arquivo de Índice (Revisão) Indexação de Arquivos II: Arquivos de Índice Grandes. Arquivos de Índice Grandes Algoritmos e Estruturas de Dados II Prof. Debora Medeiros Arquivo de Ídice (Revisão) Idexação de Arquivos II: Exemplo Prático (Arquivo de Músicas) Ídices Simples Grades & Idexação Secudária Adaptado e

Leia mais

O jogo MAX_MIN - Estatístico

O jogo MAX_MIN - Estatístico O jogo MAX_MIN - Estatístico José Marcos Lopes Resumo Apresetamos este trabalho um jogo (origial) de treiameto para fortalecer os coceitos de Média, Mediaa, Moda, Desvio Padrão e Desvio Médio da Estatística

Leia mais

Distribuições de Estatísticas Amostrais e Teorema Central do Limite

Distribuições de Estatísticas Amostrais e Teorema Central do Limite Distribuições de Estatísticas Amostrais e Teorema Cetral do Limite Vamos começar com um exemplo: A mega-sea de 996 a N 894 úmeros de a 6: Média: m 588 Desvio padrão: 756 49 amostras de 6 elemetos Frequêcia

Leia mais

Chama-se sequência ou sucessão numérica, a qualquer conjunto ordenado de números reais.

Chama-se sequência ou sucessão numérica, a qualquer conjunto ordenado de números reais. Progressões Aritméticas Itrodução Chama-se sequêcia ou sucessão umérica, a qualquer cojuto ordeado de úmeros reais. Exemplo: 7; 0; 3;... ; 34 Uma seqüêcia pode ser iita ou iiita. 7; 0; 3; 6;... esta sequêcia

Leia mais

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO

Leia mais

O Problema da Ordenação Métodos de Ordenação Parte 1

O Problema da Ordenação Métodos de Ordenação Parte 1 Métodos de Ordenação Parte 1 SCC-201 Introdução à Ciência da Computação II Rosane Minghim 2010 Ordenação (ou classificação) é largamente utilizada Listas telefônicas e dicionários Grandes sistemas de BD

Leia mais

Bases e dimensão. Roberto Imbuzeiro Oliveira. 22 de Março de 2012

Bases e dimensão. Roberto Imbuzeiro Oliveira. 22 de Março de 2012 Bases e dimesão Roberto Imbuzeiro Oliveira 22 de Março de 2012 1 Defiições básicas Nestas otas X é espaço vetorial com mais de um elemeto sobre o corpo F {R, C}. Uma base (ão ecessariamete LI) de X é um

Leia mais

10 - Medidas de Variabilidade ou de Dispersão

10 - Medidas de Variabilidade ou de Dispersão 10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.

Leia mais

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n.

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n. Vamos observar elemetos, extraídos ao acaso e com reposição da população; Para cada elemeto selecioado, observamos o valor da variável X de iteresse. Obtemos, etão, uma amostra aleatória de tamaho de X,

Leia mais

IV - Fractais. Referência Principal: Chaos K. Alligood, T. D. Sauer, J. A. Yorke Springer (1997)

IV - Fractais. Referência Principal: Chaos K. Alligood, T. D. Sauer, J. A. Yorke Springer (1997) IV - Fractais Referêcia Pricipal: Chaos K. Alligood, T. D. Sauer, J. A. Yorke Spriger (1997) Geometria Fractal Geometria euclideaa descreve órbitas regulares (periódicas e quase-periódicas) Geometria fractal

Leia mais

EPR 007 Controle Estatístico de Qualidade

EPR 007 Controle Estatístico de Qualidade EP 7 Cotrole Estatístico de Qualidade Prof. Dr. Emerso José de Paiva Gráficos e tabelas origiadas de Costa, Epprecht e Carpietti (212) 1 Num julgameto, ifelizmete, um iocete pode ir pra cadeia, assim como

Leia mais

Problemas de Afectação

Problemas de Afectação Problemas de Afectação Problema de afectação Caso particular de programação liear Caso particular do problema de trasportes Permite uma solução particular mais simples que os dois casos ateriores Aplicações

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

Sequências Reais e Seus Limites

Sequências Reais e Seus Limites Sequêcias Reais e Seus Limites Sumário. Itrodução....................... 2.2 Sequêcias de Números Reais............ 3.3 Exercícios........................ 8.4 Limites de Sequêcias de Números Reais......

Leia mais

Distribuição Amostral da Média: Exemplos

Distribuição Amostral da Média: Exemplos Distribuição Amostral da Média: Eemplos Talvez a aplicação mais simples da distribuição amostral da média seja o cálculo da probabilidade de uma amostra ter média detro de certa faia de valores. Vamos

Leia mais

3ª Lista de Exercícios de Programação I

3ª Lista de Exercícios de Programação I 3ª Lista de Exercícios de Programação I Istrução As questões devem ser implemetadas em C. 1. Desevolva um programa que leia dois valores a e b ( a b ) e mostre os seguites resultados: (1) a. Todos os úmeros

Leia mais

1 Amintas engenharia

1 Amintas engenharia 1 Amitas egeharia 2 Cálculo Numérico 1. Itrodução Amitas Paiva Afoso 3 1. Itrodução O que é o Cálculo Numérico? 4 1. Itrodução O Cálculo Numérico correspode a um cojuto de ferrametas ou métodos usados

Leia mais

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral 6 ESTIMAÇÃO 6.1 Estimativa de uma média populacioal: grades amostras Defiição: Um estimador é uma característica amostral (como a média amostral x ) utilizada para obter uma aproximação de um parâmetro

Leia mais

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 0 Profa Maria Atôia Gouveia 6 A figura represeta um cabo de aço preso as etremidades de duas hastes de mesma altura h em relação a uma plataforma horizotal A represetação

Leia mais

Estatística Aplicada Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluno(a):

Estatística Aplicada Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluno(a): Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluo(a): # Objetivo desta aula: Calcular as medidas de tedêcia cetral: média, moda e mediaa para distribuições de frequêcias potuais e por itervalos de classes.

Leia mais

Mineração de Dados em Biologia Molecular

Mineração de Dados em Biologia Molecular Mieração de Dados em Biologia Molecular Tópicos Adré C. P. L. F. de Carvalho Moitor: Valéria Carvalho Preparação de dados Dados Caracterização de dados Istâcias e Atributos Tipos de Dados Exploração de

Leia mais

Análise e Síntese de Algoritmos. Revisão CLRS, Cap. 1-3

Análise e Síntese de Algoritmos. Revisão CLRS, Cap. 1-3 Aálise e Sítese de Algoritmos Revisão CLRS, Cap. 1-3 Resumo Algoritmos Aálise de algoritmos Sítese de algoritmos Notação assimptótica Outra otação utilizada Somatórios 2007/2008 Aálise e Sítese de Algoritmos

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teoria da amostragem

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teoria da amostragem Estatística: Aplicação ao Sesoriameto Remoto SER 04 - ANO 017 Teoria da amostragem Camilo Daleles Reó camilo@dpi.ipe.br http://www.dpi.ipe.br/~camilo/estatistica/ Algumas Cosiderações... É importate ter

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações

Leia mais

Números primos, números compostos e o Teorema Fundamental da Aritmética

Números primos, números compostos e o Teorema Fundamental da Aritmética Polos Olímpicos de Treiameto Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 4 Números primos, úmeros compostos e o Teorema Fudametal da Aritmética 1 O Teorema Fudametal da Aritmética

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré. 1 Sequências de números reais 1

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré.  1 Sequências de números reais 1 Matemática Essecial Sequêcias Reais Departameto de Matemática - UEL - 200 Ulysses Sodré http://www.mat.uel.br/matessecial/ Coteúdo Sequêcias de úmeros reais 2 Médias usuais 6 3 Médias versus progressões

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E

MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E Medidas de Tedêcia Cetral Itrodução... 1- Média Aritmética... - Moda... 3- Mediaa... Medidas de Dispersão 4- Amplitude Total... 5- Variâcia

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1 MAE 229 - Itrodução à Probabilidade e Estatística II Resolução Lista 1 Professor: Pedro Moretti Exercício 1 (a) Fazer histograma usado os seguites dados: Distribuição de probabilidade da variável X: X

Leia mais

Ordenação: Introdução e métodos elementares. Algoritmos e Estruturas de Dados II

Ordenação: Introdução e métodos elementares. Algoritmos e Estruturas de Dados II Ordeação: Itrodução e métodos elemetares Algortmos e Estruturas de Dados II Ordeação Objetvo: Rearrajar os tes de um vetor ou lsta de modo que suas chaves estejam ordeadas de acordo com alguma regra Estrutura:

Leia mais

1. Em cada caso abaixo, encontre os quatro primeiros termos da sequência: p n (c) cn = ( 1) n n:

1. Em cada caso abaixo, encontre os quatro primeiros termos da sequência: p n (c) cn = ( 1) n n: . SEQUÊNCIAS NUMÉRICAS SÉRIES & EDO - 207.2.. :::: ::::::::::::::::::::::::::::::::::::::: TERMO GERAL & CLASSIFICAÇÃO. Em cada caso abaixo, ecotre os quatro rimeiros termos da sequêcia: (a) a = 2 (b)

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

ESCOLA ONLINE DE CIÊNCIAS FORMAIS CURSO DE INTRODUÇÃO À LÓGICA MATEMÁTICA (3) MÉTODO AXIOMÁTICO E TEORIAS FORMAIS AULA 10 VERDADE DE TARSKI (PARTE 1)

ESCOLA ONLINE DE CIÊNCIAS FORMAIS CURSO DE INTRODUÇÃO À LÓGICA MATEMÁTICA (3) MÉTODO AXIOMÁTICO E TEORIAS FORMAIS AULA 10 VERDADE DE TARSKI (PARTE 1) AULA 10 VERDADE DE TARSKI (PARTE 1) Iterpretação Uma iterpretação I de uma liguagem de primeira ordem cosiste em: Um domíio D de iterpretação; Para cada costate idividual, atribuímos como seu sigificado

Leia mais

Probabilidade II Aula 9

Probabilidade II Aula 9 Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas

Leia mais