EXEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "EXEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS"

Transcrição

1 EEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS Exemplo: Peso de 25 bolos ndustras Forma bruta: Dsposção ordenada Nº de lotes: 0 ; 3 ; 4 ; 2 ; 2 ; 1 ; 2 (n = 7) Nº de peddos: (n = 26) 5 ; 7 ; ; 7 ; 6 ; 7 ; ; 10 ; 6 ; ; 7 ; ; 7 ; 7 ; ; 5 ; 6 ; ; 7 ; 6 ; 7 ; 5 ; 6 ; ; 7 ; 6 f Total 26 Peso dos bolos: (n=125) PESO Frequênca I I I I I I I I Total Estatístca Exemplos Profª Raquel Cymrot

2 Exemplo do nº de peddos f fac f f f ,92 5, ,92 5, ,0 0, ,0 7, ,0 3, Total 26 22, Exemplo do peso dos bolos Peso f fac f 250 I ,5 1 1,64 1,64 252, , I , ,64 122, , , I ,5 30,64 172, , I ,5 56 3,64 94, , I ,5 6 1,36 40, , I , ,36 114, ,50 20 I , ,36 204, ,50 25 I , ,36 49,0 62, ,75 Total ,6 3392, ,25 1)Suponha que a probabldade de que um engenhero de materas utlze estatístca em seu exercíco profssonal seja 0,20 Se durante a vda profssonal, um engenhero tver cnco empregos dstntos, qual a probabldade de que ele utlze estatístca em pelo menos um destes empregos 2)Uma peça pode ser de qualdade nferor devdo, entre outras cosas, a ser muto flexível ou a ter as dmensões fora da tolerânca Em uma prova de controle de qualdade se encontra 10% das peças com ambos os defetos Também se descobre que 25% das peças são muto flexíves e que 30% das peças tem as dmensões fora da tolerânca Calcule a probabldade de que uma peça, escolhda aleatoramente, não seja muto flexível e não tenha as dmensões fora da tolerânca 3)Seja a quantdade de certo produto (em mlhares de undade) e Y o respectvo custo total de produção (em mlhares de reas) Sabemos que exste uma relação aproxmadamente lnear entre e Y e que Y 3+4 Se a quantdade méda produzda for de 5,5 mlhares de undades com desvo padrão da quantdade produzda gual a 2,0 mlhares de undades: a)qual será o custo médo total? b)qual será a varânca do custo total? 4)Num controle de qualdade são retradas duas peças para serem nspeconadas Sabemos que a probabldade de uma peça ser rejetada é gual a 0,01 Seja o número total de peças rejetadas e Y o número de peças rejetadas quando só a prmera peça fo nspeconada a)determne a dstrbução conjunta de e Y b)determne as dstrbuções margnas de e Y c)determne a covarânca de e Y d)determne o coefcente de correlação de e Y 5)A Islander Fshng Company compra marscos a $1,50 a lbra dos pescadores de Peconc Bay para vender para város restaurantes de Nova York a $2,50 a lbra Qualquer quantdade de marscos não f f 2 Estatístca Exemplos Profª Raquel Cymrot

3 vendda aos restaurantes até o fnal de semana, pode ser vendda para um fabrcante de sopas local por $0,50 a lbra As probabldades dos dversos níves de demanda são dadas a segur: Demanda (lbras) Probabldade 500 0, , ,4 a)se o varejsta comprar 1000 lbras, calcule o lucro (ou prejuízo) para cada nível de demanda Qual será o lucro esperado? b)se o varejsta comprar 1500 lbras, calcule o lucro (ou prejuízo) para cada nível de demanda Qual será o lucro esperado? 6)Um fabrcante afrma que a probabldade de uma máquna não precsar usar a garanta é de 5% Você compra cnco máqunas para a sua ndústra a)qual a probabldade de três máqunas precsarem utlzar a garanta? b)assumndo que a afrmação é verdadera, qual a chance de você obter resultados tão runs ou pores que três máqunas precsarem utlzar a garanta? c)qual o número esperado de máqunas que precsarão utlzar a garanta? d)qual a varânca e qual o desvo padrão do número de máqunas que precsarão usar a garanta? 7)Exemplo de aplcação da dstrbução Bnomal e da dstrbução de Posson: (normas da ABTN) É dada a tabela de escolha do códgo de amostra em função do tamanho do lote e do nível de nspeção ANEO A - Tabela 1 - Codfcação de amostragem Níves especas de nspeção Tamanho do lote 2 a 9 a a a a a a a a a a a a a Acma de Níves geras de nspeção S1 S2 S3 S4 I II III A A A A A A B A A A A A B C A A B B B C D A B B C C D E B B C C C E F B B C D D F G B C D E E G H B C D E F H J C C E F G J K C D E G H K L C D F G J L M C D F H K M N D E G J L N P D E G J M P Q D E H K N Q R Supomos que o lote tenha tamanho acma de e que fo adotado o nível de nspeção S1 Devemos utlzar, então, o códgo de amostras D Utlzando a tabela 2 plano de amostragem smples Normal (NBR5426/195), temos: Pelo plano de amostragem smples, com NQA = 1,5 temos que o tamanho da amostra deve se gual a oto Devemos rejetar o lote caso encontremos pelo menos um elemento defetuoso entre os oto elementos examnados Se não encontrarmos elemento defetuoso, devemos acetar o lote Pelo plano de amostragem smples, com NQA = 6,5 temos que o tamanho da amostra deve se gual a oto Devemos rejetar o lote caso encontremos pelo menos dos elementos defetuoso entre os oto elementos examnados Se encontrarmos no máxmo um elemento defetuoso entre os oto elementos examnados, devemos acetar o lote Pelo plano de amostragem smples, se desejamos utlzar um NQA = 4,0 temos que o tamanho da amostra deve se gual a treze (flecha para baxo) Devemos rejetar o lote caso encontremos pelo menos dos elementos defetuoso entre os treze elementos examnados Se encontrarmos no máxmo um elemento defetuoso entre os treze elementos examnados, devemos acetar o lote Podemos calcular as probabldades de acetação dos lotes, baseado nas dstrbuções Bnomal e Posson Estatístca Exemplos Profª Raquel Cymrot

4 ABNT - NBR 5426 Planos de amostragem e procedmentos na nspeção por atrbutos QUALIDADE DO LOTE (p, em % defetuosa para NQA< = 10; em defetos por 100 undades para NQA >10) Tabela 29 - Códgo D (n=) - Valores tabulados para CCO de planos de amostragem smples NQA (Inspeção normal) P a 1,5 6,5 10 1,5 6, x 65 x 100 x 150 x 250 x 400 p (% defetuosa) p (defetos por 100 undades) 99,0 0,13 2,00 6,00 0,13 1,6 5,45 10,3 22,3 36,3 43, 59,6 76,2 93, ,0 0,64 4,64 11,1 0,64 4,44 10,2 17,1 32,7 49, 5,7 77,1 96, ,0 1,31 6, 14,7 1,31 6,65 13, 21, 39,4 5,2 67,9 7, ,0 3,53 12,1 22,1 3,60 12,0 21,6 31,7 52,7 74,5 5, ,0,30 20,1 32,1,66 21,0 33,4 45,9 70,9 95, ,0 15,9 30,3 43,3 17,3 33,7 49,0 63,9 92, ,0 25,0 40,6 53,9 2, 4,6 66,5 3, ,0 31,2 47,1 59,9 37,5 59,3 7,7 96, ,0 43, 5, 70,7 57,6 3, ,5 10 x 2, x 65 x 100 x 150 x 250 x 400 x NQA (Inspeção severa) Nota: Valores baseados na dstrbução bnomal para % defetuosa e na de Posson para "defetos por 100 undades" Códgo D, n =, NQA = 1,5, Ac = 0 Re = 1 Códgo D, n =, NQA = 6,5, Ac = 1 Re = 2 P 0 0 ( Ac ) = (1 p) p = 0 para p = 0,13% (1 p) = (1 0,0013 ) = 0,997 = 0, % para p = 2,00% 0,900 + x0,900 para p = 0,64% (1 p) = (1 0,0064 ) = 0,9936 = 0, % para p = 4,64% 0,9536 para p = 1,31% (1 p) = (1 0,0131) = 0,969 = 0,99 90% para p = 6,% 0,9312 para p = 43,% (1 p) = (1 0,43) = 0,5620 = 0, % para p = 5,% 0,4120 P ( Ac) (1 p) p (1 p) p + x0, x0, x0, x0,0200 = 0, % x0,0464 = 0, % x0,06 = 0, % x0,50 = 0, % Estatístca Exemplos Profª Raquel Cymrot

5 Seja p o nº de defetos por 100 undades e n o tamanho da amostra examnada Temos λ = np Seja o número de tens defetuosos na amostra examnada P( = x) = λ e x! x λ Códgo D, n =, NQA = 1,5, Ac = 0 Re = 1 e P( Ac) = o! λ 0 λ λ 0,0104 Para p = 0,0013 λ = x 0,0013 = 0,0104 P ( Ac) = 0, % 0,0512 Para p = 0,0064 λ = x 0,0064 = 0,0512 P ( Ac) = 0, % Para p = 0,0131 λ = x 0,0131 = 0,104 0,104 P ( Ac) = 0, % Para p = 0,5760 λ = x 0,5760 = 4,600 4,600 P ( Ac) = 0, % Códgo D, n =, NQA = 6,5, Ac = 1 Re = 2 P( Ac) = λ 0 λ 1 e λ e λ + o! 1! λ (1 + λ) 0,14 Para p = 0,016 λ = x 0,016 = 0,14 P ( Ac) (1 + 0,14) = 0, % 0,3552 Para p = 0,0444 λ = x 0,0444 = 0,3552 P ( Ac) (1 + 0,3552) = 0, % 0,5320 Para p = 0,0665 λ = x 0,0665 = 0,5320 P ( Ac) (1 + 0,5320) = 0, % 6,6400 Para p = 0,300 λ = x 0,300 = 6,6400 P ( Ac) (1 + 6,6400) = 0, % Estatístca Exemplos Profª Raquel Cymrot

6 )Referente ao exemplo 61 pg 165 Estudos anterores revelam a exstênca de um grande lençol de água no subsolo de uma regão No entanto, sua profunddade anda não fo determnada, sabendo-se apenas que o lençol pode estar stuado em qualquer ponto entre 20 e 100 metros Seja a profunddade em que uma sonda detectou o lençol de água 1 para 20 x a)mostre que f ( x) = é uma função de probabldade 0 para x < 20ou x > 100 b)determne a probabldade da profunddade da água estar entre 50 e 60 metros 9)O peso de uma lata de certo produto tem dstrbução normal com méda de 1,05 kg e desvo padrão de 0,02 kg a)se o peso escrto na embalagem for de 1 kg, qual a probabldade da lata estar abaxo do peso? b)qual o número esperado de latas abaxo do peso se foram produzdas 200 latas? 10)Suponha que os clentes cheguem a um caxa automátco de um banco a uma taxa de 20 por hora Se um clente acabou de chegar, qual é a probabldade que o próxmo clente chegue dentro de 6 mnutos? 11)O consumo dáro de nafta em um coletvo é uma varável aleatóra normal com méda de 100 ltros e desvo padrão de 11 ltros O ltro de nafta custa $40,00 por ltro O motorsta leva a conta ao propretáro após 30 das de trabalho Se em dos períodos consecutvos a conta apresentada fo superor a $126600,00, há motvo para se suspetar da honestdade do motorsta? 12)Sabe-se que a vda de lâmpadas elétrcas tem dstrbução aproxmadamente exponencal, com vda méda de horas Determne a percentagem das lâmpadas que quemarão antes de 5000 horas 13)Uma ndústra produzu peças plástcas para uso no ramo de eletro-eletrôncos em um da de trabalho, sendo 7500 peças produzdas em cada uma das quatro máqunas njetoras de polímeros exstentes na ndústra Cada stuação abaxo corresponde a um tpo de amostragem, a saber: amostragem casual smples (ACS), amostragem sstemátca (AS), amostragem estratfcada (AE) e amostragem por conglomerado (AC) Identfque cada amostragem e dga qual é a mas convenente ( ) Sortear 25 peças provenentes de cada máquna njetora para serem avaladas quanto às dmensões especfcadas pelo clente ( ) Sortear 100 peças de uma lsta de peças para serem avaladas quanto às dmensões especfcadas pelo clente ( ) Sortear, por exemplo, a 27ª peça de cada grupo de 300 peças para ser avalada quanto às dmensões especfcadas pelo clente, grupos estes formados na seqüênca das peças lstadas ( ) Sortear uma das máqunas njetoras e então sortear 100 peças de uma lsta de 7500 peças desta máquna para serem avaladas quanto às dmensões especfcadas pelo clente 14)Contnuação modfcada do exemplo 720 pg 232 Estatístca Exemplos Profª Raquel Cymrot

7 Se o provedor de acesso à Internet quer que sua estmatva do tempo médo das conexões tenha uma margem de no máxmo ± 0,5, qual devera ser o tamanho da amostra, utlzando a mesma confança? 15)Contnuação modfcada do exercíco 22 pg 25 Se desejamos que a estmatva não se afaste do verdadero valor da resstênca méda de ruptura por mas de 15 kg, com confança de 95%, quantos cabos adconas devem ser testados? 16)Uma amostra aleatóra de 50 capacetes de corredores de motos e de automóves fo sujeta a um teste de mpacto, sendo observado algum dano em 1 desses capacetes a)encontre um ntervalo de confança 95% para a proporção verdadera de capacetes desse tpo, que mostrara algum dano provenente desse teste b)usando a estmatva de p obtda a partr da amostra prelmnar de 50 capacetes, quantos capacetes devem ser testados para estarmos 95% confantes de que o erro na estmação do valor verdadero de p seja menor do que 0,02? c)quão grande terá de ser a amostra se desejarmos estar no mínmo 95% confantes de que o erro na estmação do valor verdadero de p seja menor do que 0,02, ndependente do valor verdadero de p? 17) O gerente de controle de qualdade de uma fábrca de lâmpadas de flamento quer calcular a vda útl méda das lâmpadas Sabe-se que a remessa contém um total de 2000 lâmpadas e que uma amostra aleatóra de 50 lâmpadas ndcou uma vda útl méda da amostra gual a 350 horas O gerente supõe que o desvo padrão do processo é de 100 horas a)desenvolva uma estmatva, com ntervalo de confança de 95% da verdadera méda de vda útl das lâmpadas nessa remessa b)determne o tamanho de amostra necessáro para se calcular a vda útl méda, em uma margem de ± 20 horas, com 95% de confança 1)O conteúdo de açúcar na calda de pêssegos em lata é normalmente dstrbuído Uma amostra aleatóra de n = 10 latas resultou com um desvo padrão s = 4, mg Encontre um ntervalo com 95% de confança para o desvo padrão do conteúdo de açúcar na calda 19)Carta de controle para a méda ( ) e para a ampltude ( R ) Especfcação: 225 a 275 g Atvdade: produção de bolo ndustral Característca: peso do bolo (em g) Tamanho da amostra: 5 peças Freqüênca méda das retradas de amostras: de ½ em ½ hora Total de amostras: 25 Estatístca Exemplos Profª Raquel Cymrot

8 horáro : : : : : : : : : : : : : : : : : : : : : : : : : R GABARITO: horáro R 07: , 16 07: ,0 25 0: ,0 1 0: , : , : , 23 10: , 20 10: , : , : ,6 9 12: ,4 12: , : ,4 2 13: , : , : , : , : , : , : ,2 1 17: ,4 9 17: ,4 1: ,2 10 1: ,0 9 19: ,0 16 Estatístca Exemplos Profª Raquel Cymrot

9 =270,43 ; R = 14,64 ; n = 5 ; A 2 = 0,577 ; D 3 não exste ; D 4 = 2,114 ; d 2 = 2,326 R 14,64 ˆ σ = = = 6,29 ; ˆ µ = = 270, 43 d 2,326 2 LSC = + A2 R = 270,43 + 0,577 x 14,64 = 27, LIC = A2 R = 270,43 0,577 x 14,64 = 261, 9 LSC R = D 4 R = 2,114 x 14,64 = 30,95 LIC R não exste Carta de controle para méda e R para o peso do bolo ndustral Sample Mean Subgroup UCL=27,9 Mean=270,4 LCL=262,0 30 UCL=30,96 Sample Range R=14,64 LCL=0 O processo está estável Especfcação: 225 a 275 g tolerânca ( LSE LIE) 50 C p = = = = 1,32 > 1 dspersão 6 ˆ σ 6 x 6,29 ( LIE) 270, ( LSE ) ,43 Z = = = 7,22 e Z = = 0, 73 ˆ s = σ 6,29 ˆ σ 6,29 Z mn mn( Z, Z s ) 0,73 C pk = = = = 0,24 < 1 o processo não é capaz C p C pk O processo não está centralzado P(fora da especfcação) = P(Z < Z ) + P(Z > Z s ) = P(Z < 7,22) + P(Z > 0,73) = 0 + ( 1 P(Z 0,73) ) = 1 0,7673 = 0,2327 Estatístca Exemplos Profª Raquel Cymrot

Nº de pedidos: (n = 26) 5 ; 7 ; 8 ; 7 ; 6 ; 7 ; 8 ; 10 ; 6 ; 8 ; 7 ; 8 ; 7 ; 7 ; 8 ; 5 ; 6 ; 8 ; 7 ; 6 ; 7 ; 5 ; 6 ; 8 ; 7 ; 6

Nº de pedidos: (n = 26) 5 ; 7 ; 8 ; 7 ; 6 ; 7 ; 8 ; 10 ; 6 ; 8 ; 7 ; 8 ; 7 ; 7 ; 8 ; 5 ; 6 ; 8 ; 7 ; 6 ; 7 ; 5 ; 6 ; 8 ; 7 ; 6 EXEMPLOS ADICIONAIS DA ENGENHARIA ELÉTRICA 1)Suponha que a probabldade de que um engenhero elétrco utlze estatístca em seu exercíco profssonal seja 0,20 Se durante a vda profssonal, um engenhero tver cnco

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais Ano lectvo: 2006/2007 Unversdade da Bera Interor Departamento de Matemátca ESTATÍSTICA Fcha de exercícos nº2: Dstrbuções Bdmensonas Curso: Cêncas do Desporto 1. Consdere a segunte tabela de contngênca:

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 3 quadrimestre 2011

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 3 quadrimestre 2011 BC0406 Introdução à Probabldade e à Estatístca Lsta de Eercícos Suplementares novembro 0 BC0406 Introdução à Probabldade e à Estatístca Lsta de Eercícos Suplementares quadrmestre 0 Além destes eercícos,

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard Estatístca 8 Teste de Aderênca UNESP FEG DPD Prof. Edgard 011 8-1 Teste de Aderênca IDÉIA: descobrr qual é a Dstrbução de uma Varável Aleatóra X, a partr de uma amostra: {X 1, X,..., X n } Problema: Seja

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Análise de Regressão Linear Múltipla IV

Análise de Regressão Linear Múltipla IV Análse de Regressão Lnear Múltpla IV Aula 7 Guarat e Porter, 11 Capítulos 7 e 8 He et al., 4 Capítulo 3 Exemplo Tomando por base o modelo salaro 1educ anosemp exp prev log 3 a senhorta Jole, gerente do

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Associação entre duas variáveis quantitativas

Associação entre duas variáveis quantitativas Exemplo O departamento de RH de uma empresa deseja avalar a efcáca dos testes aplcados para a seleção de funconáros. Para tanto, fo sorteada uma amostra aleatóra de 50 funconáros que fazem parte da empresa

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias.

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias. Classque as varáves: Faculdade Ptágoras / Dvnópols-MG Curso: Pscologa Dscplna: Estatístca Aplcada à Pscologa Lsta de Eercícos a) número de peças produzdas por hora; b) dâmetro eterno da peça; c) número

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor.

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor. Estatístca Exercícos 1. (Enem 013) Fo realzado um levantamento nos 00 hotés de uma cdade, no qual foram anotados os valores, em reas, das dáras para um quarto padrão de casal e a quantdade de hotés para

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

FAAP APRESENTAÇÃO (1)

FAAP APRESENTAÇÃO (1) ARESENTAÇÃO A Estatístca é uma cênca que organza, resume e smplfca nformações, além de analsá-las e nterpretá-las. odemos dvdr a Estatístca em três grandes campos:. Estatístca Descrtva- organza, resume,

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Variável discreta: X = número de divórcios por indivíduo

Variável discreta: X = número de divórcios por indivíduo 5. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Centfca Curso Matemátca Engenhara Electrotécnca º Semestre º 00/0 Fcha nº 9. Um artgo da revsta Wear (99) apresenta dados relatvos à vscosdade do óleo e ao desgaste do aço maco. A relação entre estas

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

Medidas de Tendência Central. Prof.: Ademilson Teixeira

Medidas de Tendência Central. Prof.: Ademilson Teixeira Meddas de Tendênca Central Prof.: Ademlson Texera ademlson.texera@fsc.edu.br 1 Servem para descrever característcas báscas de um estudo com dados quanttatvos e comparar resultados. Meddas de Tendênca Central

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

2ª ACTIVIDADE ESCRITA DE MATEMÁTICA A 12.º C 2009 NOVEMBRO 20 Duração da prova: 45 minutos VERSÃO 1. Grupo I

2ª ACTIVIDADE ESCRITA DE MATEMÁTICA A 12.º C 2009 NOVEMBRO 20 Duração da prova: 45 minutos VERSÃO 1. Grupo I ª ATIVIDADE ESRITA DE MATEMÁTIA A.º 009 NOVEMBRO 0 Duração da prova 4 mnutos VERSÃO Grupo I Para cada uma das três questões deste grupo, seleccone a resposta correcta de entre as alternatvas que lhe são

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

Análise de Regressão Linear Múltipla VII

Análise de Regressão Linear Múltipla VII Análse de Regressão Lnear Múltpla VII Aula 1 Hej et al., 4 Seções 3. e 3.4 Hpótese Lnear Geral Seja y = + 1 x 1 + x +... + k x k +, = 1,,..., n. um modelo de regressão lnear múltpla, que pode ser escrto

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

Classificação de Padrões

Classificação de Padrões Classfcação de Padrões Introdução Classfcadores Paramétrcos Classfcadores Sem-paramétrcos Redução da Dmensonaldade Teste de Sgnfcânca 6.345 Sstema de Reconhecmento de Voz Teora Acústca da Produção de Voz

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (,): A redução da

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

PROBABILIDADE - CONCEITOS BÁSICOS

PROBABILIDADE - CONCEITOS BÁSICOS ROBBILIDD - CONCITOS BÁSICOS xpermento leatóro é um expermento no qual: todos os possíves resultados são conhecdos; resulta num valor desconhecdo, dentre todos os resultados possíves; pode ser repetdo

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Controle Estatístico de Qualidade. Capítulo 8 (montgomery)

Controle Estatístico de Qualidade. Capítulo 8 (montgomery) Controle Estatístco de Qualdade Capítulo 8 (montgomery) Gráfco CUSUM e da Méda Móvel Exponencalmente Ponderada Introdução Cartas de Controle Shewhart Usa apenas a nformação contda no últmo ponto plotado

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP, NO PÓLO GESSEIRO DO ARARIPE Jáder da Slva Jale Joselme Fernandes Gouvea Alne Santos de Melo Denns Marnho O R Souza Kléber Napoleão Nunes de

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas Faculdade de cooma Uversdade Nova de Lsboa STTÍSTIC xame Fal ª Época de Juho de 00 às horas Duração : horas teção:. Respoda a cada grupo em folhas separadas. Idetfque todas as folhas.. Todas as respostas

Leia mais

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples CAPÍTULO 9 REGREÃO LINEAR IMPLE REGREÃO LINEAR IMPLE UFRG Em mutos problemas há duas ou mas varáves que são relaconadas, e pode ser mportante modelar essa relação. Por exemplo, a resstênca à abrasão de

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUERAÇÃO ARALELA 4º BIMESTRE NOME Nº SÉRIE : 2º EM DATA : / / BIMESTRE 4º ROFESSOR: Renato DISCILINA: Físca 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feto em papel almaço

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 )

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 ) DIGRM OX-PLOT E CRCTERIZÇÃO DE OUTLIERS E VLORES EXTREMOS Outlers e valores extremos são aqueles que estão muto afastados do centro da dstrbução. Uma forma de caracterzá-los é através do desenho esquemátco

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Notas de Aula de Probabilidade A

Notas de Aula de Probabilidade A VII- VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. 7. CONCEITO DE VARIÁVEIS ALEATÓRIAS: Informalmente, uma varável aleatóra é um característco numérco do resultado de um epermento aleatóro. Defnção: Uma varável

Leia mais

Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos.

Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos. Eletroquímca 2017/3 Professores: Renato Camargo Matos Hélo Ferrera dos Santos http://www.ufjf.br/nups/ Data Conteúdo 07/08 Estatístca aplcada à Químca Analítca Parte 2 14/08 Introdução à eletroquímca 21/08

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

FGE2255 Física Experimental para o Instituto de Química. Segundo Semestre de 2013 Experimento 1. Corrente elétrica

FGE2255 Física Experimental para o Instituto de Química. Segundo Semestre de 2013 Experimento 1. Corrente elétrica FGE2255 Físca Expermental para o Insttuto de Químca Segundo Semestre de 213 Expermento 1 Prof. Dr. Crstano Olvera Ed. Baslo Jafet, Sala 22 crslpo@f.usp.br Corrente elétrca q Defnção de Corrente elétrca

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

UNIVERSIDADE DOS AÇORES Curso Matemática Aplicada e Curso Livre

UNIVERSIDADE DOS AÇORES Curso Matemática Aplicada e Curso Livre UNIVERSIDADE DOS AÇORES Curso Matemátca Aplcada e Curso Lvre Sondagens e Amostragem 4º Ano º Semestre 005/006 Fcha de trabalho nº 1 Amostragem aleatóra smples 1. Uma população U é composta por cnco números,

Leia mais

Medidas de tendência central. Média Aritmética. 4ª aula 2012

Medidas de tendência central. Média Aritmética. 4ª aula 2012 Estatístca 4ª aula 2012 Meddas de tendênca central Ajudam a conhecer a analsar melhor as característcas de dados colhdos. Chamamos de meddas de tendênca central em decorrênca dos dados observados apresentarem

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL

MEDIDAS DE TENDÊNCIA CENTRAL 3.1- Introdução. ESTATÍSTICA MEDIDAS DE TENDÊNCIA CENTRAL Como na representação tabular e gráfca dos dados a Estatístca Descrtva consste num conjunto de métodos que ensnam a reduzr uma quantdade de dados

Leia mais

Controle Estatístico de Qualidade. Capítulo 6 (montgomery)

Controle Estatístico de Qualidade. Capítulo 6 (montgomery) Cotrole Estatístco de Qualdade Capítulo 6 (motgomery) Gráfcos de Cotrole para Atrbutos Itrodução Mutas característcas da qualdade ão podem ser represetadas umercamete. Nestes casos, classfcamos cada tem

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

METROLOGIA E ENSAIOS

METROLOGIA E ENSAIOS METROLOGIA E ENSAIOS Incerteza de Medção Prof. Aleandre Pedott pedott@producao.ufrgs.br Freqüênca de ocorrênca Incerteza da Medção Dstrbução de freqüênca das meddas Erro Sstemátco (Tendênca) Erro de Repettvdade

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Exercícios de CPM e PERT Enunciados

Exercícios de CPM e PERT Enunciados Capítulo 7 Exercícos de CPM e PERT Enuncados Exercícos de CPM e PERT Enuncados 106 Problema 1 O banco TTM (Tostão a Tostão se faz um Mlhão) decdu transferr e amplar a sua sede e servços centras para a

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Linear

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Linear ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11 EERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Lnear 4. EERCÍCIOS PARA RESOLVER NAS AULAS 4.1. O gestor de marketng duma grande cadea de supermercados quer determnar

Leia mais

Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas

Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas Unversdade de São Paulo Escola Superor de Agrcultura Luz de Queroz Departamento de Cêncas Exatas Prova escrta de seleção para DOUTORADO em Estatístca e Expermentação Agronômca Nome do canddato (a): Questão

Leia mais

Estatística Espacial: Dados de Área

Estatística Espacial: Dados de Área Estatístca Espacal: Dados de Área Dstrbução do número observado de eventos Padronzação e SMR Mapas de Probabldades Mapas com taxas empírcas bayesanas Padronzação Para permtr comparações entre dferentes

Leia mais

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais.

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais. 1 1Imagem Dgtal: Estatístcas INTRODUÇÃO Neste capítulo abordam-se os prncpas concetos relaconados com os cálculos de estatístcas, hstogramas e correlação entre magens dgtas. 4.1. VALOR MÉDIO, VARIÂNCIA,

Leia mais

PROBABILIDADE. 3) Jogando-se dois dados, qual a probabilidade de que a soma dos pontos obtidos seja menor que 4?

PROBABILIDADE. 3) Jogando-se dois dados, qual a probabilidade de que a soma dos pontos obtidos seja menor que 4? Segmento: ENSINO MÉDIO Dscplna: MATEMÁTICA Tpo de Atvdade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/2016 Turma: 3 A PROBABILIDADE 1) No lançamento de um dado, determnar a probabldade de se obter: a) o número

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Electromagnetismo e Óptica

Electromagnetismo e Óptica Electromagnetsmo e Óptca aboratóro - rcutos OBJETIOS Obter as curvas de resposta de crcutos do tpo sére Medr a capacdade de condensadores e o coefcente de auto-ndução de bobnas por métodos ndrectos Estudar

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (5,5): A redução da

Leia mais

Modelagem da proporção de produtos defeituosos usando Modelo de Quase-verossimilhança

Modelagem da proporção de produtos defeituosos usando Modelo de Quase-verossimilhança XXV Encontro Nac. de Eng. de Produção Porto Alegre, RS, Brasl, 29 out a 01 de nov de 2005 Modelagem da proporção de produtos defetuosos usando Modelo de Quase-verossmlhança Ângelo Márco O. Sant Anna (UFRGS)

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

PREFEITURA MUNICIPAL DE CURITIBA

PREFEITURA MUNICIPAL DE CURITIBA Especfcação de Servço Págna 1 de 9 1. DEFINIÇÃO Reforço do subleto é a camada que será executada com espessura varável, conforme defnção de projeto, nos trechos em que for necessáro a remoção de materal

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e Teora da Decsão Logístca e Gestão de Stocks Estratégas de Localzação Lcencatura em Engenhara Cvl Lcencatura em Engenhara do Terrtóro 1 Estratéga de Localzação Agenda 1. Classfcação dos problemas

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória Departamento de Informátca Dscplna: do Desempenho de Sstemas de Computação Varável leatóra Prof. Sérgo Colcher colcher@nf.puc-ro.br Varável leatóra eal O espaço de amostras Ω fo defndo como o conjunto

Leia mais