Conceitos Básicos, Básicos,Básicos de Probabilidade

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Conceitos Básicos, Básicos,Básicos de Probabilidade"

Transcrição

1 Conceitos Básicos, Básicos,Básicos de Probabilidade

2 Espaço Amostral Base da Teoria de Probabilidades Experimentos são realizados resultados NÃO conhecidos previamente Experimento aleatório Exemplos: Determinar a execução de um programa; verificar o número de requisições que chegam em um servidor web em um intervalo de tempo Definição(Espaço Amostral): Conjunto de todos os resultados possíveis de um experimento aleatório é chamado de ESPAÇO AMOSTRAL de um experimento. Denotaremos por S

3 Espaço Amostral Dimensão do espaço amostral será definida pelo propósito final do experimento sendo realizado. Exemplo: Status de 2 componentes 1) Descrever o total de equipamentos em funcionamento; S = {0,1,2} 2) Descrever QUAL o componente está falho(0) ou em funcionamento (1); S = {(0,0), (0,1),(1,0),(1,1)} Espaço Amostral Discreto e Continuo

4 Eventos Evento é um subconjunto do espaço amostral. Uma instância de um experimento é chamada de tentativa (trial) Seja E um evento definido no espaço amostral S, ou seja, E é um sub-conjunto de S. Seja s o resultado de uma tentativa, com s Є S. Se s é um elemento de E, o evento E ocorreu.

5 Eventos Exemplo 1: Voltando ao exemplo de 2 componentes... Seja A o evento descrito por: Exatamente um componente falhou {(0,1),(1,0)} Exemplo 2: Observar o tempo para que um componente falhe Espaço amostral: conjunto de todos os numéros reais [0, ) Evento de interesse: Componente não falhou antes do tempo t {x x >= t } [t, )

6 Axiomas de Probabilidade P(A) probabilidade da ocorrência do evento A, no espaço amostral S Seja S o espaço amostral de um experimento aleatório. Usamos P(A) para denotar a probabilidade associada ao evento A. Se o evento A consiste em um único ponto s então P(A) = P({s})=P(s)

7 Axiomas de Kolmogorov (A1) Para qualquer evento A, P(A) >= 0 (A2) P(S) = 1 (A3) P(A U B) = P(A) + P(B) se A e B são mutuamente exclusivos (A B = 0) Relações Utéis (R1) Para qualquer evento A, P(A) 1 P(A) (R2) Se C é um evento impossível, então P(C) = 0 (R3) Se A e B são qualquer eventos, não necessariamente mutualmente exclusivos, então P(A U B) = P(A) + P(B) - P(A B)

8 Probabilidade Condicional Suponha que tenhamos uma informação adicional que o resultado s de uma tentativa está contido em um subconjunto B de um espaço amostral, com P(B) 0. O conhecimento da ocorrência de B pode mudar a probabilidade de ocorrência do evento A Objetivo: Definir a PROBABILIDADE CONDICiONAL do evento A dado que o evento B tenha ocorrido P(A B)

9 Probabilidade Condicional Definição: A probabilidade condicional A dado B é dada por: P(A B) = P(A B)/P(B) Regra Multiplicativa: P(A B) = P(B)P(A B); P(B) 0 P(A)P(B A); P(A) 0 0; caso contrário

10 Independência de Eventos A probabilidade da ocorrência de um evento A pode aumentar ou diminuir dado que o evento B tenho ocorrido. Se a probabilidade do evento A não muda mesmo que o evento B tenha ocorrido, podemos concluir que sejam eventos independentes. Dois eventos são independentes se e somente se: P(A B) = P(A) ou P(A B) = P(A)P(B)

11 Independência de Eventos Definição (Eventos Independentes): Eventos A e B são independentes se P(A B) = P(A)P(B) Se A e B não são independentes, P(A B) é calculada usando a regra multiplicativa

12 Exemplo Considere um experimento com dois dados. Seja o epaço amostral S = {(i,j) 1 <= i,j<= 6 }. Assuma que para cada ponto, a probabilidade de ocorrência seja = 1/36. A = primeiro resultado é 1,2 ou 3 B = segundo resultado é 4,5 ou 6 C = soma dos dois é 7

13 Regra de Bayes Seja P(A) = P(A B i ) P(B i ); (i = 1; i = n) Conhecida como teorema da probabilidade total. Em alguns casos, sabe-se que A ocorreu, mas não qual dos eventos B 1,B 2.., B n tenha ocorrido. Neste caso, podemos estar interessados em calcular P(B j A) P(B j A) =P(B j A)/P(A) = P(A B j )P(B j )/ P(A B i ) P(B i ); (i = 1; i = n)

14 Exemplo Medidas em um centro de computação (CC) em um dia, indicou que 15% dos jobs são da UFJF, 35% da UFMG e 50% da UFRJ. Suponha que a probabilidade dos jobs iniciados destas universidades serem multitaks são 0.01, 0.05 e Qual é a probabilidade de um job aleatório ser multitask? Qual a probabilidade de um job escolhido aleatoriamente pertencer a UFMG, dado que ele é multitasking?

15 Tentativas de Bernoulli Considere um evento aleatório com duas possibilidades de resultado: sucesso e falha (ou funcionando e defeituoso ). Sejam as probabilidades dos resultados p e q respectivamente, com p+q = 1. Considere um experimento que consiste da sequência de n repetições independentes deste experimento. Esta sequência é conhecida como Tentativas de Bernoulli

16 Tentativas de Bernoulli Exemplos: (1) Observe n execuções consecutivas de um comando if, com sucesso = then é executado e falha = else é executado (2) Examine os componentes produzidos em uma linha de produção, com sucesso = funcionando e falha = defeito

17 Variáveis Aleatórias Uma variável aleatória X em um espaço amostral S é uma função X:S R que atribui um número real X(s) para cada ponto s Є S. Variáveis aleatórias permitem uma descrição mais compacta de um experimento que a descrição com granularidade fina do espaço amostral. Exemplo: Ao inspecionar produtos manufaturados, é interessante saber quantos estão com defeitos e não a natureza do defeito

18 Função de Massa de Probabilidade (Probability Mass Function) PMF Seja A x o evento que reúne todos os pontos amostrais {s X(s) = x}. Assim: P(A x ) = P([X=x]) = P({s X)s=x}) = P(s), (X(s)=x) Com esta fórmula, calculamos P(X=x) para todo x R. Esta função é conhecida como Função de Massa de Probabilidade (pmf) ou função de densidade discreta da variável aleatória X, denotada por p X (x).

19 (p3) Para variáveis discretas: p X (xi) = 1, i Função de Massa de Probabilidade (Probability Mass Function) PMF p X (x) = P(X=x) = P(s), (X(s)=x) = Probabilidade que o valor da variável aleatória X obtida de uma realização de um experimento seja igual a x Propriedades: (p1) 0 p X (x) 1 x R (p2) p X (x) = 1, (x R)

20 Função de Massa de Probabilidade (Probability Mass Function) PMF Exemplo A: Se considerarmos uma célula sem fio com 5 canais e definirmos X = número total dos canais disponíveis, podemos definir pmf da variável X como: p X (0) = 5/32; p X (1) = 10/32;p X (2) = 1/32; p X (3) = 10/32; p X (4) = 5/32;p X (5) = 1/32

21 Função de Distribuição (Cumulative Distribution Function) CDF Como calcular a probabilidade de um conjunto {x X(s) A}, onde A é um subconjunto de R ao invés de um ponto amostral? Se A = (a,b) P(a < x < b ) A = (a,b] P(a < x <= b ) A = (-,x] P(X <= x ) Se p X (x) representa a pmf de uma variável aleatória X então: P(X A) = p X (x); x i

22 Função de Distribuição (Cumulative Distribution Function) CDF Voltando ao exemplo A P(X <= 2) = P(X = 0) + P(X = 1) + P(X = 2) = p X (0) + p X (1) +p X (2) = 5/32+10/32+ 1/32 = 16/32 = 0.5

23 A função Função de Distribuição (Cumulative Distribution Function) CDF F X (t), - <t< F X (t) = P( - <X<=t) = P(X<=t) = p X (x); x <= t é definida como função de distribuição acumulativa (cumulative distriburion function) CDF função distribução da variável aleatória X P(a<= X <=b) = P(X<= b) - P(X<= a) = F(b)-F(a)

24 Função Distribuição das variáveis aleatórias discretas crescem em saltos, enquanto para as variáveis contínuas não existem saltos. Variáveis com os 2 comportamentos são denominados mistas Função de Distribuição (Cumulative Distribution Function) CDF Propriedades (F1) 0 F(x) 1 para x (F2) F(x) é uma função monotônica crescente de x; se x 1 x 2 F(x 1 ) F(x 2 ) (F3) lim x F(x) = 0;lim x F(x) = 1

25 Variáveis Aleatórias Discretas Variáveis aleatórias discretas são usadas para representar o número de objetos de um certo tipo, como por exemplo, total dos jobs que chegam a um servidor de arquivos em um minuto ou o número de chamadas telefônicas realizadas em um minuto

26 Variáveis Aleatórias Discretas Bernoulli Variável aleatória que pode assumir somente dois valores possíveis: 0 e 1. p X (0) = P(X = 0) = q p X (1) = P(X = 1) = p p+q = 1 F(x) = 0 para x < 0, F(x) =q para 0<= x <1, F(x) = 1 para x >= 1

27 Variáveis Aleatórias Discretas Binomial Considere uma sequência de n tentativas independentes de Bernoulli com probabilidade de sucesso igual a p em cada tentativa. Y n é definido como o número de sucessos após n tentativas. O domínio da v.a. Y n é todas as n- tuplas de 0s e 1s. Y n corresponde ao número de 1s na n-tupla.

28 Variáveis Aleatórias Discretas Binomial A pmf de Y n é: P(Y n = k) = C(n,k)p k (1-p) n-k ; para 0<=k<=n 0 ; caso contrário Esta equação fornece a probabilidade de k sucessos em n tentativas independentes de um experimento que tem probabilidade p de sucesso em cada tentativa

29 Variáveis Aleatórias Discretas Geométrica Consideremos novamente uma sequência de tentativas de Bernoulli, mas a idéia é contar o número de tentativas até o acontecimento do PRIMEIRO SUCESSO Espaço Amostral consiste de um conjunto de diversas 'strings' com um número arbitrário de 0s, seguido por UM 1: S = {0 i-1 1 i = 1,2,3,...}

30 Variáveis Aleatórias Discretas Geométrica Seja Z a v.a. que representa o número total de tentativas, incluindo o primeiro sucesso. pmf: cdf p Z (i) = q i-1 p = p(1-p) i-1, i = 1,2,3,... F Z (i) = 1 - (1-p) i

31 Variáveis Aleatórias Discretas Geométrica Seja X a v.a. que representa o número total de falhas, antes do primeiro sucesso; Z = X + 1 Temos v.a. Geométrica modificada pmf cdf p X (i) = p(1-p) i, i = 0,1,2,... F_X(i) = 1 - (1-p) i+1

32 Variáveis Aleatórias Discretas Geométrica Exemplos de utilização: (1) Teoria de Filas (2) Considere um sistema de computador com um scheduling com um tempo fixo. No final de cada slice, o programa completa a execução com probabilidade p; com probabilidade (1-p) é necessário retornar a CPU. A pmf da v.a. do total de slices necessários para terminar a computação é dada pela pmf da v.a. geométrica

33 Variáveis Aleatórias Discretas Geométrica Propriedade da Falta de Memória (memoryless) Z: v.a que representa o número de tentativas até o primeiro sucesso n: total de tentativas ocorridas sendo todas falhas Y: v.a. que representa o número total de tentativas adicionais até o sucesso Y = Z-n

34 Variáveis Aleatórias Discretas Geométrica Propriedade da Falta de Memória (memoryless) Se uma sequência de tentativas de Bernoulli é analisada, não é necessário lembrar quantas tentativas já foram realizadas para determinar as probabilidades das tentativas adicionais necessárias até o primeiro sucesso

35 Variáveis Aleatórias Discretas Poisson Problema: Suponha que estejamos observando a chegada de jobs em um servidor por um intervalo de tempo [0,t]. Baseando na v.a. Binomial p(k;λt) = e -λt (λt) k /k!

36 Em teoria de filas, número de jobs que chegam no sistema, o número de jobs que completam o serviço, o número de mensagens transmitidas através de um canal de comunicação podem ser aproximados por uma v.a. de Poisson Variáveis Aleatórias Discretas Poisson Outras aplicações:

37 Variáveis Aleatórias Contínuas Para uma variável aleatória contínua, X, definimos função densidade de probabilidade (pdf) como: f(x) = df(x)/dx Então F (x) = P(X<=x) = f (t)dt X x

38 Variáveis Aleatórias Contínuas Propriedades da pdf (f1) f(x) >= 0 para todo x (f2) f(x)dx = 1; - < x < Diferentemente da pmf, a pdf não é uma probabilidade!

39 Variáveis Aleatórias Contínuas Propriedades da cdf (F1) 0 <= F(x) <=1 para todo x (F2) F(x) é uma função monotônica crescente de x (F3) lim F(x) = 0;lim F(x) = 1 x x

40 Variáveis Aleatórias Contínuas Distribuição Exponencial Também conhecida como distribuição exponencial negativa Usada em teoria de filas e confiabilidade Propriedade da falta de memória (memoryless) Relação com a distribuição discreta de Poisson

41 Variáveis Aleatórias Contínuas Distribuição Exponencial São modeladas como uma v.a exponencial: Intervalo de chegada entre dois jobs sucessivos (interarrival time) Tempo de serviço em um servidor de uma fila Tempo para que um componente falhe Tempo para que um componente seja consertado

42 Variáveis Aleatórias Contínuas Distribuição Exponencial cdf F(x) = 1-e -λx, se 0 <= x < = 0, caso contrário pdf f(x) = λe -λx, se x > 0 = 0, caso contrário

43 Variáveis Aleatórias Contínuas Distribuição Exponencial P(X >= t) = e -λt P(a <= X <= b) =e -λa - e -λb

44 Variáveis Aleatórias Contínuas Distribuição Exponencial Propriedade da Falta de Memória - Memoryless X: v.a. que representa o tempo de vida de um componente. Suponhamos que o componente esteja operacional durante t horas e que o tempo de vida seja maior que t Y: Tempo residual de vida G Y (Y<=y X>=t) = G_Y(y t)=???

45 Variáveis Aleatórias Contínuas Distribuição Exponencial Propriedade da Falta de Memória - Memoryless G Y (Y,t) é independente de t e é idêntica a distribuição exponencial da v.a X. A distribuição do tempo de vida residual do componente, não depende do tempo de vida que o componente já estava funcionando. Componente não envelhece. Quebra eventual se deve a uma falha repentina e não deteriorização gradual.

46 Variáveis Aleatórias Contínuas Distribuição Exponencial Propriedade da Falta de Memória - Memoryless Se estamos representando um tempo entre chegadas (interarrival times) através de uma variável aleatória exponencialmente distribuída, a propriedade da falta de memória implica que o tempo que devemos esperar por uma nova chegada é estasticamente independente de quanto tempo já tenhamos esperado.

47 Média ou Valor Esperado As funções de distribuição F(x) ou densidade f(x) (pmf para v.a. Discreta) caracteriza completamente o comportamente de uma v.a. Em alguns casos, basta uma informação mais simples sobre a v.a. Média Mediana P(X > x) = 0.5 E[X] x, tal que P(X < x) <= 0.5 e

48 Média ou Valor Esperado E[X] = i x i p(x i ) para os casos em que X é uma v.a. discreta E[X] = x f(x)dx; (-, ) para os casos em que X é uma v.a. contínua

49 Média ou Valor Esperado Algumas variáveis discretas... Bernoulli E[X] = p Binomial E[X] = np Geométrica E[X] = 1/p Poisson E[X] = λt Variável Contínua Exponencial E[X] = 1/λ

Probabilidade Revisão de Conceitos

Probabilidade Revisão de Conceitos Probabilidade Revisão de Conceitos Espaço de Amostras A totalidade dos possíveis resultados de um experimento aleatório. Exemplo: jogar dados S = {(1,1),(1,),... (,1),(,)... (6,6)} S é dito o número de

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

Departamento de InformáAca - PUC- Rio. Hélio Lopes Departamento de InformáAca PUC- Rio. Probabilidade

Departamento de InformáAca - PUC- Rio. Hélio Lopes Departamento de InformáAca PUC- Rio. Probabilidade Introdução à Simulação Estocás5ca usando R INF2035 PUC- Rio, 2013.1 Departamento de InformáAca - PUC- Rio Hélio Lopes Departamento de InformáAca PUC- Rio Experimentos aleatórios: no estudo de probabilidade,

Leia mais

Cap. 8 - Variáveis Aleatórias

Cap. 8 - Variáveis Aleatórias Variáveis Aleatórias Discretas: A de Poisson e Outras ESQUEMA DO CAPÍTULO 8.1 A DISTRIBUIÇÃO DE POISSON 8.2 A DISTRIBUIÇÃO DE POISSON COMO APROXIMAÇÃO DA DISTRIBUIÇÃO BINOMIAL 8.3 O PROCESSO DE POISSON

Leia mais

Distribuição de Probabilidade. Prof. Ademilson

Distribuição de Probabilidade. Prof. Ademilson Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.

Leia mais

Introdução aos Proc. Estocásticos - ENG 430

Introdução aos Proc. Estocásticos - ENG 430 Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 34 1 Motivação 2 Conceitos

Leia mais

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Modelos de Distribuições

Modelos de Distribuições 7/5/017 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 05/07/017 19: ESTATÍSTICA APLICADA

Leia mais

Fundamentos de Estatística

Fundamentos de Estatística Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA mrborges@lncc.br Petrópolis, 9 de Fevereiro

Leia mais

Processos Estocásticos e Cadeias de Markov Discretas

Processos Estocásticos e Cadeias de Markov Discretas Processos Estocásticos e Cadeias de Markov Discretas Processo Estocástico(I) Definição: Um processo estocástico é uma família de variáveis aleatórias {X(t) t T}, definidas em um espaço de probabilidades,

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari denise@ita.br Distribuições Discretas Uniforme Bernoulli Binomial Poisson

Leia mais

Probabilidade ESQUEMA DO CAPÍTULO. UFMG-ICEx-EST Cap. 2- Probabilidade 1

Probabilidade ESQUEMA DO CAPÍTULO. UFMG-ICEx-EST Cap. 2- Probabilidade 1 Probabilidade ESQUEMA DO CAPÍTULO 2.1 ESPAÇOS AMOSTRAIS E EVENTOS 2.2 INTERPRETAÇÕES DE PROBABILIADE 2.3 REGRAS DE ADIÇÃO 2.4 PROBABILIDADE CONDICIONAL 2.5 REGRAS DA MULTIPLICAÇÃO E DA PROBABILIDADE TOTAL

Leia mais

Capítulo4- Modelos de probabilidade.

Capítulo4- Modelos de probabilidade. Capítulo4- Modelos de probabilidade. 1- Modelos de probabilidade(110) 1.1) Introdução.(110) 1.) Fenómenos aleatórios(11) Experiência determinística-produz sempre o mesmo resultado desde que seja repetido

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório? Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17)

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17) Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 016/17) 1- Modelos de probabilidade(136) 1.1) Introdução.(36) (Vídeo: 33) 1.) Fenómenos aleatórios(138) Experiência determinística-produz

Leia mais

Teoria da Probabilidade

Teoria da Probabilidade Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

Introdução à probabilidade e estatística I

Introdução à probabilidade e estatística I Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos

Leia mais

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω. PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte II 29 de Março de 2011 Distribuição Uniforme Discreta Média Propriedade da falta de memória Objetivos Ao final deste capítulo você

Leia mais

2.1 Variáveis Aleatórias Discretas

2.1 Variáveis Aleatórias Discretas 4CCENDMMT02-P PROBABILIDADE E CÁLCULO DIFERENCIAL E INTEGRAL Girlan de Lira e Silva (1),José Gomes de Assis (3) Centro de Ciências Exatas e da Natureza /Departamento de Matemática /MONITORIA Resumo: Utilizamos

Leia mais

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ elemento de S (s S) um número real x X(s) é denominada variável aleatória. O

Leia mais

Modelos Probabilísticos de Desempenho. Profa. Jussara M. Almeida 1º Semestre de 2014

Modelos Probabilísticos de Desempenho. Profa. Jussara M. Almeida 1º Semestre de 2014 Modelos Probabilísticos de Desempenho Profa. Jussara M. Almeida 1º Semestre de 2014 Modelos Probabilísticos Processos Estocásticos Processos de Poisson Filas M/M/1, M/G/1... Mais genericamente: modelos

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Modelagem e Análise Aula 11

Modelagem e Análise Aula 11 Modelagem e Análise Aula 11 Aula passada Aplicação de Little Utilização Processo de saída Aula de hoje Modelo do servidor Web Split/Merge de Poisson Rede de filas Múltiplas Filas Porque resultado anterior

Leia mais

Módulo III: Processos de Poisson, Gaussiano e Wiener

Módulo III: Processos de Poisson, Gaussiano e Wiener Módulo III: Processos de Poisson, Gaussiano e Wiener Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Modelos de distribuição Para utilizar a teoria

Leia mais

Variável Aleatória Poisson. Número de erros de impressão em uma

Variável Aleatória Poisson. Número de erros de impressão em uma EST029 Cálculo de Probabilidade I Cap. 7. Principais Variáveis Aleatórias Discretas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Variável Aleatória Poisson Caraterização: Usa-se quando o experimento

Leia mais

Métodos Quantitativos para Ciência da Computação Experimental. Jussara Almeida DCC-UFMG 2013

Métodos Quantitativos para Ciência da Computação Experimental. Jussara Almeida DCC-UFMG 2013 Métodos Quantitativos para Ciência da Computação Experimental Jussara Almeida DCC-UFMG 2013 Revisão de Probabilidade e Estatística Concentrado em estatística aplicada Estatística apropriada para medições

Leia mais

TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes.

TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes. TE802 Processos Estocásticos em Engenharia Conceitos Básicos de Teoria de Probabilidade 7 de março de 2016 Informação sobre a disciplina Terças e Quintas feiras das 09:30 às 11:20 horas Professor: Evelio

Leia mais

Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise

Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Você reconhece algum desses experimentos? Alguns

Leia mais

Universidade Federal do Ceará

Universidade Federal do Ceará Universidade Federal do Ceará Faculdade de Economia Vicente Lima Crisóstomo Fortaleza, 2011 1 Sumário Introdução Estatística Descritiva Probabilidade Distribuições de Probabilidades Amostragem e Distribuições

Leia mais

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Espaço Amostral, Eventos, Álgebra de eventos Aula de hoje Probabilidade Análise Combinatória Independência Probabilidade Experimentos

Leia mais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ ESTATÍSTICA II Nota de aula 1 Prof. MSc. Herivelto T Marcondes dos Santos Fevereiro /2009 1 Modelos de probabilidade 1.1 Variável aleatória Definição: Sejam ε um

Leia mais

Probabilidade - aula III

Probabilidade - aula III 2012/02 1 Regra da Multiplicação 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Usar a regra da multiplicação para calcular probabilidade de eventos Usar a. Regra da Multiplicação Frequentemente

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : Ω A, em que A R. Esquematicamente As variáveis aleatórias

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

Variáveis Aleatórias Discretas 1/1

Variáveis Aleatórias Discretas 1/1 Variáveis Aleatórias Discretas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte do Espírito Santo

Leia mais

Sumário. 2 Índice Remissivo 12

Sumário. 2 Índice Remissivo 12 i Sumário 1 Definições Básicas 1 1.1 Fundamentos de Probabilidade............................. 1 1.2 Noções de Probabilidade................................ 3 1.3 Espaços Amostrais Finitos...............................

Leia mais

Probabilidade - aula II

Probabilidade - aula II 25 de Março de 2014 Interpretações de Probabilidade Amostras Aleatórias e Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades de eventos conjuntos. Interpretar e calcular

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC 4ª LISTA DE EXERCÍCIOS - LOB1012 Variáveis Aleatórias Contínuas, Aproximações e TLC Assunto: Função Densidade de Probabilidade Prof. Mariana Pereira de Melo 1. Suponha que f(x) = x/8 para 3

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte III 08 de Abril de 2014 Distribuição Binomial Negativa Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições

Leia mais

Probabilidade - aula II

Probabilidade - aula II 2012/02 1 Interpretações de Probabilidade 2 3 Amostras Aleatórias e Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades de eventos conjuntos. Interpretar e calcular probabilidades

Leia mais

Probabilidade Aula 03

Probabilidade Aula 03 0303200 Probabilidade Aula 03 Magno T. M. Silva Escola Politécnica da USP Março de 2017 Sumário Teorema de Bayes 2.5 Independência Teorema de Bayes Sejam A 1,,A k uma partição de S (eventos disjuntos)

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

Experimento Aleatório

Experimento Aleatório Probabilidades 1 Experimento Aleatório Experimento aleatório (E) é o processo pelo qual uma observação é ob;da. Exemplos: ü E 1 : Jogar uma moeda 3 vezes e observar o número de caras ob;das; ü E 2 : Lançar

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 1ª Parte: Conceitos básicos, variáveis aleatórias, modelos probabilísticos para variáveis aleatórias discretas, modelo binomial, modelo de Poisson 1 Probabilidade

Leia mais

Simulação a Eventos Discretos. Fernando Nogueira Simulação 1

Simulação a Eventos Discretos. Fernando Nogueira Simulação 1 Simulação a s Discretos Fernando Nogueira Simulação Introdução Simulação não é uma técnica de otimização: estima-se medidas de performance de um sistema modelado. Modelos Contínuos X Modelos Discretos

Leia mais

Distribuições Discretas

Distribuições Discretas META: Estudar o comportamento das Variáveis Aleatórias Discretas, bem como das Distribuições Binomial e Poisson e suas aplicações. Entender o comportamento de uma Variável aleatória Contínua. OBJETIVOS:

Leia mais

Processos Estocásticos aplicados à Sistemas Computacionais

Processos Estocásticos aplicados à Sistemas Computacionais Processos Estocásticos aplicados à Sistemas Computacionais Magnos Martinello Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia

Leia mais

Modelos de Distribuições

Modelos de Distribuições 4/05/014 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Tucuruí CTUC Curso de Engenharia Mecânica 4/05/014 06:56 ESTATÍSTICA

Leia mais

CAPÍTULO 4 PROBABILIDADE PROBABILIDADE PPGEP Espaço Amostral e Eventos Espaço Amostral e Eventos UFRGS. Probabilidade.

CAPÍTULO 4 PROBABILIDADE PROBABILIDADE PPGEP Espaço Amostral e Eventos Espaço Amostral e Eventos UFRGS. Probabilidade. PROBABILIDADE CAPÍTULO 4 PROBABILIDADE UFRGS A Teoria das s estuda os fenômenos aleatórios. Fenômeno Aleatório: são os fenômenos cujo resultado não pode ser previsto exatamente. Se o fenômeno se repetir,

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 7 - Probabilidade condicional e independência Departamento de Economia Universidade Federal de Pelotas (UFPel) Maio de 2014 Probabilidade condicional Seja (Ω, A, P) um espaço de probabilidade. Se

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Distribuição Geométrica Considere novamente uma sequência

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Tipos de Modelos Determinístico Sistema Real Probabilístico Modelo determinístico Causas Efeito Exemplos Gravitação F GM 1 M /r

Leia mais

Fernando Nogueira Simulação 1

Fernando Nogueira Simulação 1 Simulação a Eventos Discretos Fernando Nogueira Simulação Introdução Simulação não é uma técnica de otimização: estima-se medidas de performance de um sistema modelado. Modelos Contínuos X Modelos Discretos

Leia mais

Avaliação e Desempenho Aula 18

Avaliação e Desempenho Aula 18 Avaliação e Desempenho Aula 18 Aula passada Fila com buffer finito Fila com buffer infinito Medidas de interesse: vazão, número médio de clientes na fila, taxa de perda. Aula de hoje Parâmetros de uma

Leia mais

EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência

EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Perguntas 1. Um novo aparelho para detectar um certo tipo de

Leia mais

MB-210 Probabilidade e Estatística

MB-210 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 2o. semestre/2013 Variáveis

Leia mais

1.4.2 Probabilidade condicional

1.4.2 Probabilidade condicional M. Eisencraft 1.4 Probabilidades condicionais e conjuntas 9 Portanto, P(A B) = P(A)+P(B) P(A B) (1.2) Para eventos mutuamente exclusivos, P(A B) = e P(A)+P(B) = P(A B). 1.4.2 Probabilidade condicional

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017

AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 AULAS 6 e 7 ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 Em aulas passadas vimos as funções de probabilidade de variáveis discretas e contínuas agora vamos ver

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus

Leia mais

REGRAS DE PROBABILIDADE

REGRAS DE PROBABILIDADE REGRAS DE PROBABILIDADE Lucas Santana da Cunha lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 24 de maio de 2017 Propriedades As probabilidades sempre se referem a

Leia mais

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23 Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração

Leia mais

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias. TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos:

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos: Eisencraft e Loiola 2.1 Probabilidade 37 Modelo matemático de experimentos Para resolver problemas de probabilidades são necessários 3 passos: a Estabelecimento do espaço das amostras b Definição dos eventos

Leia mais

2 a Lista de PE Solução

2 a Lista de PE Solução Universidade de Brasília Departamento de Estatística 2 a Lista de PE Solução 1. a Ω {(d 1, d 2, m : d 1, d 2 {1,..., 6}, m {C, K}}, onde C coroa e K cara. b Ω {0, 1, 2,...} c Ω {(c 1, c 2, c 3, c 4 : c

Leia mais

Distribuições Importantes. Distribuições Discretas

Distribuições Importantes. Distribuições Discretas Distribuições Importantes Distribuições Discretas Distribuição de Bernoulli Definição Prova ou experiência de Bernoulli é uma experiência aleatória que apenas tem dois resultados possíveis: A que se designa

Leia mais

1.1 Exemplo da diferença da média da população para a média amostral.

1.1 Exemplo da diferença da média da população para a média amostral. 1 Estatística e Probabilidades Inferência Estatística consiste na generalização das informações a respeito de uma amostra, para a sua população. A Probabilidade considera modelos para estimar informações

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Condicionais 11/13 1 / 19 Em estudo feito em sala perguntamos aos alunos qual

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

PROCESSOS ESTOCÁSTICOS

PROCESSOS ESTOCÁSTICOS PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos e Científicos

Leia mais

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ-13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e 16 Introdução à probabilidade (eventos,

Leia mais

Momentos: Esperança e Variância. Introdução

Momentos: Esperança e Variância. Introdução Momentos: Esperança e Variância. Introdução Em uma relação determinística pode-se ter a seguinte relação: " + " = 0 Assim, m =, é a declividade e a e b são parâmetros. Sabendo os valores dos parâmetros

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Quinta Lista de Exercícios 2 de fevereiro de 20 Suponha que um organismo unicelular pode estar somente em dois estágios distintos A ou B Um indivíduo no estágio A passa para o estágio

Leia mais