Distribuição de Probabilidade Conjunta

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Distribuição de Probabilidade Conjunta"

Transcrição

1 . DISTRIBUIÇÃO DE ROBABILIDADE CONJUNTA O nosso estudo de variável aleatória e de suas funções de probabilidade até agora se restringiram a espaços amostrais unidimensionais nos quais os valores observados eram assumidos por uma única v. a. Entretanto, eistem situações em que se deseja observar resultados simultâneos de várias variáveis aleatórias. or eemplo, podemos medir o total precipitado, a umidade e a temperatura, resultado em um espaço amostral tri-dimensional que consiste nos resultados (p, u, t)... VARIAÇÕES ALEATÓRIAS DISCRETAS Se e são duas variáveis aleatórias, a distribuição de probabilidades de sua ocorrência simultânea pode ser representada pela função com valores f(, ) para qualquer par de valores (, ).Costuma-se referir a esta função como Distribuição de robabilidade Conjunta de e. ara o caso discreto: F(, ) (X, Y ) f.m.p. ou seja, os valores f(, ) dão a probabilidade dos resultados e ocorrerem ao mesmo tempo.

2 A função f(, ) é a distribuição de probabilidade conjunta ou f.m.p. das variáveis aleatórias e se:. f(, ) p/ todos (, ) (claro! É probabilidade! ).. f(, ). (X, Y ) f(,) ara qualquer região A no plano [(, ) A] f(, ) A Eercício 7. Dois refils selecionados aleatoriamente B R G X número de blue refils Y número de red refils selecionados a) Ache a probabilidade conjunta f(, ), ou seja a probabilidade de e ocorrerem simultaneamente. S (G, G) (G, B) (G, R) (R, R) (R, G) (R, B) (B, B) (B, G) (B, R) Quais os valores assumidos pelas variáveis aleatórias X e Y nestes pontos do espaço amostral?

3 (, ) Assim, os possíveis pares de valores simultâneos de (, ) são: (, ) (, ) (,) (, ) (, ) (, ) Calculando as probabilidades: f (,) GREENS serem selecionados.!! (, )!!!.! 8 8! 8 7 6! 6! 6!!. 6! 8 f (,) BLUE ser selecionado GREEN ser selecionado 8!!.!!!! 8!!.!!!! f (, ) RED ser selecionado GREEN ser selecionado 8!!!.!!!! 8 6 8

4 f (, ) RED serem selecionados 8!!! 8 8 f (, ) BLUES serem selecionados 8!!! 8!!!! 8 8 f (,) BLUE ser selecionado RED ser selecionado 8!!.!!! Assim, a f.m.p. do acontecimento simultâneo de e é dado por: Tabela 7. f (, ) /8 9/8 /8 / 6/8 6/8 -- /8 / /8 /8 /8 /8 Σ Σ

5 b) [(, ) A / ] ( ) f(, ) f(, ) f(, ) VARIÁVEL ALEATÓRIA CONTÍNUA A função f(, ) é uma função densidade de probabilidade conjunta das variáveis aleatórias e se:. f(, ) p/ todos (, ). f(, ) d. [( X, Y) A ] f (, ) d para qualquer região A no plano. Eercício 7. Uma fábrica de doces distribuiu caias de chocolates com mistura de creme, toffees e amêndoas, envolta em chocolate branco e marrom. ara uma caia selecionada ao acaso, seja e, respectivamente, a proporção de chocolate branco e marrom eistente no creme e suponha que f.d.p. conjunta é: f(, ) ( ),, outros valores

6 a) verifique a propriedade (é f.d.p.?) 6 f(, ) d ( ) d integra em relação a ; depois em relação a. d d ( ) c.q.d! b) [ (, ) A] onde A é região definida por (, ) < <, < <. DISTRIBUIÇÃO DE ROBABILIDADE MARGINAL Dada uma função de probabilidade conjunta f(, ) das variáveis aleatórias discretas X e Y, a distribuição de probabilidade de X isolado g() é obtida pela soma dos valores de f(, ) ao longo de Y. Do mesmo modo, a distribuição de probabilidade de Y isolado h() é dada pela soma dos valores de f(, ) ao longo de. Definimos g() e h() como sendo as distribuições de probabilidades marginais de e, respectivamente.

7 Assim, 7 A distribuição de probabilidade de X isolado e Y isolados são: g() f(, ) e h() f(, ) variável discreta g() f(, ) e h() f(, ) variável contínua Eercício 7. Dada a f.m.p. conjunta de X e Y dada no eercício : Tabela 7. X f(, ) /8 9/8 /8 /8 Y 6/8 6/8 - /8 /8 - - /8 /8 /8 /8 Mostre que o somatório de cada coluna dá a distribuição de probabilidade marginal de. (X ) g() f(, ) f(, ) f(, ) f (, ) /8 (X ) g() (X ) g() f(, ) f(, ) f(, ) f (, ) /8 f(, ) f(, ) /8 ou seja:

8 Tabela 7. 8 g() distribuição de probabilidade marginal de X. Eercício 7. Ache g() para a distribuição de probabilidade conjunta: f(, ) ( ), outro valor Eercício 7. Ache g () para a distribuição de probabilidade conjunta: f(, ), ) ( ), outro valor Solução: or definição a distribuição de probabilidade marginal de é dada por: g() f(, ) ( ) 9 g()

9 9 ou seja: g () Eercício 7.6 Ache h() para o eemplo anterior (distribuição de marginal de ) por definição: 6 (, ) d ( ) h ( ) f d [ ] ou seja: 6 h () p/. DISTRIBUIÇÃO DE ROBABILIDADES CONDICIONAL Sabemos que: ( B / A) ( A B) ( A), > ( A) Definindo: A o evento onde X B o evento onde Y

10 Temos que: ( Y / X ) ou ainda ( X / Y ) ( X, Y ) ( X ) ( X, Y ) ( Y ) (, ) 9( ) f f (, ) h( ),, 9 h ( ) > ( ) > Eercício 7.7 Referindo-se ao eemplo (refis), ache a distribuição de probabilidade condicional de X dado que Y e use isto para calcular (X /Y ). Tabela 7. do eemplo é: X f(, ) /8 9/8 /8 Y 6/ 6/ - /8 - - /8 a) Quero: Tabela 7. f(/) Saberia fazer pelos nossos conhecimentos anteriores de probabilidade condicional: ( / ) 6 / 8 / 8 ( / ) 6 / 8 / 8

11 ( / ) / 8 Mas usando a definição: ( X / ) f (, ) h( ) por definição: h ( ) f(, ) h 6 () f(,) Assim, f ( ) (, ) / f(,) h() 8 f ( ) (, ) / f(, ) h() 8 7 f(,) f ( ) (, / ) h() 6 Eercício 7.8 Ache A distribuição de probabilidade das variáveis aleatórias X e Y onde: X - mudança unitária da temperatura - mudança unitária da profundidade de um lago a) Ache as distribuições de probabilidades marginais de X e Y e a distribuição de probabilidade condicional f(, :) ) 9 ( ) f(, ) X ( )

12 9 ( ) ( ), < < ) h ( ) f(, ). d d ( ) h ( ), < < ) f(/) por definição f(/) f (, ) 9 ( ) ( ). ( ) ( ), < < < b) >, acabamos de achar a f.d.p. da distribuição de probabilidade condicional. or definição: Assim, b ( a < < b / X ) f( / ) b ( a < < b / X ) f( ) a a /.. / ( ) ( ) /, (, ) / (, ) /8 8 /

13 Eercício 7.9 Dada a f.d.p. conjunta f (, ) ( ) < <, < < outro valor Ache g(), h(), f(/) e < X <. Solução: a) g() or definição: g() g() f(, ). g() g(), < < outro valor b) h()

14 or definição: h() f(, ).d d h() 8 h() 8 8 h() 8 c) f (, ) or definição:, < < outro valor f (, ) f(, ) h.() ( ) ( ) Assim, f(, ), ), < < outro valor

15 d) < < Y ) f( )d b a / / d / / INDEENDÊNCIA ESTATÍSTICA (Dedução com analogia Teoria das robabilidades) Sabemos que: (A/B) (A B) (B) f(/ ) f(, ) h() Mas se A e B forem independentes: (A/B) (A) f ( / ) g() Assim, (A B) (A). (B) f (, ) g( ).h ( ) Sejam e duas variáveis aleatórias (discretas ou contínuas) com distribuição de probabilidade conjunta f (, ) e distribuição de probabilidade marginais g() e h(), respectivamente. As variáveis aleatórias e são consideradas Estatisticamente Independentes se e somente se: f (, ) g(). h() para todos (, ) dependendo do intervalo).

16 6 Eercício 7. Mostre que as variáveis aleatórias do eemplo não são estatisticamente independentes. f (, )? g(). h() Tabela 7. X f(, ) /8 9/8 /8 /8 Y 6/ 6/ - /8 /8 - - /8 /8 /8 /8 Vamos verificar em um par (, ) Suponha (, ) f (, ) f (, ) /8 9 () /8 h () /8 Vemos que:. não são estatisticamente independentes Generalização Seja X, X,... X n, n variáveis aleatórias (discretas ou contínuas) com distribuição de probabilidade conjunta f(,... n ) e distribuição de probabilidade marginais f ( ), f ( )... f ( n ), respectivamente. As variáveis aleatórias, X, X,... X n, são ditas Estatisticamente Independentes se e somente se: f(,... n ) f ( ). f ( )... f ( n )

MB-210 Probabilidade e Estatística

MB-210 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 2o. semestre/2013 Variáveis

Leia mais

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula Prof.: Patricia Maria Bortolon, D. Sc. Distribuições Amostrais ... vocês lembram que: Antes de tudo... Estatística Parâmetro Amostra População E usamos estatíticas das amostras para

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Condicionais 11/13 1 / 19 Em estudo feito em sala perguntamos aos alunos qual

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

Conceitos básicos: Variável Aleatória

Conceitos básicos: Variável Aleatória : Variável Aleatória Variável aleatória (v.a.) valor numérico que é resultado de uma eperiência aleatória. Podemos ter variáveis aleatórias contínuas ou discretas. Eemplo 1: Suponha que lança duas moedas

Leia mais

CONTABILOMETRIA. Revisão de Probabilidade e Teorema de Bayes

CONTABILOMETRIA. Revisão de Probabilidade e Teorema de Bayes CONTAILOMETRIA Revisão de robabilidade e Teorema de ayes Os ostulados de robabilidade 1. As probabilidades são números reais positivos maiores que zero e menores que 1; simbolicamente, 0 A 1 para qualquer

Leia mais

1 Definição Clássica de Probabilidade

1 Definição Clássica de Probabilidade Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica

Leia mais

3. Variáveis aleatórias

3. Variáveis aleatórias 3. Variáveis aleatórias Numa eperiência aleatória, independentemente de o seu espaço de resultados ser epresso numericamente, há interesse em considerar-se funções reais em Ω, denominadas por variáveis

Leia mais

PRINCIPAIS MODELOS CONTÍNUOS

PRINCIPAIS MODELOS CONTÍNUOS RINCIAIS MODELOS CONTÍNUOS 0 5.. Modelo uniforme Uma v.a. contínua tem distribuição uniforme com parâmetros α e β α β se sua função densidade de probabilidade é dada por, f β α 0, Notação: ~ Uα, β. 0,

Leia mais

Notas de Aula. tal que, para qualquer ponto (x, y) no plano xy, temos: p XY

Notas de Aula. tal que, para qualquer ponto (x, y) no plano xy, temos: p XY UNIVERSIDDE FEDERL D BHI INSTITUTO DE MTEMÁTIC DEPRTMENTO DE ESTTÍSTIC v. demar de Barros s/n - Campus de Ondina 40170-110 - Salvador B Tel:(071)247-405 Fax 245-764 Mat 224 - Probabilidade II - 2002.2

Leia mais

Teoria da Probabilidade

Teoria da Probabilidade Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos

Leia mais

Distribuições Amostrais

Distribuições Amostrais Estatística II Antonio Roque Aula Distribuições Amostrais O problema central da inferência estatística é como fazer afirmações sobre os parâmetros de uma população a partir de estatísticas obtidas de amostras

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Distribuição Normal Motivação: Distribuição

Leia mais

Fundamentos de Estatística

Fundamentos de Estatística Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA mrborges@lncc.br Petrópolis, 9 de Fevereiro

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Probabilidade - aula II

Probabilidade - aula II 2012/02 1 Interpretações de Probabilidade 2 3 Amostras Aleatórias e Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades de eventos conjuntos. Interpretar e calcular probabilidades

Leia mais

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω. PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses

Leia mais

1 Introdução. 2 Variáveis Aleatórias Discretas (VAD)

1 Introdução. 2 Variáveis Aleatórias Discretas (VAD) Prof. Janete Pereira Amador 1 1 Introdução Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações podem ser descritas por uma variável

Leia mais

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições Motivação: MOQ-2: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS VA s e Distribuições Definimos anteriormente Espaço de Probabilidades como sendo a tripla (W,, P(.)), em que, dado um eperimento, W representa

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Princípios de Estatística

Princípios de Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 05/10/2011 Probabilidade

Leia mais

PRE29006 LISTA DE EXERCÍCIOS #

PRE29006 LISTA DE EXERCÍCIOS # INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS # 06. Eercícios. Considere uma variável aleatória

Leia mais

Importantes propriedades da Média, da Variância e do Desvio Padrão:

Importantes propriedades da Média, da Variância e do Desvio Padrão: Importantes propriedades da Média, da Variância e do Desvio Padrão: É importantíssimo o perfeito conhecimento de algumas propriedades da Média, da Variância e do Desvio Padrão para resolver, com facilidade,

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Plano de Curso Probabilidade e Estatística UAEst/CCT/UFCG Ementa Fenômeno aleatório versus fenômeno determinístico. Espaço amostral e eventos. Introdução à teoria das probabilidades. Abordagem axiomática

Leia mais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados

Leia mais

Introdução aos Proc. Estocásticos - ENG 430

Introdução aos Proc. Estocásticos - ENG 430 Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 34 1 Motivação 2 Conceitos

Leia mais

ESTIMAÇÃO POR INTERVALO DE CONFIANÇA. Profª Sheila Oro 1

ESTIMAÇÃO POR INTERVALO DE CONFIANÇA. Profª Sheila Oro 1 ESTIMAÇÃO POR INTERVALO DE CONFIANÇA Profª Sheila Oro 1 DEFINIÇÃO Um itervalo de confiança (ou estimativa intervalar) é uma faixa (ou um intervalo) de valores usada para se estimar o verdadeiro valor de

Leia mais

Conceito de Estatística

Conceito de Estatística Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos, observáveis. Unidade Estatística um fenômeno individual é uma unidade no conjunto que irá constituir

Leia mais

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : I, em que I. Esquematicamente: As variáveis aleatórias

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : Ω A, em que A R. Esquematicamente As variáveis aleatórias

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Probabilidade e Modelos Probabilísticos. Conceitos básicos, variáveis aleatórias

Probabilidade e Modelos Probabilísticos. Conceitos básicos, variáveis aleatórias robabilidade e Modelos robabilísticos Conceitos básicos, variáveis aleatórias 1 Incerteza e robabilidade Tomar decisões: Curso mais provável de ação: Se desejamos passear de barco e não sabemos nadar,

Leia mais

Probabilidade - aula II

Probabilidade - aula II 25 de Março de 2014 Interpretações de Probabilidade Amostras Aleatórias e Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades de eventos conjuntos. Interpretar e calcular

Leia mais

AULA 02 Distribuição de Probabilidade Normal

AULA 02 Distribuição de Probabilidade Normal 1 AULA 02 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 20 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 8 11/2014 Distribuição Normal Vamos apresentar distribuições de probabilidades para variáveis aleatórias contínuas.

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

Medidas de Posição ou Tendência Central

Medidas de Posição ou Tendência Central Medidas de Posição ou Tendência Central Medidas de Posição ou Tendência Central Fornece medidas que podem caracterizar o comportamento dos elementos de uma série; Possibilitando determinar se um valor

Leia mais

47 = 1349 (ou multiplicando por 100 para converter para porcentagem: 3,5%).

47 = 1349 (ou multiplicando por 100 para converter para porcentagem: 3,5%). Probabilidade Elementar Probabilidade e Estatística I Antonio Roque Aula 9 Fundamentos A tabela a seguir apresenta freqüências associadas a classes de níveis de colesterol no soro de uma amostra de homens

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais

ESTATÍSTICA. Distribuição de Frequência

ESTATÍSTICA. Distribuição de Frequência Distribuição de Frequência 1 Em estatística, a distribuição de frequência é um arranjo de valores que uma ou mais variáveis tomam em uma amostra. Cada entrada na tabela contém a frequência ou a contagem

Leia mais

Motivação. VA n-dimensional. Distribuições Multivariadas VADB. Em muitas situações precisamos

Motivação. VA n-dimensional. Distribuições Multivariadas VADB. Em muitas situações precisamos Motivação Em muitas situações precisamos Prof. Lorí Viali, Dr. viali@pucrs.br lidar com duas ou mais variáveis aleatórias ao mesmo tempo. Por exemplo o comprimento e a largura de uma determinada peça.

Leia mais

Aula 10 Variáveis aleatórias discretas

Aula 10 Variáveis aleatórias discretas AULA 0 Aula 0 Variáveis aleatórias discretas Nesta aula você aprenderá um conceito muito importante da teoria de probabilidade: o conceito de variável aleatória. Você verá que as variáveis aleatórias e

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório? Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

Análise de Dados e Simulação

Análise de Dados e Simulação Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco Simulação de Variáveis Aleatórias Contínuas. O método da Transformada Inversa Teorema Seja U U (0,1). Para qualquer

Leia mais

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011 Distribuição Normal Prof a Dr a Alcione Miranda dos Santos Universidade Federal do Maranhão Programa de Pós-Graduação em Saúde Coletiva email:alcione.miranda@gmail.com Abril, 2011 1 / 18 Sumário Introdução

Leia mais

Variáveis Aleatórias. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Luiz Medeiros Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja um

Leia mais

à Análise de Padrões

à Análise de Padrões CC-226 Introdução à Análise de Padrões Prof. Carlos Henrique Q. Forster Variáveis, Estatísticas sticas e Distribuições de Probabilidades Tópicos de hoje Definições Alguns estimadores estatísticos Distribuições

Leia mais

)XQGDPHQWRVGHSUREDELOLGDGHHHVWDWtVWLFD

)XQGDPHQWRVGHSUREDELOLGDGHHHVWDWtVWLFD )XQGDPHQWRVGHUREDELOLGDGHHHVWDWtVWLFD,QWURGXomR A história da estatística pode ser dividida em três fases. De acordo com PEANHA (00), a estatística inicialmente não mantinha nenhuma relação com a probabilidade,

Leia mais

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

Probabilidade 2 - ME310 - Lista 2

Probabilidade 2 - ME310 - Lista 2 Probabilidade - ME3 - Lista November, 5 Lembrando:. Estatística de ordem, pg 38 Ross: f xj (x) = n! (n j)!(j )! F (x)j ( F (x)) n j f(x). Distribuição de probabilidade conjunta de funções de variáveis

Leia mais

M. Eisencraft 2.5 Outros exemplos de distribuições e densidades 29. Densidade e distribuição uniforme. 0 a b x. 0 a b x

M. Eisencraft 2.5 Outros exemplos de distribuições e densidades 29. Densidade e distribuição uniforme. 0 a b x. 0 a b x M. Eisencraft 2.5 Outros eemplos de distribuições e densidades 29 Densidade e distribuição uniforme /(b a) () a b.8 ().6.4.2.2 a b 2.5.2 Eponencial Figura 2.8: Funções densidade e distribuição uniforme.

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte III 08 de Abril de 2014 Distribuição Binomial Negativa Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições

Leia mais

Sumário. 2 Índice Remissivo 12

Sumário. 2 Índice Remissivo 12 i Sumário 1 Definições Básicas 1 1.1 Fundamentos de Probabilidade............................. 1 1.2 Noções de Probabilidade................................ 3 1.3 Espaços Amostrais Finitos...............................

Leia mais

Testes de Hipótese para uma única Amostra - parte II

Testes de Hipótese para uma única Amostra - parte II Testes de Hipótese para uma única Amostra - parte II 2012/02 1 Teste para média com variância conhecida 2 3 Objetivos Ao final deste capítulo você deve ser capaz de: Testar hipóteses para média de uma

Leia mais

Distribuições Amostrais e Estimação Pontual de Parâmetros

Distribuições Amostrais e Estimação Pontual de Parâmetros Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 19 de Maio de 2011 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição

Leia mais

Cap. 4 - Probabilidade

Cap. 4 - Probabilidade Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 4 - Probabilidade APOIO: Fundação de Apoio à Pesquisa

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

1 Variáveis Aleatórias

1 Variáveis Aleatórias Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

2 Conceitos Básicos de Probabilidade

2 Conceitos Básicos de Probabilidade CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

Probabilidade Revisão de Conceitos

Probabilidade Revisão de Conceitos Probabilidade Revisão de Conceitos Espaço de Amostras A totalidade dos possíveis resultados de um experimento aleatório. Exemplo: jogar dados S = {(1,1),(1,),... (,1),(,)... (6,6)} S é dito o número de

Leia mais

Funções de variável aleatória

Funções de variável aleatória Desigualdade de hebshev ágina de Funções de variável aleatória Funções de variável aleatória aso discreto uponhamos que é uma variável aleatória que toma valores {... n } e tem unção de probabilidade p

Leia mais

Les Estatística Aplicada II AMOSTRA E POPULAÇÃO

Les Estatística Aplicada II AMOSTRA E POPULAÇÃO Les 0407 - Estatística Aplicada II AMOSTRA E POPULAÇÃO AULA 1 04/08/16 Prof a Lilian M. Lima Cunha Agosto de 2016 Estatística 3 blocos de conhecimento Estatística Descritiva Levantamento e resumo de dados

Leia mais

Métodos Estatísticos Módulo 2 1 o. Semestre de 2008 ExercícioProgramado5 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos Módulo 2 1 o. Semestre de 2008 ExercícioProgramado5 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos Módulo 2 1 o. Semestre de 08 ExercícioProgramado5 VersãoparaoTutor Profa. Ana Maria Farias (UFF) 1. Um dado é viciado de tal forma que um número par é duas vezes mais provável que

Leia mais

Lucas Santana da Cunha de junho de 2017

Lucas Santana da Cunha de junho de 2017 VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

Estatística

Estatística Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Momentos: Esperança e Variância. Introdução

Momentos: Esperança e Variância. Introdução Momentos: Esperança e Variância. Introdução Em uma relação determinística pode-se ter a seguinte relação: " + " = 0 Assim, m =, é a declividade e a e b são parâmetros. Sabendo os valores dos parâmetros

Leia mais

BIOESTATISTICA. Unidade IV - Probabilidades

BIOESTATISTICA. Unidade IV - Probabilidades BIOESTATISTICA Unidade IV - Probabilidades 0 PROBABILIDADE E DISTRIBUIÇÃO DE FREQUÊNCIAS COMO ESTIMATIVA DA PROBABILIDADE Noções de Probabilidade Após realizar a descrição dos eventos utilizando gráficos,

Leia mais

Teste de Hipótese e Intervalo de Confiança

Teste de Hipótese e Intervalo de Confiança Teste de Hipótese e Intervalo de Confiança Suponha que estamos interessados em investigar o tamanho da ruptura em um músculo do ombro... para determinar o tamanho exato da ruptura, é necessário um exame

Leia mais

Prof.Letícia Garcia Polac. 26 de setembro de 2017

Prof.Letícia Garcia Polac. 26 de setembro de 2017 Bioestatística Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 26 de setembro de 2017 Sumário 1 2 Probabilidade Condicional e Independência Introdução Neste capítulo serão abordados

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências DISTRIBUIÇÃO CONJUNTA Em muitos

Leia mais

Distribuição Gaussiana

Distribuição Gaussiana Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE ALEATORIEDADE Menino ou Menina me? CARA OU COROA? 3 Qual será o rendimento da Caderneta de Poupança no final deste ano? E qual será a taxa de inflação acumulada em 014? Quem será

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução Exercícios de exames e testes intermédios 1. Como P (B) = 1 P ( B ) = P (B) P (A B) vem que P (B) = 1 0,7

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Um teorema de grande importância e bastante utilidade em probabilidade

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 7 6 5 4 3 2 1 0 Normal 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Temperatura do ar 20 18 16 14 12 10 8 6 4 2 0 Assimetrica Positiva 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Precipitação

Leia mais

Noções de Testes de Hipóteses

Noções de Testes de Hipóteses Noções de Testes de Hióteses Outro tio de roblema da Inferência Estatística é o de testar se uma conjectura sobre determinada característica de uma ou mais oulações é, ou não, aoiada ela evidência obtida

Leia mais

O Teorema de Bayes Mario F. Triola

O Teorema de Bayes Mario F. Triola 1 O Teorema de Bayes Mario F. Triola O conceito de probabilidade condicional é apresentado em Introdução à Estatística. Observamos que a probabilidade condicional de um evento é a probabilidade obtida

Leia mais

Aplicações: Funções marginais

Aplicações: Funções marginais Eercícios propostos ) Calcular dy da função y= f ( ) = e no ponto = para =,. ) Obtenha a diferencial de y= f ( ) = no ponto = para =,. 3) Seja a função y= f ( ) = 5. Calcular y e dy para = e =,. Aplicações:

Leia mais

Probabilidade - aula III

Probabilidade - aula III 2012/02 1 Regra da Multiplicação 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Usar a regra da multiplicação para calcular probabilidade de eventos Usar a. Regra da Multiplicação Frequentemente

Leia mais

CAPÍTULO 5 DISTRIBUIÇÕES DE PROBABILIDADE PPGEP. Introdução. Introdução. Introdução UFRGS. Distribuições de Probabilidade

CAPÍTULO 5 DISTRIBUIÇÕES DE PROBABILIDADE PPGEP. Introdução. Introdução. Introdução UFRGS. Distribuições de Probabilidade Introdução CAPÍTULO 5 DISTRIBUIÇÕES DE PROBABILIDADE UFRGS O histograma é usado para apresentar dados amostrais etraídas de uma população. Por eemplo, os 50 valores de uma característica dimensional apresentados

Leia mais

Vimos até agora os mais variados conceitos relacionados a distribuições de

Vimos até agora os mais variados conceitos relacionados a distribuições de Capítulo Distribuições de Probabilidades Discretas 6 Vimos até agora os mais variados conceitos relacionados a distribuições de probabilidades: Sabemos que: + f() - ou + f()d b P(a < < b) f() a P (a

Leia mais

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL.

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL. Estatística Aplicada Administração p(a) = n(a) / n(u) PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL Prof. Carlos Alberto Stechhahn 2014 1. Noções de Probabilidade Chama-se experimento

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Introdução às Probabilidades

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Introdução às Probabilidades Ano lectivo: 2007/2008 Universidade da Beira Interior Departamento de Matemática ESTATÍSTICA Ficha de exercícios nº3: Introdução às Probabilidades Curso: Ciências do Desporto 1. Considere a experiência

Leia mais

TÉCNICAS DE AMOSTRAGEM

TÉCNICAS DE AMOSTRAGEM TÉCNICAS DE AMOSTRAGEM Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Teorema Central do Limite (TCL) Se y 1, y 2,...,

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuição Amostral da Média Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Variável aleatória numérica parâmetros desconhecidos média desvio padrão estimativa

Leia mais

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar

Leia mais

Capítulo 5. Variáveis aleatórias. 5.1 Introdução

Capítulo 5. Variáveis aleatórias. 5.1 Introdução Capítulo 5 Variáveis aleatórias 5.1 Introdução Em experimentos aleatórios cujo espaço amostral contém alguns eventos de interesse é, em geral, mais fácil lidar como uma variável aleatória, isto é, é mais

Leia mais

Distribuições Importantes. Distribuições Discretas

Distribuições Importantes. Distribuições Discretas Distribuições Importantes Distribuições Discretas Distribuição de Bernoulli Definição Prova ou experiência de Bernoulli é uma experiência aleatória que apenas tem dois resultados possíveis: A que se designa

Leia mais

Probabilidade Condicional e Independência

Probabilidade Condicional e Independência Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 17/08/2011 Probabilidade

Leia mais