Exercícios. Capítulo 3 Factos Empíricos Estilizados de Séries Temporais Financeiras (2012/2013)

Tamanho: px
Começar a partir da página:

Download "Exercícios. Capítulo 3 Factos Empíricos Estilizados de Séries Temporais Financeiras (2012/2013)"

Transcrição

1 Exercícios Capítulo 3 Factos Empíricos Estilizados de Séries Temporais Financeiras (01/013)

2 1. Analise a seguinte informação sobre a série temporal y t : Y Series: Y Sample Observations 1000 Mean Median Maximum Minimum Std. Dev Skewness Kurtosis Jarque Bera Probability Teste Ljung-Box H 0 : Corr (y t ; y t 1 ) = ::: = Corr (y t ; y t 10 ) = 0; valor-p = 0.86 Teste Ljung-Box H 0 : Corr yt ; yt 1 = ::: = Corr y t ; yt 10 = 0; valor-p = 0.90 Sabe-se que y t é uma série temporal de dados diários; mas não se sabe se é uma série nanceira, macroeconómica ou outra. Duas hipóteses estão em confronto. Hipótese F: y é uma série retornos de uma acção ou de um índice bolsista; hipótese NF: y não é uma série retornos de uma acção ou de um índice bolsista. Exponha todos os argumentos a favor destas duas hipóteses. Em sua opinião, qual é a hipótese mais credível?. Concorda ou discorda da seguinte a rmação: Coe cientes estimados de kurtosis altos (acima de 3) implicam a presença do fenómeno volatility clustering. 3. Concorda ou discorda da seguinte a rmação: O efeito assimétrico implica uma distribuição assimétrica negativa para os retornos. 4. Concorda ou discorda da seguinte a rmação: Se fortes (baixas) variações são normalmente seguidas de fortes (baixas) variações em ambos os sentidos, então rt deve estar correlacionado com r t i (i = 1; ; ::). 5. Seja r t o retorno diário de um activo nanceiro cotado na bolsa de valores. É razoável esperar que jcorr (r t ; r t 1 )j + ::: + jcorr (r t ; r t 100 )j > Corr r t ; r t 1 + ::: + Corr r t ; r t 100? 6. Considere o seguinte correlograma. Concorda ou discorda da seguinte a rmação: Existem fortes indícios de que y é um série nanceira.

3 7. Imagine uma série de rendibilidades diárias associadas a um activo cotado na bolsa de valores. Nestas circunstâncias: (a) Um valor plausível para a kurtosis é. Justi que o valor. (b) Um valor plausível para Corr r t 1 ; r t é. Justi que o valor. rj>3^) (c) Um valor plausível para P (jrt P (jzj>3) onde Z N (0; 1) é. Justi que o valor. 8. Diga como pode analisar e testar estatisticamente os seguintes aspetos: (a) Fortes variações dos retornos são normalmente seguidas de fortes variações em ambos os sentidos (b) O volume de transações está normalmente correlacionado com volatilidade. 9. Considere o seguinte modelo para o preço de um activo cotado na bolsa log P t = log P t 1 + u t onde u t é um ruído branco. Poderá este modelo pode captar (ou estimar) a existência de um prémio de risco positivo? 10. Considere uma série de preços de uma ação cotada na bolsa. A partir desses preços calcularam-se os retornos diários e obteve-se o valor-p da estatística Bera-Jarque. Seja p d esse valor. De igual forma, a partir dos preços calcularam-se os retornos semanais e obteve-se o valor-p da estatística Bera-Jarque. Seja p s esse valor. Concorda com a seguinte a rmação: é de esperar que p d < p s? Justi que. 11. Foram simuladas duas trajectórias de variáveis aleatórias com distribuição de Pareto f (y) = c y (+1) ; y > c = 1: Numa das trajectórias considerou-se = e na outra = 1:5: Qual das guras seguintes foi simulada com =? Justi que devidamente. Fig. 1 Fig.

4 1. As curvas apresentadas na gura seguinte representam as abas direitas de duas funções de densidade de probabilidade (fdp). Uma das curvas é proporcional a e x ; a outra é proporcional a x (+1) ; > 0: x Qual das duas funções caracteriza melhor a distribuição marginal de uma série de retornos? 13. Uma classe de distribuições de cauda pesada é de nida a partir da mistura de densidades. Considere f (x) = f 1 (x) + (1 ) f (x) ; 0 1 onde, f 1 (x) é a fdp da N(0; 1) e f (x) é a fdp da N 0;. Suponha = 0:9; 1 = 0:1 e = 3:148: Sabendo que Y tem fdp f; mostre que P (jy j > 3) = 0:0340. Compare com P (jzj > 3) ; onde Z N (0; 1) e comente. 14. Considere o cheiro SP500. (a) Calcule a série dos retornos fr t g onde r t = log (P t =P t 1 ) : (b) Obtenha ^ 1 ; ^ ; ^ 3 ; (estatística) Jarque-Bera, sk; c ^k; [Corr rt ; r t 1 : (c) Faça os seguintes ensaios: i. H 0 : 1 = 0; H 0 : = 0; H 0 : 3 = 0: ii. H 0 : 1 = 0; H 0 : = 0; :::; H 0 : 0 = 0: iii. H 0 : k = 3: iv. H 0 : sk = 0: v. H 0 : k = 3 e sk = 0: vi. H 0 : Corr rt ; r t 1 = 0: (d) Tendo em conta a alínea anterior, identi que alguns dos factos empíricos estilizados. (e) Os testes realizados na alínea (c) podem não ser válidos. Justi que.

5 15. Considere o cheiro accoes psi0 (dados diários) e escolha um título. (a) Apresente os grá cos das séries temporais dos preços e dos retornos r t : (b) Apresente o valor do retorno anualizado r A ; e teste a hipótese do retorno anualizado ser positivo (este retorno deve ser encarado como um parâmetro populacional). Sugestão: teste E (r) = 0: (c) Apresente o valor de sk c e teste sk < 0: (d) Apresente o valor de b k e teste k > 3. (e) Teste a igualdade de médias dos retornos em relação aos dias da semana. (f) Teste a igualdade de médias dos retornos em relação aos meses do ano. (g) Apresente um grá co da estimativa não paramétrica da fdp dos retornos juntamente com a fdp normal. (h) Calcule o estimador de Hill para a aba esquerda e direita da distribuição de retornos. (i) Estime os primeiros 0 coe cientes de autocorrelação dos retornos e teste a nulidade dos primeiros 0 coe cientes de autocorrelação. Comente os resultados. (j) Estime os primeiros 00 coe cientes de autocorrelação dos retornos absolutos, i.e. de jr t j. Comente os resultados. (k) Existe efeito assimétrico? 16. Repita o exercício anterior para dados mensais.

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL 8 a 11 de novembro de 2002, Rio de Janeiro/RJ A PESQUISA OPERACIONAL E AS CIDADES

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL 8 a 11 de novembro de 2002, Rio de Janeiro/RJ A PESQUISA OPERACIONAL E AS CIDADES VOLATILIDADE E VALOR EM RISCO: MODELAGEM POR MÉDIAS MÓVEIS E POR EGARCH COM PARÂMETROS VARIÁVEIS Paulo Henrique Soto Costa UFF - EEIMVR - Departamento de Ciência dos Materiais Av. dos Trabalhadores 42

Leia mais

Econometria em Finanças e Atuária

Econometria em Finanças e Atuária Ralph S. Silva http://www.im.ufrj.br/ralph/especializacao.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Maio-Junho/2013 Modelos condicionalmente

Leia mais

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística II - Licenciatura em Gestão Época de Recurso - Parte prática (14 valores) 24/01/2011.

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística II - Licenciatura em Gestão Época de Recurso - Parte prática (14 valores) 24/01/2011. INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística II - Licenciatura em Gestão Época de Recurso - Parte prática (14 valores) 24/01/2011 Nome: Nº Espaço reservado para a classificação (não escrever aqui)

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS A distribuição dos tempos de permanência dos estudantes nos cursos de graduação de certa universidade é uma distribuição normal com média igual a 6 anos e desvio padrão igual

Leia mais

Capítulo 3. O Modelo de Regressão Linear Simples: Especificação e Estimação

Capítulo 3. O Modelo de Regressão Linear Simples: Especificação e Estimação Capítulo 3 O Modelo de Regressão Linear Simples: Especificação e Estimação Introdução Teoria Econômica Microeconomia: Estudamos modelos de oferta e demanda (quantidades demandadas e oferecidas dependem

Leia mais

Análise de dados para negócios. Cesaltina Pires

Análise de dados para negócios. Cesaltina Pires Análise de dados para negócios Cesaltina Pires Janeiro de 2003 Índice geral 1 Representação grá ca de dados 1 1.1 Variáveis discretas e contínuas.......................... 1 1.2 Distribuições de frequência

Leia mais

ISCTE Instituto Superior de Ciências do Trabalho e da Empresa

ISCTE Instituto Superior de Ciências do Trabalho e da Empresa ISCTE Instituto Superior de Ciências do Trabalho e da Empresa Licenciatura em Gestão Exame de 2ª Época de Estatística II Duração: 2h +30m Nota: Não são prestados esclarecimentos durante a prova! Só é permitida

Leia mais

Modelos ARCH e GARCH Aula 8. Morettin e Toloi, 2006, Capítulo 1 e 14 Morettin, 2011, Capítulo 1 e 5 Bueno, 2011, Capítulo 8

Modelos ARCH e GARCH Aula 8. Morettin e Toloi, 2006, Capítulo 1 e 14 Morettin, 2011, Capítulo 1 e 5 Bueno, 2011, Capítulo 8 Modelos ARCH e GARCH Aula 8 Morettin e Toloi, 2006, Capítulo 1 e 14 Morettin, 2011, Capítulo 1 e 5 Bueno, 2011, Capítulo 8 Motivação Pesquisadores que se dedicam a prever séries temporais, tais como preços

Leia mais

Técnicas Computacionais em Probabilidade e Estatística I. Aula I

Técnicas Computacionais em Probabilidade e Estatística I. Aula I Técnicas Computacionais em Probabilidade e Estatística I Aula I Chang Chiann MAE 5704- IME/USP 1º Sem/2008 1 Análise de Um conjunto de dados objetivo: tratamento de um conjunto de dados. uma amostra de

Leia mais

4 Análise Exploratória

4 Análise Exploratória 4 Análise Exploratória Ao analisar uma série temporal é de fundamental importância que seja feita a análise exploratória de dados. Tal procedimento permite que sejam identificadas diversas informações

Leia mais

4 APLICAÇÕES À SÉRIE TEMPORAL DE CONSUMO RESIDENCIAL MENSAL DE ENERGIA ELÉTRICA

4 APLICAÇÕES À SÉRIE TEMPORAL DE CONSUMO RESIDENCIAL MENSAL DE ENERGIA ELÉTRICA 4 APLICAÇÕES À SÉRIE TEMPORAL DE CONSUMO RESIDENCIAL MENSAL DE ENERGIA ELÉTRICA No capítulo 4, são aplicados os métodos individuais e os combinados à projeção de curto prazo da série de consumo residencial

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº 5: Testes Paramétricos Probabilidades e Estatística 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaio. (a) f () = 3 (b) g () = (c) h () = (d) f () = 1 3 + 5 1 3 (e) g () 2 (f) g () = jj 8 8

Leia mais

EVOLUÇÃO DA DÍVIDA PÚBLICA MOBILIÁRIA FEDERAL INTERNA NO BRASIL DE 1995 A 2002

EVOLUÇÃO DA DÍVIDA PÚBLICA MOBILIÁRIA FEDERAL INTERNA NO BRASIL DE 1995 A 2002 EVOLUÇÃO DA DÍVIDA PÚBLICA MOBILIÁRIA FEDERAL INTERNA NO BRASIL DE 1995 A 2002 Vanessa Lucas Gonçalves 1 Sérgio Luiz Túlio 2 RESUMO Este artigo tem por objetivo analisar a evolução da Dívida Pública Mobiliária

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

A Metodologia de Box & Jenkins

A Metodologia de Box & Jenkins A Metodologia de Box & Jenins Aula 03 Bueno, 0, Capítulo 3 Enders, 009, Capítulo Morettin e Toloi, 006, Capítulos 6 a 8 A Metodologia Box & Jenins Uma abordagem bastante utilizada para a construção de

Leia mais

Controlo por Computador. Primeiro Teste

Controlo por Computador. Primeiro Teste MEEC, MAero Controlo por Computador 2014/2015 Primeiro Teste 5 de Novembro de 2014, 20 horas salas QA, Q01 Quotação: P1 a) 2 b) 2 c) 2; P2 a) 3, b) 1, c) 1, P3 4, P4 a) 1 b) 3 c) 1. Duração: 2 horas. Não

Leia mais

Considere os portfolios X, Y e Z, abaixo, caracterizados pelas respectivas distribuições de probabilidades:

Considere os portfolios X, Y e Z, abaixo, caracterizados pelas respectivas distribuições de probabilidades: Fundação Getulio Vargas Curso de Graduação Disciplina: Estatística Professor: Moisés Balassiano 1. Investidores geralmente constroem portfolios, ou carteiras, contendo diversas aplicações financeiras.

Leia mais

Aula 7 Intervalos de confiança

Aula 7 Intervalos de confiança Aula 7 Intervalos de confiança Nesta aula você aprenderá um método muito importante de estimação de parâmetros. Na aula anterior, você viu que a média amostral X é um bom estimador da média populacional

Leia mais

Bioestatística Básica

Bioestatística Básica Bioestatística Básica Curso de Pós-Graduação RCA 5804 PROF. DR. ALFREDO J RODRIGUES DEPARTAMENTO DE CIRURGIA E ANATOMIA FACULDADE DE MEDICINA DE RIBEIRÃO PRETO UNIVERSIDADE DE SÃO PAULO alfredo@fmrp.usp.br

Leia mais

Testes de Hipóteses Paramétricos

Testes de Hipóteses Paramétricos Testes de Hipóteses Paramétricos Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução Exemplos Testar se mais de metade da população irá consumir um novo produto

Leia mais

Distribuição Generalizada de Valores Extremos (GVE): Um estudo aplicado a valores de temperatura mínima da Cidade de Viçosa-MG

Distribuição Generalizada de Valores Extremos (GVE): Um estudo aplicado a valores de temperatura mínima da Cidade de Viçosa-MG Distribuição Generalizada de Valores Extremos (GVE): Um estudo aplicado a valores de temperatura mínima da Cidade de Viçosa-MG Eduardo Campana Barbosa 12 Carlos Henrique Osório Silva 3 Rômulo César Ricardo

Leia mais

Redes Complexas Aula 7

Redes Complexas Aula 7 Redes Complexas Aula 7 Aula retrasada Lei de potência Distribuição Zeta Propriedades Distribuição Zipf Exemplo Wikipedia Aula de hoje Distribuição de Pareto Medindo lei de potência Estimando expoente Exemplos

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Introdução às Probabilidades

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Introdução às Probabilidades Ano lectivo: 2007/2008 Universidade da Beira Interior Departamento de Matemática ESTATÍSTICA Ficha de exercícios nº3: Introdução às Probabilidades Curso: Ciências do Desporto 1. Considere a experiência

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

Prova de Estatística

Prova de Estatística Prova de Estatística 1. Para um número-índice ser considerado um índice ideal, ele precisa atender duas propriedades: reversão no tempo e o critério da decomposição das causas. Desta forma, é correto afirmar

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Aula Valor esperado como solução do problema do menor erro quadrático médio e Quantis 03/14 1 / 15 Valor esperado como solução

Leia mais

Universidade Federal de Viçosa Departamento de Estatística

Universidade Federal de Viçosa Departamento de Estatística Universidade Federal de Viçosa Departamento de Estatística Prova Seletiva para o Programa de Pós-Graduação em Estatística Aplicada e Biometria. Nível Doutorado - 22/nov/2013 Nome: Assinatura:. Número do

Leia mais

EXAME DE ESTATÍSTICA / ESTATÍSTICA I

EXAME DE ESTATÍSTICA / ESTATÍSTICA I INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE EAME DE ESTATÍSTICA / ESTATÍSTICA I Cursos: Licenciatura em Enfermagem e Licenciaturas Bi-etápicas em Fisioterapia e em Terapia da Fala Época de

Leia mais

TESTES DE HIPÓTESES. O procedimento básico de um teste de hipóteses pode ser decomposto em quatro fases: i) Definição das hipóteses.

TESTES DE HIPÓTESES. O procedimento básico de um teste de hipóteses pode ser decomposto em quatro fases: i) Definição das hipóteses. 227 TESTES DE HIPÓTESES Objectivo: Verificar se os dados amostrais (ou estimativas obtidas a partir deles) são ou não compatíveis com determinadas populações (ou com valores previamente fixados dos correspondentes

Leia mais

Inferência Estatística: DEEST/UFOP Prof.: Spencer Barbosa da Silva

Inferência Estatística: DEEST/UFOP Prof.: Spencer Barbosa da Silva Inferência Estatística: Prof.: Spencer Barbosa da Silva Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos

Leia mais

Amostragem e distribuições por amostragem

Amostragem e distribuições por amostragem Amostragem e distribuições por amostragem Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Contabilidade e Administração População, amostra e inferência estatística

Leia mais

Análise da série temporal do desemprego em regiões metropolitanas do Brasil

Análise da série temporal do desemprego em regiões metropolitanas do Brasil Análise da série temporal do desemprego em regiões metropolitanas do Brasil Érica Fernanda da Cruz 1 3 Tamara Aparecida Nogueira dos Anjos 2 Thelma Sáfadi 2 1 Introdução O desemprego no Brasil é uma constante

Leia mais

Problemas de Física Estatística e Termodinâmica

Problemas de Física Estatística e Termodinâmica 1 Problemas de Física Estatística e Termodinâmica Todas as grandezas físicas se supõem expressas no Sistema Internacional de Unidades. 1. Uma variável aleatória y pode tomar valores no conjunto {1,2,3,4,5}

Leia mais

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ-13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e 16 Introdução à probabilidade (eventos,

Leia mais

ISCTE- IUL Instituto Universitário de Lisboa

ISCTE- IUL Instituto Universitário de Lisboa ISCTE- IUL Instituto Universitário de Lisboa Licenciatura em Gestão Exame de ª Época de Estatística II de Junho de 0 Duração: h +30m Nota: Não são prestados esclarecimentos durante a prova! Só é permitida

Leia mais

ECONOMETRIA I. I (11 valores)

ECONOMETRIA I. I (11 valores) Faculdade de Economia Universidade Nova de Lisboa ECONOMETRIA I Exame de 1ª Época 14 de Janeiro de 2005 Duração: 2 horas I (11 valores) Com base numa amostra aleatória de 88 alunos que fizeram o exame

Leia mais

(ii) Acrescente lucros ao modelo da parte (i). Por que essa variável não pode ser

(ii) Acrescente lucros ao modelo da parte (i). Por que essa variável não pode ser Questão 1 O arquivo CEOSAL2.RAW contém dados de 177 diretores, os quais podem ser utilizados para examinar os efeitos do desempenho da firma sobre o salário do CEO. (i) Estime um modelo que relacione o

Leia mais

Análise de Sobrevivência

Análise de Sobrevivência Análise de Sobrevivência Modelagem paramétrica Valeska Andreozzi 1 valeska.andreozzi@fc.ul.pt & Marilia Sá Carvalho 2 cavalho@fiocruz.br 1 Centro de Estatística e Aplicações da Universidade de Lisboa,

Leia mais

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Estimação de Parâmetros O objetivo da Estatística Indutiva é tirar conclusões probabilísticas sobre aspectos da população,

Leia mais

Teste de hipóteses. Estatística Aplicada Larson Farber

Teste de hipóteses. Estatística Aplicada Larson Farber 7 Teste de hipóteses Estatística Aplicada Larson Farber Seção 7.1 Introdução ao teste de hipóteses Uma hipótese estatística é uma alegação sobre uma população. A hipótese nula H 0 contém uma alternativa

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Experimentais em Ciências Mecânicas Professor Jorge Luiz A. Ferreira Pertencem ao grupo de ferramentas estatísticas que permitem caracterizar um conjunto de dados sob ponto de vista da tendência

Leia mais

Estatística e Probabilidade. Aula 11 Cap 06

Estatística e Probabilidade. Aula 11 Cap 06 Aula 11 Cap 06 Intervalos de confiança para variância e desvio padrão Confiando no erro... Intervalos de Confiança para variância e desvio padrão Na produção industrial, é necessário controlar o tamanho

Leia mais

Prova de Estatística

Prova de Estatística UNIVERSIDADE FEDERAL DO PARÁ CURSO DE MESTRADO EM ECONOMIA PROCESSO SELETIVO 2010 Prova de Estatística INSTRUÇÕES PARA A PROVA Leia atentamente as questões. A interpretação das questões faz parte da prova;

Leia mais

Case Processing Summary

Case Processing Summary 17. O ficheiro Banco.sav encerra informação relativa a 474 empregados contratados por um banco, entre 1969 e 1971. Este banco esteve envolvido num processo judicial no âmbito da Igualdade de Oportunidade

Leia mais

AULA 13 Análise de Regressão Múltipla: MQO Assimptótico

AULA 13 Análise de Regressão Múltipla: MQO Assimptótico 1 AULA 13 Análise de Regressão Múltipla: MQO Assimptótico Ernesto F. L. Amaral 15 de abril de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte: Wooldridge, Jeffrey M. Introdução

Leia mais

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016.

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016. de Matemática Financeira e Estatística do ISS Teresina, aplicada em 8/08/016. 11 - (ISS Teresina 016 / FCC) Joana aplicou todo seu capital, durante 6 meses, em bancos ( e Y). No Banco, ela aplicou 37,5%

Leia mais

Catarina Marques. Estatística II Licenciatura em Gestão. Conceitos: População, Unidade Estatística e Amostra

Catarina Marques. Estatística II Licenciatura em Gestão. Conceitos: População, Unidade Estatística e Amostra Amostragem Estatística II Licenciatura em Gestão 1 Conceitos: População, Unidade Estatística e Amostra População (ou Universo) dimensão N Conjunto de unidades com uma ou mais características comuns População

Leia mais

Inferência Estatística:

Inferência Estatística: Inferência Estatística: Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos Estimação É um processo que

Leia mais

Econometria em Finanças e Atuária

Econometria em Finanças e Atuária Ralph S. Silva http://www.im.ufrj.br/ralph/especializacao.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Maio-Junho/2013 Tópicos Tópicos Séries

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS 2003 2004 2005 2006 2007 2008 2009 2010 X 39,0 39,5 39,5 39,0 39,5 41,5 42,0 42,0 Y 46,5 65,5 86,0 100,0 121,0 150,5 174,0 203,0 A tabela acima mostra as quantidades, em milhões

Leia mais

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20 SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17

Leia mais

UMA ANÁLISE ECONOMÉTRICA DO ICMS *

UMA ANÁLISE ECONOMÉTRICA DO ICMS * UMA ANÁLISE ECONOMÉTRICA DO ICMS * Carlos Eduardo S. Marino ** * Trabalho de conclusão da disciplina de Econometria I, ministrada pelos professores Ivan Castelar e Vitor Monteiro, realizada no primeiro

Leia mais

Teste Mann-Whitney. Contrapartida não-paramétrica para. Teste-t para amostras independentes

Teste Mann-Whitney. Contrapartida não-paramétrica para. Teste-t para amostras independentes Teste Mann-Whitney Contrapartida não-paramétrica para Teste-t para amostras independentes Teste Mann-Whitney pequenas amostras independentes 1. Testes para Duas Populações, X e Y, Independentes. Corresponde

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x (f) g (x) = jx 1j x, se x 2

Leia mais

4 Base de dados, métricas estatísticas e metodologia

4 Base de dados, métricas estatísticas e metodologia 4 Base de dados, métricas estatísticas e metodologia 4.1. Base de dados Foram coletados dados do boletim estatístico do Ministério da Previdência Social de forma temporal para os meses de dezembro de 2002

Leia mais

Prova Escrita de Conhecimentos Específicos de MATEMÁTICA

Prova Escrita de Conhecimentos Específicos de MATEMÁTICA Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade para a Frequência dos Cursos Superiores do Instituto Politécnico de Leiria dos Maiores de 23 Anos Prova Escrita de Conhecimentos Específicos

Leia mais

Questão 1 Sabe-se que o consumo mensal per capita de um determinado produto tem distribuição normal com desvio padrão σ = 2kg

Questão 1 Sabe-se que o consumo mensal per capita de um determinado produto tem distribuição normal com desvio padrão σ = 2kg Lista suplementar Teste de uma média populacional Questão 1 Sabe-se que o consumo mensal per capita de um determinado produto tem distribuição normal com desvio padrão σ = kg. A diretoria da indústria

Leia mais

Teste de hipóteses. Testes de Hipóteses. Valor de p ou P-valor. Lógica dos testes de hipótese. Valor de p 31/08/2016 VPS126

Teste de hipóteses. Testes de Hipóteses. Valor de p ou P-valor. Lógica dos testes de hipótese. Valor de p 31/08/2016 VPS126 3/8/26 Teste de hipóteses Testes de Hipóteses VPS26 Ferramenta estatística para auxiliar no acúmulo de evidências sobre uma questão Média de glicemia de um grupo de animais é diferente do esperado? Qual

Leia mais

Análise de séries temporais financeiras

Análise de séries temporais financeiras Séries Temporais Financeiras Aula -1 Análise de séries temporais financeiras Em princípio, não haveria diferenças entre a análise de séries temporais financeiras e aquelas ocorrendo em outras áreas, como

Leia mais

CÁLCULO I. 1 Crescimento e Decaimento Exponencial

CÁLCULO I. 1 Crescimento e Decaimento Exponencial CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 27: Aplicações da Derivada: Decaimento Radioativo, Crescimento Populacional e Lei de Resfriamento de Newton Objetivos da Aula Aplicar derivada

Leia mais

APLICAÇÃO COLETIVA DA FIGURA COMPLEXA DE REY

APLICAÇÃO COLETIVA DA FIGURA COMPLEXA DE REY APLICAÇÃO COLETIVA DA FIGURA COMPLEXA DE REY Álvaro José Lelé (Centro Universitário de Lavras, Laboratório de Avaliação das Diferenças Individuais-UFMG), Marilourdes do Amaral Barbosa (Universidade da

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER Edição de agosto de 2011 CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER ÍNDICE 6.1- Introdução 6.2- Equação

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Condicionais 11/13 1 / 19 Em estudo feito em sala perguntamos aos alunos qual

Leia mais

Prof. Sérgio Carvalho Estatística. I Jornada de Especialização em Concursos

Prof. Sérgio Carvalho Estatística. I Jornada de Especialização em Concursos DISTRIBUIÇÃO DE FREQÜÊNCIAS & INTERPOLAÇÃO LINEAR DA OGIVA 0. (AFRF-000) Utilize a tabela que se segue. Freqüências Acumuladas de Salários Anuais, em Milhares de Reais, da Cia. Alfa Classes de Salário

Leia mais

6.3 Valor Médio de uma Variável Aleatória

6.3 Valor Médio de uma Variável Aleatória 6. 3 V A L O R M É D I O D E U M A V A R I Á V E L A L E A T Ó R I A 135 1. Considere uma urna contendo três bolas vermelhas e cinco pretas. Retire três bolas, sem reposição, e defina a v.a. X igual ao

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER Edição de janeiro de 2009 CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER ÍNDICE 6.1- Introdução 6.2- Equação

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais 1 Da população, com parâmetro, retira-se k amostras de tamanho n e calcula-se a estatística. Estas estatísticas são as estimativas de. As estatísticas, sendo variáveis aleatórias,

Leia mais

Distribuição Amostral e Estimação Pontual de Parâmetros

Distribuição Amostral e Estimação Pontual de Parâmetros Roteiro Distribuição Amostral e Estimação Pontual de Parâmetros 1. Introdução 2. Teorema Central do Limite 3. Conceitos de Estimação Pontual 4. Métodos de Estimação Pontual 5. Referências População e Amostra

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 6 MECÂNICA QUÂNTICA DE DE SCHRÖDINGER Primeira Edição junho de 2005 CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER ÍNDICE 6.1- Introdução

Leia mais

Conceitos Básicos de Estatística Aula 2

Conceitos Básicos de Estatística Aula 2 Conceitos Básicos de Estatística Aula 2 ISCTE - IUL, Mestrados de Continuidade Diana Aldea Mendes diana.mendes@iscte.pt 13 de Setembro de 2011 DMQ, ISCTE-IUL (diana.mendes@iscte.pt) Estatística 13 de Setembro

Leia mais

Instituto Universitário de Lisboa (ISCTE-IUL) Licenciaturas em Gestão e Finanças & Contabilidade Estatística II - Exame de 1ª época

Instituto Universitário de Lisboa (ISCTE-IUL) Licenciaturas em Gestão e Finanças & Contabilidade Estatística II - Exame de 1ª época Instituto Universitário de Lisboa (ISCTE-IUL) Licenciaturas em Gestão e Finanças & Contabilidade Estatística II - Exame de 1ª época Duração: 2h +30m Nota: Não são prestados esclarecimentos durante a prova!

Leia mais

ESTUDO DE CASO. Terapêutica e prevenção secundária no tumor do pulmão

ESTUDO DE CASO. Terapêutica e prevenção secundária no tumor do pulmão ESTUDO DE CASO Terapêutica e prevenção secundária no tumor do pulmão É bem conhecida a relação tabaco / tumor do pulmão, embora existam casos de neoplasia do pulmão sem antecedentes de tabagismo. Mesmo

Leia mais

MODELOS MATEMÁTICOS E APLICAÇÕES 2015/2016 EXERCÍCIOS DE MODELOS LINEARES MISTOS PARTE I

MODELOS MATEMÁTICOS E APLICAÇÕES 2015/2016 EXERCÍCIOS DE MODELOS LINEARES MISTOS PARTE I MODELOS MATEMÁTICOS E APLICAÇÕES 2015/2016 EXERCÍCIOS DE MODELOS LINEARES MISTOS PARTE I 1. Num estudo de selecção da videira, com vista a estudar a variabilidade genética do rendimento da casta Touriga

Leia mais

i. f Y (y, θ) = 1/θ... 0 y θ 0... y < 0 ou y > θ Se a amostra selecionada foi ( ), qual será a estimativa para θ?

i. f Y (y, θ) = 1/θ... 0 y θ 0... y < 0 ou y > θ Se a amostra selecionada foi ( ), qual será a estimativa para θ? Fundação Getulio Vargas Curso: Graduação Disciplina: Estatística Professor: Moisés Balassiano Lista de Exercícios Inferência. Seja (Y, Y 2,..., Y n ) uma amostra aleatória iid, de tamanho n, extraída de

Leia mais

Técnicas Computacionais em Probabilidade e Estatística I. Aula III

Técnicas Computacionais em Probabilidade e Estatística I. Aula III Técnicas Computacionais em Probabilidade e Estatística I Aula III Chang Chiann MAE 5704- IME/USP 1º Sem/2008 1 Arquivo PULSE do Minitab Refere-se a um experimento feito por alunos. Cada um deles registrou

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE. Programa de Mestrado e Doutorado em Engenharia de Produção. Disciplina: Estatística Multivariada

UNIVERSIDADE FEDERAL FLUMINENSE. Programa de Mestrado e Doutorado em Engenharia de Produção. Disciplina: Estatística Multivariada UNIVERSIDADE FEDERAL FLUMINENSE Programa de Mestrado e Doutorado em Engenharia de Produção Disciplina: Estatística Multivariada Aula: Introdução a MVDA e Revisão Estatística Professor: Valdecy Pereira,

Leia mais

XI Encontro de Iniciação à Docência

XI Encontro de Iniciação à Docência 4CCSADEMT03 O MODELO IS LM: UMA ABORDAGEM PARA A ECONOMIA BRASILEIRA NO PERÍODO DE 1995 2007 Tatyanna Nadábia de Souza Lima (1), Marcilia Nobre Gadelha (2), Sinézio Fernandes Maia (3) Centro de Ciências

Leia mais

Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB

Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB Licenciatura em Ciências Biológicas Universidade Federal de Goiás Bioestatística Prof. Thiago Rangel - Dep. Ecologia ICB rangel.ufg@gmail.com Página do curso: http://www.ecologia.ufrgs.br/~adrimelo/bioestat

Leia mais

Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida

Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida Nesta aula você completará seu estudo básico sobre intervalos de confiança, analisando o problema de estimação da média de uma

Leia mais

LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS

LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Matemática MTM 5 Estatística Turma 22 Professor: Rodrigo Luiz Pereira Lara LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS

Leia mais

Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ

Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ Duração: 90 minutos Grupo I Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ Justifique convenientemente todas as respostas! o semestre 015/016

Leia mais

CORRECÇÃO DO EXAME DE ESTATÍSTICA PARA ECONOMISTAS E GESTORES DE 19 DE JANEIRO DE 2013

CORRECÇÃO DO EXAME DE ESTATÍSTICA PARA ECONOMISTAS E GESTORES DE 19 DE JANEIRO DE 2013 CORRECÇÃO DO EXAME DE ESTATÍSTICA PARA ECONOMISTAS E GESTORES DE 19 DE JANEIRO DE 213 Grupo I (3 Valores) versão Leopardo Leia com atenção o texto seguinte onde a cada espaço em branco corresponde uma

Leia mais

Métodos Quantitativos

Métodos Quantitativos Métodos Quantitativos Unidade 3 Estatística inferencial parte I Prof. Me. Diego Fernandes 1 Sumário Seção Slides 3.1 Noções de probabilidade 03 21 3.2 Distribuição dos estimadores 22 41 3.3 e 3.4 - Testes

Leia mais

Correlação Serial e Heterocedasticidade em Regressões de Séries Temporais. Wooldridge, Cap. 12

Correlação Serial e Heterocedasticidade em Regressões de Séries Temporais. Wooldridge, Cap. 12 Correlação Serial e Heterocedasticidade em Regressões de Séries Temporais Wooldridge, Cap. 1 Porto Alegre, 11 de novembro de 010 1 CORRELAÇÃO SERIAL Ocorrência Conseqüência Análise gráfica Autocorrelação

Leia mais

MEDIDAS DE POSIÇÃO E DE DISPERSÃO. Profª Andréa H Dâmaso

MEDIDAS DE POSIÇÃO E DE DISPERSÃO. Profª Andréa H Dâmaso MEDIDAS DE POSIÇÃO E DE DISPERSÃO Profª Andréa H Dâmaso Bioestatística e Delineamento Experimental - 2012 Tópicos da aula Medidas de tendência central e dispersão Variáveis contínuas: distribuição normal

Leia mais

Modelo de regressão estável aplicado a econometria

Modelo de regressão estável aplicado a econometria Modelo de regressão estável aplicado a econometria financeira Fernando Lucambio Departamento de Estatística Universidade Federal do Paraná Curitiba/PR, 81531 990, Brasil email: lucambio@ufpr.br 1 Objetivos

Leia mais

1. Registou-se o número de assoalhadas de 100 apartamentos vendidos num bairro residencial

1. Registou-se o número de assoalhadas de 100 apartamentos vendidos num bairro residencial Escola Superior de Tecnologia de Viseu Fundamentos de Estatística 2006/2007 Ficha nº 1 1. Registou-se o número de assoalhadas de 100 apartamentos vendidos num bairro residencial 0; 0; 0; 1; 2; 0; 0; 1;

Leia mais

Teoria do Mercado de Capitais

Teoria do Mercado de Capitais Teoria do Mercado de Capiais Capíulo 9: Ross e all. 1 Inrodução Objeivo de Finanças: avaliação do risco de uma careira de aivos financeiros Risco: é medido em ermos de variações dos preços dos aivos P

Leia mais

ESTIMAÇÃO PELO MÉTODO ORDINÁRIO DE MÍNIMOS QUADRADOS (OLS)

ESTIMAÇÃO PELO MÉTODO ORDINÁRIO DE MÍNIMOS QUADRADOS (OLS) ESTIMAÇÃO PELO MÉTODO ORDINÁRIO DE MÍNIMOS QUADRADOS (OLS) 1 No quadro abaixo, reproduzem-se os resultados de uma estimação realizada com o programa informático EViews. Alguma da informação fornecida pelo

Leia mais

Módulo III Medidas de Tendência Central ESTATÍSTICA

Módulo III Medidas de Tendência Central ESTATÍSTICA Módulo III Medidas de Tendência Central ESTATÍSTICA Objetivos do Módulo III Determinar a média, mediana e moda de uma população e de uma amostra Determinar a média ponderada de um conjunto de dados e a

Leia mais

Exemplo 7.0 Numa linha de produção, os pesos de pacotes de pó de café embalados por uma máquina têm distribuição Normal, com média

Exemplo 7.0 Numa linha de produção, os pesos de pacotes de pó de café embalados por uma máquina têm distribuição Normal, com média Exemplo 7.0 Numa linha de produção, os pesos de pacotes de pó de café embalados por uma máquina têm distribuição Normal, com média µ = 505g e desvio padrão σ = 9g. a) Selecionado ao acaso um pacote embalado

Leia mais

0.1 Modelação de dados

0.1 Modelação de dados 0.1. MODELAÇÃO DE DADOS 1 0.1 Modelação de dados Comecemos por admitir que temos acesso a dados (x 1,..., x n ) que podem ser encarados como observações de variáveis aleatórias independentes e identicamente

Leia mais

Modelos de Regressão Linear Simples - Análise de Resíduos

Modelos de Regressão Linear Simples - Análise de Resíduos Modelos de Regressão Linear Simples - Análise de Resíduos Erica Castilho Rodrigues 1 de Setembro de 2014 3 O modelo de regressão linear é dado por Y i = β 0 + β 1 x i + ɛ i onde ɛ i iid N(0,σ 2 ). O erro

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Planejamento e Pesquisa 1. Dois Grupos

Planejamento e Pesquisa 1. Dois Grupos Planejamento e Pesquisa 1 Dois Grupos Conceitos básicos Comparando dois grupos Testes t para duas amostras independentes Testes t para amostras pareadas Suposições e Diagnóstico Comparação de mais que

Leia mais

Inferência Estatística: Conceitos Básicos I

Inferência Estatística: Conceitos Básicos I Inferência Estatística: Conceitos Básicos I Introdução, Medidas de Tendência Central, Medidas de Variabilidade, Distribuições de Frequência e Probabilidade Flávia F. Feitosa BH1350 Métodos e Técnicas de

Leia mais

Estatística Aplicada à Educação

Estatística Aplicada à Educação Estatística Aplicada à Educação Curvas de Frequência p. 75 Aprendemos na aula passada a representação gráfica por meio de histogramas e polígono de frequências. 27 24 21 18 15 12 9 6 3 0 150 154 158 162

Leia mais

Prova escrita de conhecimentos específicos de MATEMÁTICA

Prova escrita de conhecimentos específicos de MATEMÁTICA Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade para a Frequência dos Cursos Superiores do Instituto Politécnico de Leiria dos Maiores de 3 Anos - 03 Prova escrita de conhecimentos específicos

Leia mais

Mercados e Investimentos Financeiros. Cesaltina Pacheco Pires

Mercados e Investimentos Financeiros. Cesaltina Pacheco Pires Mercados e Investimentos Financeiros Cesaltina Pacheco Pires Índice geral Prefácio ix 1 Introdução 1 1.1 Activos reais e activos nanceiros........................ 1 1.2 Escolha intertemporal e taxa de

Leia mais