Fibonacci e a Seção Áurea

Tamanho: px
Começar a partir da página:

Download "Fibonacci e a Seção Áurea"

Transcrição

1 Na matemática, os Números de Fibonacci são uma seqüência (sucessão, em Portugal) definida como recursiva pela fórmula abaixo: Na prática: você começa com 0 e 1, e então produz o próximo número de Fibonacci somando os dois anteriores para formar o próximo. Os primeiros Números de Fibonacci (sequência A em OEIS) para n = 0, 1,... são 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,

2 Por que esse número é tão apreciado por artistas, arquitetos, projetistas e músicos? Porque a proporção áurea, como o nome sugere, está presente na natureza, no corpo humano e no universo. Este número, assim como outros, por exemplo o Pi, estão presentes no mundo por uma razão matemática existente na natureza. Essa seqüência aparece na natureza, no comportamento da refração da luz, dos átomos, do crescimento das plantas, nas espirais das galáxias, dos marfins de elefantes, nas ondas no oceano, furacões, etc.

3 Um retângulo áureo é facilmente obtido com compasso e régua por este método: 1. Construir um quadrado 2. Desenhar a linha do ponto central de um lado para um dos cantos no lado oposto 3. Usar essa linha como raio de uma circunferência para definir a altura do rectângulo 4. Completar o retângulo

4 Figuras Geométricas Um decágono regular, inscrito numa circunferência, tem os lados em relação dourada com o raio da circunferência. O pentagrama é obtido traçando-se as diagonais de um pentágono regular. O pentágono menor, formado pelas interseções das diagonais, está em proporção com o pentágono maior, de onde se originou o pentagrama. A razão entre as medidas dos lados dos dois pentágonos é igual ao quadrado da razão áurea. Quando Pitágoras descobriu que as proporções no pentagrama eram a proporção áurea, tornou este símbolo estrelado como a representação da Irmandade Pitagórica. Este era um dos motivos que levava Pitágoras a afirmar que a natureza segue padrões matemáticos.

5 Vegetais Semente de girassol A proporção em que aumenta o diâmetro das espirais sementes de um girassol é a razão áurea. Achillea ptarmica Razão do crescimento de seus galhos. Folhas das Árvores A proporção em que se diminuem as folhas de uma arvore à medida que subimos de altura.

6 Animais População de Abelhas A proporção entre abelhas fêmeas e machos em qualquer colméia. Concha do Caramujo Nautilus A proporção em que cresce o raio do interior da concha desta espécie de caramujo. Este molusco bombeia gás para dentro de sua concha repleta de câmaras pra poder regular a profundidade de sua flutuação. O phi está também nas escamas de peixes, presas de elefantes, cauda de vários animais etc...

7 Corpo Humano A altura do corpo humano e a medida do umbigo até o chão. A altura do crânio e a medida da mandíbula até o alto da cabeça. A medida da cintura até a cabeça e o tamanho do tórax. A medida do ombro à ponta do dedo e a medida do cotovelo à ponta do dedo. O tamanho dos dedos e a medida da dobra central até a ponta. A medida da dobra central até a ponta dividido e da segunda dobra até a ponta. A medida do seu quadril ao chão e a medida do seu joelho até ao chão. Essas proporções anatômicas foram bem representadas pelo "Homem Vitruviano", obra de Leonardo Da Vinci.

8 Aplicação na Arte A proporção áurea foi muito usada na arte, em obras como O Nascimento de Vênus, quadro de Botticelli, em que Afrodite está na proporção áurea. Esta proporção estaria ali aplicada pelo motivo do autor representar a perfeição da beleza. Em O Sacramento da Última Ceia de Salvador Dalí, as dimensões do quadro (aproximadamente 270 cm 167 cm) estão numa Razão Áurea entre si. Na história da arte renascentista a perfeição da beleza em quadros foi bastante explorada com base nesta constante. Vários pintores e escultores lançaram mão das possibilidades que a proporção os dava de retratar a realidade com mais perfeição. A Mona Lisa de Leonardo da Vinci utiliza o número áureo nas relações entre seu tronco e cabeça, e também entre os elementos do rosto.

9 Arquitetura O Parténon é o mais perfeito e conhecido exemplo da utilização da proporção áurea na arquitetura. Os Egípcios fizeram o mesmo com as pirâmides. Por exemplo, cada bloco da pirâmide era 1,618 vezes maior que o bloco do nível a cima. As câmaras no interior das pirâmides também seguiam essa proporção, de forma que os comprimentos das salas são 1,618 vezes maior que as larguras. O mesmo ocorre na arquitetura de Gaudí na Catalunha (especialmente a Catedral da Sagrada Família) e com a obra de Le Corbusier.

10 Literatura, Música e Cinema Na literatura o número de ouro encontra sua aplicação mais notável no poema épico grego Ilíada, de Homero, que narra os acontecimentos dos último dias da Guerra de Tróia. Quem o ler notará que a proporção entre as estrofes maiores e as menores dá um número próximo ao 1,618, o número de ouro. Virgílio em sua obra Eneida, construiu a razão áurea com as estrofes maiores e menores. O número de ouro está presente nas famosas sinfonias Sinfonia nº 5 e a Sinfonia nº 9 de Ludwig van Beethoven e em outras diversas obras. O diretor russo Sergei Eisenstein se utilizou do número Phi no filme O Encouraçado Potemkin para marcar os inícios de cenas importantes da trama, medindo a razão pelo tamanho das fitas de película.

11 Formato A O "formato A" usado em papéis e como "modelo" para outros objetos foi definido pela ISO - International Standarts Organisation e começa em "A0" com dimensões de "1189mm x 841mm", que corresponde a 1 metro quadrado. A relaçao entre o lado maior e o lado menor é sempre "raiz de 2". Na prática, o lado maior é dividido por dois e o menor é repetido. * A0: 1189mm x 841mm (cabem 2 folhas A1 em um A0) * A1: 841mm x 594mm (cabem 2 folhas A2 em um A1) * A2: 594mm x 420mm (cabem 2 folhas A3 em um A2) * A3: 420mm x 297mm (cabem 2 folhas A4 em um A3) * A4: 297mm x 210mm (cabem 2 folhas A5 em um A4) * A5: 210mm x 148,5 (cabem 2 folhas A6 em um A5) * A6: 148,5mm x 105mm e assim por diante...

12

13 Grades O formato define as dimensões externas de uma página (retrato, paisagem ou quadrado) já suas dimensões internas são definidas através da grade. Em relação à página a grade pode se apresentar de forma simétrica ou assimétrica.

14 Grades Área de texto definida através de uma moldura simples, sempre tomando cuidado com o correto espaçamento com relação a canaleta central. Desenhando uma grade com formato e caixas de texto com proporções constantes.

NÚMERO DE OURO. Vanessa Alves dos Santos Universidade do Estado da Bahia nessafnv@hotmail.com

NÚMERO DE OURO. Vanessa Alves dos Santos Universidade do Estado da Bahia nessafnv@hotmail.com NÚMERO DE OURO Vanessa Alves dos Santos Universidade do Estado da Bahia nessafnv@hotmail.com Naiara Alves Andrade Universidade do Estado da Bahia luuk_pop@hotmail.com Tiago Santos de Oliveira Universidade

Leia mais

NÚMERO DE OURO. Palavras chave: Número de Ouro, Desenho Geométrico, Matemática, História, Aprendizagem, Geometria.

NÚMERO DE OURO. Palavras chave: Número de Ouro, Desenho Geométrico, Matemática, História, Aprendizagem, Geometria. NÚMERO DE OURO Giuliano Miyaishi Belussi Giu_mb@yahoo.com.br Daniel Aparecido Geraldini Danielgeraldini@gmail.com Enéias de Almeida Prado Neneias13@yahoo.com.br Profª. Ms. Maria Bernadete Barison barison@uel.br

Leia mais

Escola Secundária de Dona Luísa de Gusmão 10º B

Escola Secundária de Dona Luísa de Gusmão 10º B Escola Secundária de Dona Luísa de Gusmão 10º B David nº9 Ricardo Pereira nº15 Sílvia nº19 1 Introdução...3 O que é o número de ouro...4, 5 e 6 Quem foi Leonardo Fibonacci...7 Leonardo Da Vinci...8 O número

Leia mais

Disciplina de Matemática Professora: Dora Almeida

Disciplina de Matemática Professora: Dora Almeida Disciplina de Matemática Professora: Dora Almeida Escola Secundária de D. Luísa de Gusmão Trabalho elaborado por: -Andreia Domingos nº 4 -Cátia Santos nº 7 10ºB 1 O que é o Número de Ouro...pág 3, 4 e

Leia mais

Os números de Fibonacci e a Razão Áurea

Os números de Fibonacci e a Razão Áurea Universidade dos Açores Departamento de Ciências da Educação Licenciatura em Educação Básica Aplicações da Matemática Os números de Fibonacci e a Razão Áurea Docente: Prof. Doutor Ricardo Teixeira 21 de

Leia mais

O Misterioso Número de Ouro Rosa Ribeiro e Céu Silva Departamento de Matemática Pura

O Misterioso Número de Ouro Rosa Ribeiro e Céu Silva Departamento de Matemática Pura Uma Manhã nos Departamentos de Matemática O Misterioso Número de Ouro Rosa Ribeiro e Céu Silva Departamento de Matemática Pura A razão diagonal/lado num pentágono regular é um número que tem fascinado

Leia mais

DIVISÃO EM PARTES PROPORCIONAIS

DIVISÃO EM PARTES PROPORCIONAIS Página DIVISÃO EM PARTES PROPORCIONAIS A) Divisão em Partes Diretamente Proporcionais Dividir um número N em partes diretamente proporcionais a outros é achar partes de N, (, 2,..., n ), diretamente proporcionais

Leia mais

Diferentes padrões para uma mesma medida.

Diferentes padrões para uma mesma medida. Diferentes padrões para uma mesma medida. Antes de iniciarmos o assunto desta atividade, veremos como se deu a evolução das medidas utilizadas pelo homem e depois trataremos das proporções do Homem Vitruviano.

Leia mais

O USO DA RAZÃO ÁUREA NO ENSINO DA MATEMÁTICA. Palavras-chave: Matemática, Arte, Razão Áurea, Natureza.

O USO DA RAZÃO ÁUREA NO ENSINO DA MATEMÁTICA. Palavras-chave: Matemática, Arte, Razão Áurea, Natureza. O USO DA RAZÃO ÁUREA NO ENSINO DA MATEMÁTICA Adilson Silva Chaves 1 Cláudia Georgia Sabba 2 Resumo A curiosidade do ser humano promoveu dedicação incansável em codificar a Natureza que o cercava, a princípio

Leia mais

Matemática na Vida. Série: Razão e Proporção Conceito no dia a dia

Matemática na Vida. Série: Razão e Proporção Conceito no dia a dia Matemática na Vida Série: Razão e Proporção Conceito no dia a dia Resumo Com uma câmera nas mãos, o nosso curioso personagem Euclides, procura compreender os mistérios da Matemática por de trás de situações

Leia mais

Conjuntos numéricos. Prof.ª: Aline Figueirêdo Nascimento

Conjuntos numéricos. Prof.ª: Aline Figueirêdo Nascimento Conjuntos numéricos Prof.ª: Aline Figueirêdo Nascimento Introdução É indiscutível que os números exercem influência marcante no dia a dia dos seres humanos. Na economia global, por exemplo, os indicadores

Leia mais

O Número de Ouro e a Divina Proporção

O Número de Ouro e a Divina Proporção O Número de Ouro e a Divina Proporção Patricia Camara Martins 1 1 Colegiado do Curso de Matemática Centro de Ciências Exatas e Tecnológicas da Universidade Estadual do Oeste do Paraná Caixa Postal 711

Leia mais

O NÚMERO DE OURO E SUA RELAÇÃO COM A BELEZA E HARMONIA DOS OBJETOS. GT 10 - Docência em Matemática: desafios, contextos e possibilidades

O NÚMERO DE OURO E SUA RELAÇÃO COM A BELEZA E HARMONIA DOS OBJETOS. GT 10 - Docência em Matemática: desafios, contextos e possibilidades O NÚMERO DE OURO E SUA RELAÇÃO COM A BELEZA E HARMONIA DOS OBJETOS GT 10 - Docência em Matemática: desafios, contextos e possibilidades Marília Lidiane Chaves da Costa marilialidiane@gmail.com Izamara

Leia mais

ANTONIO HENRIQUE MEREGE CHAVES a,* antoniohenriquemc@hotmail.com

ANTONIO HENRIQUE MEREGE CHAVES a,* antoniohenriquemc@hotmail.com 107 CRIAÇÃO DE LAYOUTS PARA WEB SITES UTILIZANDO A RAZÃO ÁUREA (THE USE OF GOLDEN RATIO TO MAKE A WEB SITES LAYOUTS) ANTONIO HENRIQUE MEREGE CHAVES a,* a,* antoniohenriquemc@hotmail.com Este artigo descreve

Leia mais

HISTÓRIA DA PROPORÇÃO ÁUREA. História e filosofia da Matemática e da Educação Matemática

HISTÓRIA DA PROPORÇÃO ÁUREA. História e filosofia da Matemática e da Educação Matemática HISTÓRIA DA PROPORÇÃO ÁUREA História e filosofia da Matemática e da Educação Matemática Resumo. O presente trabalho tem como objetivo destacar como a matemática relaciona-se com as atividades humanas na

Leia mais

Ensaio: A divisão áurea por detrás do olhar de Mona Lisa

Ensaio: A divisão áurea por detrás do olhar de Mona Lisa Ensaio: A divisão áurea por detrás do olhar de Mona Lisa O grid oculto de Leonardo Da Vinci Escrito por Prof. Dr. Denis Mandarino São Paulo 27 de agosto de 2011 A estrutura oculta por detrás do olhar de

Leia mais

Tudo começou com um problema aparentemente banal: Quantos pares de coelhos podem ser gerados de um par de coelhos em um ano?

Tudo começou com um problema aparentemente banal: Quantos pares de coelhos podem ser gerados de um par de coelhos em um ano? B"H Fibonacci Tudo começou com um problema aparentemente banal: Quantos pares de coelhos podem ser gerados de um par de coelhos em um ano? O matemático italiano Leonardo Pisano (de Pisa), cujo apelido

Leia mais

Composição fotográfica

Composição fotográfica 3. Uso de diagonais 4. Regra dos terços 5. O Ponto Dourado Composição fotográfica 15 dicas para ter imagens com harmonia e proporção. Este tutorial vai ajudá-lo a usar melhor uma câmera fotográfica, compacta

Leia mais

Dicas sobre perspectiva proporção áurea luz e sombra.

Dicas sobre perspectiva proporção áurea luz e sombra. Dicas sobre perspectiva proporção áurea luz e sombra. Elementos perspectiva Enquadramento e Proporção Proporção áurea Luz e sombras Texturas Wal Andrade Elementos de perspectiva A palavra perspectiva vem

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 SUPERFÍCIE E ÁREA Medir uma superfície é compará-la com outra, tomada como unidade. O resultado da comparação é um número positivo, ao

Leia mais

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;

Leia mais

Leonardo da Vinci. Auto-retrato de Leonardo da Vinci

Leonardo da Vinci. Auto-retrato de Leonardo da Vinci Leonardo da Vinci Auto-retrato de Leonardo da Vinci Introdução Leonardo da Vinci, artista renascentista italiano, nasceu em 15/04/1452. Existem algumas dúvidas sobre a cidade de seu nascimento: para alguns

Leia mais

GOVERNO DO ESTADO DO PARANÁ SECRETARIA DO ESTADO DA EDUCAÇÃO SEED SUPERINTENDÊNCIA DA EDUCAÇÃO SUED PROGRAMA DE DESENVOLVIMENTO EDUCACIONAL - PDE

GOVERNO DO ESTADO DO PARANÁ SECRETARIA DO ESTADO DA EDUCAÇÃO SEED SUPERINTENDÊNCIA DA EDUCAÇÃO SUED PROGRAMA DE DESENVOLVIMENTO EDUCACIONAL - PDE GOVERNO DO ESTADO DO PARANÁ SECRETARIA DO ESTADO DA EDUCAÇÃO SEED SUPERINTENDÊNCIA DA EDUCAÇÃO SUED PROGRAMA DE DESENVOLVIMENTO EDUCACIONAL - PDE ROSANIA MARIA QUEIROZ RAZÃO ÁUREA IES: UNIVERSIDADE ESTADUAL

Leia mais

- Transição da Idade Média para Idade Moderna

- Transição da Idade Média para Idade Moderna Renascimento - Transição da Idade Média para Idade Moderna - Movimento que começou na Itália por volta do século XV devido ao grande desenvolvimento econômico das cidades italianas (Genova, Veneza, Milão,

Leia mais

OFICINA: O NÚMERO DE OURO, SEUS MISTÉRIOS E SUA PRESENÇA EM NOSSAS VIDAS

OFICINA: O NÚMERO DE OURO, SEUS MISTÉRIOS E SUA PRESENÇA EM NOSSAS VIDAS OFICINA: O NÚMERO DE OURO, SEUS MISTÉRIOS E SUA PRESENÇA EM NOSSAS VIDAS Resumo Ingrid Mariana Rodrigues de Lima ingridmari.rl@gmail.com Fernanda Machado fee.m@hotmail.com Daniela Guerra Ryndack dani.dep@hotmail.com

Leia mais

inovarti Sugestão baseada em estudo para redesenho da logotipo loja Brazil V1.0 - R1-30/11/2014 soluções avançadas em e-commerce

inovarti Sugestão baseada em estudo para redesenho da logotipo loja Brazil V1.0 - R1-30/11/2014 soluções avançadas em e-commerce inovarti soluções avançadas em e-commerce Sugestão baseada em estudo para redesenho da logotipo loja Brazil V1.0 - R1-30/11/2014 Porque mudar? 1. Expansão dos negócios para novos mercados, segmentos de

Leia mais

Os Números Pitagóricos

Os Números Pitagóricos Os Números Pitagóricos O Mestre Pitágoras de Samos trouxe a Ciência dos Números do Oriente ao Ocidente e explicava aos Recém-Iniciados o significado e o valor destes Números. Filosoficamente, atestava

Leia mais

A utilização da Razão Áurea no design de websites

A utilização da Razão Áurea no design de websites A utilização da Razão Áurea no design de websites Nelio Mayer Camargo Departamento de Informática (DIN) Universidade Estadual de Maringá (UEM) Av. Colombo, 5790 87020-900 Maringá PR Brasil nelio@webart.com.br

Leia mais

Prof. Dra. Vera Clotilde Garcia, Acad. Fabiana Fattore Serres, Acad. Juliana Zys Magro e Acad. Taís Aline Bruno de Azevedo.

Prof. Dra. Vera Clotilde Garcia, Acad. Fabiana Fattore Serres, Acad. Juliana Zys Magro e Acad. Taís Aline Bruno de Azevedo. 1 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA SECRETARIA DE ENSINO À DISTÂNCIA O NÚMERO DE OURO Prof. Dra. Vera Clotilde Garcia, Acad. Fabiana Fattore Serres, Acad. Juliana Zys Magro

Leia mais

O Renascimento Cultural

O Renascimento Cultural O Renascimento Cultural Antecedentes Renascimento comercial e urbano; Ascensão social da burguesia (lucro e sucesso individual) Mecenato; Expansão Marítima e Comercial; Novas descobertas científicas; Conquista

Leia mais

A Razão Áurea. A História de FI, um número surpreendente

A Razão Áurea. A História de FI, um número surpreendente A Razão Áurea A História de FI, um número surpreendente O Livro Autor: Mário Livio Editora: Record Idioma: Português Nº de Páginas: 333 Edição: 2006 Preço: 48 reais (www.livifusp.com.br) Estrutura 9 capítulos

Leia mais

A descoberta de novos continentes, a visão antropocêntrica do mundo, a invenção da bússola e da imprensa, a afirmação dos estados nacionais; a

A descoberta de novos continentes, a visão antropocêntrica do mundo, a invenção da bússola e da imprensa, a afirmação dos estados nacionais; a A descoberta de novos continentes, a visão antropocêntrica do mundo, a invenção da bússola e da imprensa, a afirmação dos estados nacionais; a difusão de variadas formas artísticas inspiradas no mundo

Leia mais

chamados de números racionais.

chamados de números racionais. O Período Pré-Industrial e a Geometria Euclidiana Os números racionais Com o sistema de numeração hindu ficou fácil escrever qualquer número, por maior que ele fosse. 0, 13, 35, 98, 1.024, 3.645.872. Como

Leia mais

Buridan. Teoria do impetus. Astronomia. Astronomia. Jean Buridan (1300-1358) 3 - A Ciência no Renascimento. História e Epistemologia da Física

Buridan. Teoria do impetus. Astronomia. Astronomia. Jean Buridan (1300-1358) 3 - A Ciência no Renascimento. História e Epistemologia da Física 3 - A Ciência no Renascimento Jean Buridan (1300-1358) História e Epistemologia da Física 12-fev-2014 www.fisica-interessante.com 1/84 12-fev-2014 www.fisica-interessante.com 2/84 Buridan sacerdote francês

Leia mais

ESTUDANDO A FOTOGRAFIA POR UMA ABORDAGEM ETNOMATEMÁTICA

ESTUDANDO A FOTOGRAFIA POR UMA ABORDAGEM ETNOMATEMÁTICA ISSN 2316-7785 ESTUDANDO A FOTOGRAFIA POR UMA ABORDAGEM ETNOMATEMÁTICA Luciane Bichet Luz UFPEL lbichet615@hotmail.com Amanda Prank UFPEL amandaprank@ymail.com RESUMO Esta pesquisa busca relacionar a Matemática

Leia mais

A proporção dos esquemas geométricos na Pintura do Renascimento 1

A proporção dos esquemas geométricos na Pintura do Renascimento 1 A proporção dos esquemas geométricos na Pintura do Renascimento 1 Resumo Eliana Oliveira Tavares Juliana Silva P. Pennaforte Mariana Feydit da Silva Robson dos Santos Rocha Muitos se enganam ao achar que

Leia mais

O NÚMERO DE OURO NA ARTE, ARQUITETURA E NATUREZA: BELEZA E HARMONIA

O NÚMERO DE OURO NA ARTE, ARQUITETURA E NATUREZA: BELEZA E HARMONIA O NÚMERO DE OURO NA ARTE, ARQUITETURA E NATUREZA: BELEZA E HARMONIA Joseane Vieira Ferrer Licencianda em Matemática Universidade Católica de Brasília Resumo: O homem pôde compreender a harmonia existente

Leia mais

Unidade III Conceitos sobre Era Medieval e Feudalismo. Aula 12.1 Conteúdo: Renascimento na Europa.

Unidade III Conceitos sobre Era Medieval e Feudalismo. Aula 12.1 Conteúdo: Renascimento na Europa. Unidade III Conceitos sobre Era Medieval e Feudalismo. Aula 12.1 Conteúdo: Renascimento na Europa. Habilidade: Identificar os elementos que caracterizaram as transformações sociais e científicas na Europa

Leia mais

16 Comprimento e área do círculo

16 Comprimento e área do círculo A UA UL LA Comprimento e área do círculo Introdução Nesta aula vamos aprender um pouco mais sobre o círculo, que começou a ser estudado há aproximadamente 4000 anos. Os círculos fazem parte do seu dia-a-dia.

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

CÍRCULO, CIRCUNFERÊNCIA E OUTROS BICHOS. Reconhecer a figura de uma circunferência e seus elementos em diversos objetos de formato circular.

CÍRCULO, CIRCUNFERÊNCIA E OUTROS BICHOS. Reconhecer a figura de uma circunferência e seus elementos em diversos objetos de formato circular. CÍRCULO, CIRCUNFERÊNCIA E OUTROS BICHOS "Um homem pode imaginar coisas que são falsas, mas ele pode somente compreender coisas que são verdadeiras, pois se as coisas forem falsas, a noção delas não é compreensível."

Leia mais

MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.

MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m. MATEMÁTICA - ª ETAPA/015 Ensino Fundamental Ano: 8º Professora: Thaís Sadala Turma: Atividade: Estude Mais 10 Data: Aluno: Nº 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.,4

Leia mais

TURMA 801. Aula 07 PERSPECTIVA LINEAR

TURMA 801. Aula 07 PERSPECTIVA LINEAR TURMA 801 Aula 07 PERSPECTIVA LINEAR Nós habitamos um mundo tridimensional. Ou seja, vemos o mundo em três dimensões: a altura, a largura e a profundidade. É por conta da profundidade que dizemos a árvore

Leia mais

EXERCÍCIOS SOBRE RENASCIMENTO

EXERCÍCIOS SOBRE RENASCIMENTO EXERCÍCIOS SOBRE RENASCIMENTO TEXTO O termo Renascimento é comumente aplicado à civilização européia que se desenvolveu entre 1300 e 1650. Além de reviver a antiga cultura greco-romana, ocorreram nesse

Leia mais

2. Equilíbrio. Dividiremos as formas de equilíbrio visual nas seguintes categorias:

2. Equilíbrio. Dividiremos as formas de equilíbrio visual nas seguintes categorias: 2. Equilíbrio O equilíbrio é um parâmetro da imagem que está diretamente relacionado com o inconsciente. Andamos de modo equilibrado, sem pensar que o estamos fazendo. Ao tentarmos a mesma experiência

Leia mais

QUEM FOI LEONARDO DA VINCI?

QUEM FOI LEONARDO DA VINCI? LEONARDO DA VINCI QUEM FOI LEONARDO DA VINCI? Leonardo di ser Piero nascido em Vinci - Florença Cientista responsável por surpreendentes descobertas, mas nunca as publicou Foi o maior pintor da Renascença

Leia mais

Trabalhos. Carta. Livro do ábaco. 3. Flos (1225) Theodorum phylosophum domini Imperatoris. Fibonacci nasceu em Pisa, por volta de 1170.

Trabalhos. Carta. Livro do ábaco. 3. Flos (1225) Theodorum phylosophum domini Imperatoris. Fibonacci nasceu em Pisa, por volta de 1170. Fibonacci nasceu em Pisa, por volta de 1170. Grupo : André M. Gabrielli Arlane M. da Silva e Silva Elisabete T. Guerato Giovanna Gaspar Bezerra Juliana Ikeda Juliana Montagner Léslie Ferreira Lansky Mª

Leia mais

RENASCIMENTO ITALIANO

RENASCIMENTO ITALIANO ARTES / 2º ANO PROF.MÍLTON COELHO RENASCIMENTO ITALIANO Contexto histórico O termo significa reviver os ideais greco-romanos; na verdade o Renascimento foi mais amplo, pois aumentou a herança recebida

Leia mais

Quarta lista de exercícios.

Quarta lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2015 Quarta lista de exercícios. Circunferência e círculo. Teorema de Tales. Semelhança de triângulos. 1. (Dolce/Pompeo) Um ponto P dista 7 cm do centro

Leia mais

Jardim de Números. Série Matemática na Escola

Jardim de Números. Série Matemática na Escola Jardim de Números Série Matemática na Escola Objetivos 1. Introduzir plano cartesiano; 2. Marcar pontos e traçar objetos geométricos simples em um plano cartesiano. Jardim de Números Série Matemática na

Leia mais

TÁCIUS FERNANDES PROFESSOR. Itália berço do Renascimento

TÁCIUS FERNANDES PROFESSOR. Itália berço do Renascimento RENASCIMENTO CULTURAL XIV e XVI TÁCIUS FERNANDES PROFESSOR Itália berço do Renascimento Renascimento Antropocentrismo Racionalismo Humanismo e individualismo Em oposição à cultura feudal, o Renascimento

Leia mais

PROVA DE FÍSICA 1 o TRIMESTRE DE 2014

PROVA DE FÍSICA 1 o TRIMESTRE DE 2014 PROVA DE FÍSICA 1 o TRIMESTRE DE 2014 PROF. VIRGÍLIO NOME N o 1 a SÉRIE A compreensão do enunciado faz parte da questão. Não faça perguntas ao examinador. A prova deve ser feita com caneta azul ou preta.

Leia mais

PLANEJAMENTO DO TRIMESTRE EDUCAÇÃO INFANTIL MATERNAL III

PLANEJAMENTO DO TRIMESTRE EDUCAÇÃO INFANTIL MATERNAL III 1ª ETAPA COMPONENTE CURRICULAR - BRINCAR Objetos e Significados na brincadeira Participar das brincadeiras exploradas. Utilizar os brinquedos de maneira cuidadosa. Participar de jogos com ou sem a intervenção

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA RESOLUÇÃO DA PROVA DE MATEMÁTICA 0) O tanque de combustível do carro de João tem capacidade de 40 litros. Sabemos que o consumo do carro é de litro para cada 0 quilômetros rodados, se João dirigir a uma

Leia mais

Equacionando problemas - II

Equacionando problemas - II A UA UL LA Equacionando problemas - II Introdução Nossa aula Nas duas últimas aulas, resolvemos diversas equações do º grau pelo processo de completar o quadrado perfeito ou pela utilização da fórmula

Leia mais

Processos de análise. DESENHO A 12º ANO E S Campos de Melo

Processos de análise. DESENHO A 12º ANO E S Campos de Melo Processos de análise DESENHO A 12º ANO E S Campos de Melo Estudos da figura humana Pablo Picasso, Painter and knitting Model, 1927. Proporções e cânones; Tipologias canónicas; A representação gráfica da

Leia mais

EXPLORANDO OS CONTEÚDOS MATEMÁTICOS ENVOLVIDOS NA CONSTRUÇÃO DE UMA CASA

EXPLORANDO OS CONTEÚDOS MATEMÁTICOS ENVOLVIDOS NA CONSTRUÇÃO DE UMA CASA EXPLORANDO OS CONTEÚDOS MATEMÁTICOS ENVOLVIDOS NA CONSTRUÇÃO DE UMA CASA Sergio da Silva Cambiriba 1 Dante Alves Medeiros Filho 2 RESUMO Nosso trabalho consistiu em explorar alguns conteúdos matemáticos

Leia mais

A RAZÃO ÁUREA E SUA CONSTRUÇÃO COM O SOFTWARE CABRI- GÉOMÈTRE. Resumo

A RAZÃO ÁUREA E SUA CONSTRUÇÃO COM O SOFTWARE CABRI- GÉOMÈTRE. Resumo A RAZÃO ÁUREA E SUA CONSTRUÇÃO COM O SOFTWARE CABRI- GÉOMÈTRE Frank Victor Amorim frank001001@hotmail.com Resumo Inicialmente será feita uma explanação da importância do uso de novas tecnologias no ensino

Leia mais

Seminários de Ensino de Matemática

Seminários de Ensino de Matemática Introdução Seminários de Ensino de Matemática A matemática do papel (5/03/0) José Luiz Pastore Mello O formato do papel que usamos rotineiramente nos serviços de impressão ou fotocópia possui uma história

Leia mais

Matriz Curricular de Matemática 6º ao 9º ano 6º ano 6º Ano Conteúdo Sistemas de Numeração Sistema de numeração Egípcio Sistema de numeração Romano Sistema de numeração Indo-arábico 1º Trimestre Conjunto

Leia mais

identidade corporativa Plant

identidade corporativa Plant identidade corporativa Plant apresentação Há mais de 50 anos os níveis de gás carbônicos são medidos em nosso planeta, desde 957. Desde as primeiras planilhas até hoje foram necessários vários estudos

Leia mais

A Arte do Renascimento

A Arte do Renascimento A Arte do Renascimento Estas duas pinturas têm o mesmo tema mas são muito diferentes. Porquê? Nossa Senhora e Criança (Idade Média) Nossa Senhora e Criança (Renascimento) Surgiu em Itália: Séc. XV (Quattrocento)

Leia mais

Prova de Aferição de Matemática

Prova de Aferição de Matemática PROVA DE AFERIÇÃO DO ENSINO BÁSICO A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA U.A.

Leia mais

Walter Benjamin - Questões de Vestibulares

Walter Benjamin - Questões de Vestibulares Walter Benjamin - Questões de Vestibulares 1. (Uem 2011) A Escola de Frankfurt tem sua origem no Instituto de Pesquisa Social, fundado em 1923. Entre os pensadores expoentes da Escola de Frankfurt, destaca-se

Leia mais

Exercício de leitura do mapa do município de São Paulo utilizando a proporção áurea e a proporção raiz de dois. Edson Tani

Exercício de leitura do mapa do município de São Paulo utilizando a proporção áurea e a proporção raiz de dois. Edson Tani Exercício de leitura do mapa do município de São Paulo utilizando a proporção áurea e a proporção raiz de dois. Edson Tani Este exercício faz parte de uma série de análises geométricas onde o intuito é

Leia mais

Relações Métricas nos. Dimas Crescencio. Triângulos

Relações Métricas nos. Dimas Crescencio. Triângulos Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

ALINE NEVES GOMES. Proposta de Seqüência Didática com Secção Áurea: Geometria dinâmica e arquitetura

ALINE NEVES GOMES. Proposta de Seqüência Didática com Secção Áurea: Geometria dinâmica e arquitetura ALINE NEVES GOMES Proposta de Seqüência Didática com Secção Áurea: Geometria dinâmica e arquitetura Trabalho de Conclusão de Curso apresentado como requisito parcial para a obtenção de título de Licenciatura

Leia mais

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 A figura ilustra a planificação da superfície lateral de um cilindro reto de 10 metros de altura. Considere π = 3,14. Qual o valor da área total desse cilindro, em metros quadrados?

Leia mais

1 COMO ESTUDAR GEOMETRIA

1 COMO ESTUDAR GEOMETRIA Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:

Leia mais

ESTIMATIVAS DA PRODUÇÃO AGRÍCOLA BRASILEIRA PARA O FINAL DO SÉCULO XXI

ESTIMATIVAS DA PRODUÇÃO AGRÍCOLA BRASILEIRA PARA O FINAL DO SÉCULO XXI COLÉGIO PEDRO II MEC EXAME DE SELEÇÃO E CLASSIFICAÇÃO 1ª SÉRIE DO ENSINO MÉDIO REGULAR/ NOTURNO 2008 QUESTÃO 1 O Aquecimento Global foi um dos assuntos científicos mais comentados em 2007 no cenário global.

Leia mais

CENTRO DE ENSINO SUPERIOR DO AMAPÁ

CENTRO DE ENSINO SUPERIOR DO AMAPÁ CENTRO DE ENSINO SUPERIOR DO AMAPÁ DISCIPLINA:TEORIA E ENSINO DA DANÇA PROF.ESP.SAMANDA NOBRE Elementos Estruturantes da dança RITMO MOVIMENTO Ritmo Ritmo vem do grego Rhytmos e designa aquilo que flui,

Leia mais

GEOMETRIA DINÂMICA PARA QUÊ?

GEOMETRIA DINÂMICA PARA QUÊ? GEOMETRIA DINÂMICA PARA QUÊ? GUIA DE APOIO À UTILIZAÇÃO DO GEOGEBRA SESSÃO DE TRABALHO COM A TURMA 4 Raul Aparício Gonçalves - ESE IPPorto - Dezembro 2007 pág. 1 / 17 ÍNDICE: Breve apresentação das funcionalidades

Leia mais

PROFESSOR: DENYS YOSHIDA

PROFESSOR: DENYS YOSHIDA APOSTILA 015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO 1º ANO - ENSINO MÉDIO - 015 1 Sumário 1. Trigonometria no triangulo retângulo...3 1.1 Triângulo retângulo...4 1. Teorema de Pitágoras...,,,,,,,...4

Leia mais

Áreas e Aplicações em Geometria

Áreas e Aplicações em Geometria 1. Introdução Áreas e Aplicações em Geometria Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Nesse breve material, veremos uma rápida revisão sobre áreas das

Leia mais

Matriz de Referência de Matemática da 8ª série do Ensino Fundamental. Comentários sobre os Temas e seus Descritores Exemplos de Itens

Matriz de Referência de Matemática da 8ª série do Ensino Fundamental. Comentários sobre os Temas e seus Descritores Exemplos de Itens Matriz de Referência de Matemática da 8ª série do Ensino Fundamental TEMA I ESPAÇO E FORMA Comentários sobre os Temas e seus Descritores Exemplos de Itens Os conceitos geométricos constituem parte importante

Leia mais

Arquivo Virtual da Geração de Orpheu. modernismo.pt. Os Problemas de Matemática de Almada Negreiros. Pedro J. Freitas e Simão Palmeirim Costa

Arquivo Virtual da Geração de Orpheu. modernismo.pt. Os Problemas de Matemática de Almada Negreiros. Pedro J. Freitas e Simão Palmeirim Costa Arquivo Virtual da Geração de Orpheu modernismo.pt Os Problemas de Matemática de Almada Negreiros Pedro J. Freitas e Simão Palmeirim Costa Artigo publicado no número especial do Boletim da Sociedade Portuguesa

Leia mais

Maternal 3 anos Educação Infantil

Maternal 3 anos Educação Infantil Maternal 3 anos Educação Infantil Eixo temático: Tema: Joca e suas aventuras As crianças, nesta fase, caracterizam-se pelo movimento e pela ação. Agem ativamente em seu entorno, acompanhando seus movimentos

Leia mais

CONHECIMENTOS ESPECÍFICOS»DESIGN GRÁFICO (PERFIL 02) «

CONHECIMENTOS ESPECÍFICOS»DESIGN GRÁFICO (PERFIL 02) « CONHECIMENTOS ESPECÍFICOS»DESIGN GRÁFICO (PERFIL 02) «21. No ensino do desenho de observação, qual o maior motivo de principiantes sentirem dificuldades em desenhar rostos humanos? a) Porque rostos humanos

Leia mais

O RENASCIMENTO. A pintura do Renascimento confirma as três conquistas que os artistas do último período gótico HISTORICISMO

O RENASCIMENTO. A pintura do Renascimento confirma as três conquistas que os artistas do último período gótico HISTORICISMO HISTORICISMO 1308 Dante Alighieri começa a escrever A Divina Comédia. 1333 Simoni de Martini pinta O Anjo e a Anunciação. 1415 Navegadores portugueses chegam a Ceuta. 1448 Gutenberg inventa a imprensa.

Leia mais

Cotagens especiais. Você já aprendeu a interpretar cotas básicas

Cotagens especiais. Você já aprendeu a interpretar cotas básicas A UU L AL A Cotagens especiais Você já aprendeu a interpretar cotas básicas e cotas de alguns tipos de elementos em desenhos técnicos de modelos variados. Mas, há alguns casos especiais de cotagem que

Leia mais

História da arte. Um breve relato - vida e obra 10 artistas que mudaram o mundo

História da arte. Um breve relato - vida e obra 10 artistas que mudaram o mundo História da arte Um breve relato - vida e obra 10 artistas que mudaram o mundo 1.Praxíteles (390?-330 a.c) 2.Giotto (1266/677-1337) 3.Jan Eyck (1390?-1441) 4.Hugo Van Der Goes (1440?-1482) 5.Botticelli

Leia mais

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA MATEMÁTICA 49 A distância que um automóvel percorre após ser freado é proporcional ao quadrado de sua velocidade naquele instante Um automóvel, a 3 km/, é freado e pára depois de percorrer mais 8 metros

Leia mais

Seqüência completa de automassagem

Seqüência completa de automassagem Seqüência completa de automassagem Os exercícios descritos a seguir foram inspirados no livro Curso de Massagem Oriental, de Armando S. B. Austregésilo e podem ser feitos em casa, de manhã ou à tardinha.

Leia mais

O RENASCIMENTO FOI UM MOVIMENTO CULTURAL, OCORRIDO NO INÍCIO DA IDADE MODERNA E QUE FEZ RENASCER A CULTURA GRECO-ROMANA

O RENASCIMENTO FOI UM MOVIMENTO CULTURAL, OCORRIDO NO INÍCIO DA IDADE MODERNA E QUE FEZ RENASCER A CULTURA GRECO-ROMANA O RENASCIMENTO FOI UM MOVIMENTO CULTURAL, OCORRIDO NO INÍCIO DA IDADE MODERNA E QUE FEZ RENASCER A CULTURA GRECO-ROMANA IDADE ANTIGA CULTURA GRECO-ROMANA ANTROPOCÊNTRICA ANTROPO = Homem CÊNTRICA = centro

Leia mais

FÍSICA ÓPTICA GEOMÉTRICA FÍSICA 1

FÍSICA ÓPTICA GEOMÉTRICA FÍSICA 1 2014_Física_2 ano FÍSICA Prof. Bruno ÓPTICA GEOMÉTRICA FÍSICA 1 1. (Uftm 2012) Uma câmara escura de orifício reproduz uma imagem de 10 cm de altura de uma árvore observada. Se reduzirmos em 15 m a distância

Leia mais

Avançando com as áreas de figuras planas

Avançando com as áreas de figuras planas Módulo 1 Unidade 8 Avançando com as áreas de figuras planas Para início de conversa... Nem todos os polígonos possuem fórmulas específicas para cálculo da medida de sua área. Imagine, por exemplo, que

Leia mais

Renascimento. Prof. Adriano Portela

Renascimento. Prof. Adriano Portela Renascimento Prof. Adriano Portela O que é o Renascimento? Dados Início: século 14 Local: Península Itálica Se estendeu até o século 17 por toda Europa. Artistas, escritores e pensadores exprimiam em suas

Leia mais

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI 01.: (Acafe SC) Num paralelepípedo reto, as arestas da base medem 8 dm e 6dm, e a altura mede 4dm. Calcule a área da figura determinada pela diagonal do paralelepípedo com a diagonal da base e a aresta

Leia mais

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Geometria Plana: Áreas de regiões poligonais Triângulo e região triangular O conceito de região poligonal

Leia mais

ARTES AVALIAÇÃO. Aula 3.2 - AVALIAÇÃO

ARTES AVALIAÇÃO. Aula 3.2 - AVALIAÇÃO Aula 3.2-2 1. A Anunciação é uma das obras mais conhecidas de Leonardo da Vinci. Feita por volta do ano de 1472, ela retrata uma das cenas bíblicas mais famosas de todos os tempos. Escreva nas linhas abaixo

Leia mais

ARTE PRÉ-HISTÓRICA. IDADE DOS METAISaproximadamente 5.000 a 3.500 a.c. aparecimento de metalurgia; invenção da roda;

ARTE PRÉ-HISTÓRICA. IDADE DOS METAISaproximadamente 5.000 a 3.500 a.c. aparecimento de metalurgia; invenção da roda; ARTE PRÉ-HISTÓRICA PALEOLÍTICO INFERIOR aproximadamente 5.000.000 a 25.000 a.c.; controle do fogo; e instrumentos de pedra e pedra lascada, madeira e ossos: facas, machados. PALEOLÍTICO SUPERIOR instrumentos

Leia mais

A matemática na arte e a arte na matemática: construções geométricas com o software régua e compasso

A matemática na arte e a arte na matemática: construções geométricas com o software régua e compasso A matemática na arte e a arte na matemática: construções geométricas com o software régua e Carmen Vieira Mathias Departamento de Matemática, Universidade Federal de Santa Maria Brasil carmenmathias@gmail.com

Leia mais

UFPel - CENG - CÁLCULO 1

UFPel - CENG - CÁLCULO 1 UFPel - CENG - CÁLCULO 1 FUNÇÕES -Parte I 1. Esboce os gráficos das funções afins, indicando as interseções com os eixos. a) f(x) = 400 3x b) f(x) = 10x + 75 c) S(t) = s 0 + vt, sendo s 0 = 20m e v = 5m/s

Leia mais

Recado aos Pais e Professores

Recado aos Pais e Professores Recado aos Pais e Professores A criança aprende fazendo. Um trabalho manual confeccionado logo após a história bíblica fixa os ensinos que a criança acabou de ouvir, e também é um lembrete visual do constante

Leia mais

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. geometria e medidas

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. geometria e medidas geometria e medidas Guia do professor Objetivos da unidade 1. Estudar linhas de simetria com espelhos; 2. Relacionar o ângulo formado por dois espelhos e o número de imagens formadas; 3. Estudar polígonos

Leia mais

Escola Básica Vasco da Gama de Sines

Escola Básica Vasco da Gama de Sines FICHA INFORMATIVA: PERÍMETRO DE UM POLÍGONO TEMA: PERÍMETROS E ÁREAS O perímetro de uma figura plana fechada é o comprimento da linha que limita a figura. É o comprimento da linha que limita o polígono

Leia mais

47º Problema de Euclides

47º Problema de Euclides 47º Problema de Euclides Como esquadrejar seu esquadro 1 O 47º Problema de Euclides, também chamado de 47ª Proposição de Euclides, assim como o Teorema de Pitágoras é representado por 3 quadrados. Para

Leia mais