Gestão da Informação. Gestão da Informação. AULA 3 Data Mining

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Gestão da Informação. Gestão da Informação. AULA 3 Data Mining"

Transcrição

1 Gestão da Informação AULA 3 Data Mining Prof. Edilberto M. Silva Gestão da Informação Agenda Unidade I - DM (Data Mining) Definição Objetivos Exemplos de Uso Técnicas Tarefas Unidade II DM Prático Exemplo de Associação Exemplo de Classificação Atividades Dificuldades de uso Referências e Softwares Conclusão Edilberto M. Silva - Gestão da Informação 2

2 O que é Data Mining?...o processo não-trivial de identificar, em dados, padrões válidos, novos, potencialmente úteis e ultimamente compreensíveis Usama Fayyad (Fayyad et al. 1996).. é um processo de extração e apresentação de informações utilizáveis, implícitas e recentes a partir de dados, que possam ser utilizadas para resolver um problema de negócios." Pricewaterhouse Coopers Edilberto M. Silva - Gestão da Informação 3 Motivação Quantidades imensas de dados Crescimento exponencial dos dados Necessidade de transformar dados em informação útil Análise de Mercado Sistemas de Suporte à Decisão Gerência Empresarial Análise de tendências, etc. Necessidade de descoberta Padrões e relações entre os dados Alterações e anomalias Estruturas significantes Fenômenos periódicos ou desconhecidos Apresentar de forma sucinta e compreensível o conhecimento obtido Edilberto M. Silva - Gestão da Informação 4

3 Principais Objetivos Exemplos Previsão - estabelecer o valor de um ou mais atributos em um banco de dados, a partir de outros atributos presentes Descrição - visa apontar padrões potencialmente interessantes nos dados sem uma associação com um conceito a priori Exemplos Objetivo de propagandas - Qual banner deve ser disparado para este visitante? Vendas Cruzadas - Quais outros produtos este cliente gostaria de comprar? Detecção de Fraude - Quando um sinistro pode ser uma fraude? Análise de Abandono - Quais clientes podem desistir? Gerenciamento de Risco - Posso aprovar o empréstimo para este cliente? Edilberto M. Silva - Gestão da Informação 5 Exemplos de uso Curiosidades A Wall-Mart, descobriu que 60% das mães que compram boneca Barbie, levam também uma barra de chocolate; O banco Itaú conseguiu aumentar sua taxa de retorno nas malas diretas para 30%, era 2% A venda de colírios cresce 54%, antes do feriados prolongados A venda de coca-cola relacionada com a compra de batata frita em 65% das vezes, em promoção 85% das vezes American Express - propagandas e marketing direcionados SONAE/Universo - referências de compras, direcionando promoções Amazon - identifica fraudes baseadas em desvios dos padrões normais de compras. E o clássico exemplo as vendas de fraldas intimamente ligadas às vendas de cerveja Edilberto M. Silva - Gestão da Informação 6

4 Principais Técnicas Redes Neurais - Neurônios biológicos: efetivas no aprendizado de padrões a partir de dados não lineares, incompletos,com ruído ou compostos de exemplos contraditórios. Algoritmos Genéticos - Evolução biológica: fornece um mecanismo de busca adaptativa que se baseia no princípio Darwiniano de reprodução e sobrevivência dos mais aptos. Lógica Fuzzy- Proc. Lingüístico :modela o modo aproximado de raciocínio humano, visando desenvolver sistemas computacionais capazes de tomar decisões racionais em um ambiente de incerteza Sistemas Especialistas Inferência: soluciona problemas em um campo especializado do conhecimento humano. Edilberto M. Silva - Gestão da Informação 7 Principais Tarefas Class Description Caracterização Comparação ou discriminação Propriedades resumidas Quantidade, totais, médias e análise estatística Exemplo Comparar as vendas de uma empresa na Europa e na Ásia, identificando fatores discriminativos importantes e expondo uma visão global da situação Edilberto M. Silva - Gestão da Informação 8

5 Principais Tarefas Classificação Ex.: agrupa itens baseados em atributos pré-definidos Processa um conjunto de treinamento (classe) Constrói um modelo para cada classe Gera a árvore de decisão ou conjunto de regras Usada para compreender cada classe e classificação posterior de novos dados Estatística, BD, redes neurais, aprendizado, etc. Análise de crédito, modelagem de empreendimentos, etc. Edilberto M. Silva - Gestão da Informação 9 Principais Tarefas Previsão Prevê os valores possíveis ou a distribuição destes a partir de certos atributos do BD Encontrar os atributos relevantes para o atributo de interesse Previsão baseada no conjunto de dados mais similar ao escolhido Análise de regressão, de correlação, árvores de decisão Algoritmos genéticos e redes neurais Data mining preditivo Exemplo: no ano 2005 o Ticket médio de cada checkout será de R$ 500,00. Edilberto M. Silva - Gestão da Informação 10

6 Principais Tarefas Agregação (Clustering) Identifica grupos escondidos nos dados Grupo objetos similares Expressa por funções de distância Relação de similaridade conhecida a priori por especialistas ou usuários Exemplo Agrupa itens baseados em atributos como clientes tipo C serão aqueles que tem renda mensal menor que R$ 2.000,00; clientes tipo B terão renda mensal entre R$ 2001,00 e R$ 5.000,00 e clientes tipo A terão renda maior que R$ 5001,00. Edilberto M. Silva - Gestão da Informação 11 Principais Tarefas Análise de séries temporais Identifica regularidades e características temporais interessantes escondidas nos dados Analisa padrões seqüenciais, periódicos, tendências e desvios Busca seqüências similares ou subseqüências Exemplo Previsão da tendência de variação das quantidades em estoque de uma empresa, baseado no histórico do estoque, situação financeira, atuação da concorrência e situação do mercado Edilberto M. Silva - Gestão da Informação 12

7 Principais Tarefas Associação Busca correlações entre itens e indivíduos, deduzindo relacionamentos. Descoberta de relacionamentos entre um conjunto de dados Expresso por regras atributo-valor de condições que ocorrem freqüentemente juntas x(a) y(a) se satisfaz x, tende a satisfazer y Exemplo cerveja(x) fraldas(y) peixe (x) vinho branco (y) Edilberto M. Silva - Gestão da Informação 13 Exemplo de Descoberta de Regras Associativas Sup - Suporte Mínimo Conf - Grau de Confiança mínimo Quais as regras para Sup = 30% Conf = 80% Edilberto M. Silva - Gestão da Informação 14

8 Exemplo de Descoberta de Regras Associativas Para Sup = 30% Para Conf = 80% Edilberto M. Silva - Gestão da Informação 15 Exemplo de Descoberta de Regras de Classificação Valores discretos {0,1} {sim, não} Quais as regras para País e Idade Edilberto M. Silva - Gestão da Informação 16

9 Referências e Softwares Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P. & Uthurusamy, R. (Eds) (1996). Advances in Knowledge Discovery and Data Mining. Menlo Park, CA: American Associationfor Artificial Intelligence. Berry, M., Linoff, G. (1997). Data Mining Techniques : for Marketing, Sales and Customer Support. John Wiley & Sons. Chapman, P. et al. (1999). The CRISP-DM Process Model. CRISP-DM Consortium. Disponível por FTP: Agrawal, R. & Srikant (1994). Fast Algorithms for Mining Association Rules. Proc. of the 20th Int l Conference on Very Large Databases, Santiago, Chile, Sept Agrawal, R., Imielinski, T., Swami, A (1999). Mining Associatio Rules between Sets of Items in Large Databases. Proc. of the ACM-SIGMOD 1993, International Conference on Management of Data, Washington D.C., May 1993, Exemplos de Softwares American Heuristics/Profiler Angoss Software/ Knowledge Seeker Business Objects/BusinessMiner DataMind/DataMindProfessional HNC Software/DataMarksman HiperParallel/Discovery InformationDiscovery Inc.(IDI)/Information Discovery System Lucent Technologies /InteractiveData Visualization Nestor/Prism Pilot Software/ pilot Discovery Server Seagate Software Systems/Holos 5.0 Edilberto M. Silva - Gestão da Informação 17 Dificuldades de uso Mão-de-obra especializada Condução e gerenciamento do processo aliado ao objetivo Alto custo Tempo Grandes Bases de Dados Alterações de dados, objetivos, errados ou em falta Complexidade/novidade Ambiente Ideal Edilberto M. Silva - Gestão da Informação 18

10 Conclusões Crescente avanço tecnológico Tendência de grande uso Tornando-se fundamental em ambientes de grande concorrência Não é mágico, serve de apoio a tomada de decisão A figura do analista é imprescindível para o sucesso Acrescenta feeling aos administradores Permite aumentar lucros e fazer uso inteligente de informações acumuladas na organização Edilberto M. Silva - Gestão da Informação 19

Microsoft Innovation Center

Microsoft Innovation Center Microsoft Innovation Center Mineração de Dados (Data Mining) André Montevecchi andre@montevecchi.com.br Introdução Objetivo BI e Mineração de Dados Aplicações Exemplos e Cases Algoritmos para Mineração

Leia mais

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse Definição escopo do projeto (departamental, empresarial) Grau de redundância dos dados(ods, data staging) Tipo de usuário alvo (executivos, unidades) Definição do ambiente (relatórios e consultas préestruturadas

Leia mais

Administração de dados - Conceitos, técnicas, ferramentas e aplicações de Data Mining para gerar conhecimento a partir de bases de dados

Administração de dados - Conceitos, técnicas, ferramentas e aplicações de Data Mining para gerar conhecimento a partir de bases de dados Universidade Federal de Pernambuco Graduação em Ciência da Computação Centro de Informática 2006.2 Administração de dados - Conceitos, técnicas, ferramentas e aplicações de Data Mining para gerar conhecimento

Leia mais

Data Mining. Origem do Data Mining 24/05/2012. Data Mining. Prof Luiz Antonio do Nascimento

Data Mining. Origem do Data Mining 24/05/2012. Data Mining. Prof Luiz Antonio do Nascimento Data Mining Prof Luiz Antonio do Nascimento Data Mining Ferramenta utilizada para análise de dados para gerar, automaticamente, uma hipótese sobre padrões e anomalias identificadas para poder prever um

Leia mais

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan Faculdade INED Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan 1 Unidade 4.5 2 1 BI BUSINESS INTELLIGENCE BI CARLOS BARBIERI

Leia mais

Mineração de Dados: Introdução e Aplicações

Mineração de Dados: Introdução e Aplicações Mineração de Dados: Introdução e Aplicações Luiz Henrique de Campos Merschmann Departamento de Computação Universidade Federal de Ouro Preto luizhenrique@iceb.ufop.br Apresentação Luiz Merschmann Engenheiro

Leia mais

Professor: Disciplina:

Professor: Disciplina: Professor: Curso: Esp. Marcos Morais de Sousa marcosmoraisdesousa@gmail.com Sistemas de informação Disciplina: Introdução a SI Noções de sistemas de informação Turma: 01º semestre Prof. Esp. Marcos Morais

Leia mais

Aula 02: Conceitos Fundamentais

Aula 02: Conceitos Fundamentais Aula 02: Conceitos Fundamentais Profa. Ms. Rosângela da Silva Nunes 1 de 26 Roteiro 1. Por que mineração de dados 2. O que é Mineração de dados 3. Processo 4. Que tipo de dados podem ser minerados 5. Que

Leia mais

ADM041 / EPR806 Sistemas de Informação

ADM041 / EPR806 Sistemas de Informação ADM041 / EPR806 Sistemas de Informação UNIFEI Universidade Federal de Itajubá Prof. Dr. Alexandre Ferreira de Pinho 1 Sistemas de Apoio à Decisão (SAD) Tipos de SAD Orientados por modelos: Criação de diferentes

Leia mais

KDD. Fases limpeza etc. Datamining OBJETIVOS PRIMÁRIOS. Conceitos o que é?

KDD. Fases limpeza etc. Datamining OBJETIVOS PRIMÁRIOS. Conceitos o que é? KDD Conceitos o que é? Fases limpeza etc Datamining OBJETIVOS PRIMÁRIOS TAREFAS PRIMÁRIAS Classificação Regressão Clusterização OBJETIVOS PRIMÁRIOS NA PRÁTICA SÃO DESCRIÇÃO E PREDIÇÃO Descrição Wizrule

Leia mais

Prof. Júlio Cesar Nievola Data Mining PPGIa - PUCPR

Prof. Júlio Cesar Nievola Data Mining PPGIa - PUCPR Muitos dados são coletados e armazenados Web data, e-commerce Compras em departamentos/ supermercados Bancos / Transações com cartão de crédito Computadores se tornaram baratos e mais potentes Pressão

Leia mais

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br MINERAÇÃO DE DADOS APLICADA Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br Processo Weka uma Ferramenta Livre para Data Mining O que é Weka? Weka é um Software livre do tipo open source para

Leia mais

Pós-Graduação "Lato Sensu" Especialização em Análise de Dados e Data Mining

Pós-Graduação Lato Sensu Especialização em Análise de Dados e Data Mining Pós-Graduação "Lato Sensu" Especialização em Análise de Dados e Data Mining Inscrições Abertas Início das Aulas: 24/03/2015 Dias e horários das aulas: Terça-Feira 19h00 às 22h45 Semanal Quinta-Feira 19h00

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani Data Warehouse - Conceitos Hoje em dia uma organização precisa utilizar toda informação disponível para criar e manter vantagem competitiva. Sai na

Leia mais

Pós-Graduação Lato Sensu em ENGENHARIA DE MARKETING

Pós-Graduação Lato Sensu em ENGENHARIA DE MARKETING Pós-Graduação Lato Sensu em ENGENHARIA DE MARKETING Inscrições Abertas: Início das aulas: 28/03/2016 Término das aulas: 10/12/2016 Dias e horários das aulas: Segunda-Feira 18h30 às 22h30 Semanal Quarta-Feira

Leia mais

SISTEMAS DE APOIO À DECISÃO SAD

SISTEMAS DE APOIO À DECISÃO SAD SISTEMAS DE APOIO À DECISÃO SAD Conceitos introdutórios Decisão Escolha feita entre duas ou mais alternativas. Tomada de decisão típica em organizações: Solução de problemas Exploração de oportunidades

Leia mais

Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS

Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS Sumário Conceitos / Autores chave... 3 1. Introdução... 3 2. Tarefas desempenhadas por Técnicas de 4 Mineração de Dados...

Leia mais

KDD UMA VISAL GERAL DO PROCESSO

KDD UMA VISAL GERAL DO PROCESSO KDD UMA VISAL GERAL DO PROCESSO por Fernando Sarturi Prass 1 1.Introdução O aumento das transações comerciais por meio eletrônico, em especial as feitas via Internet, possibilitou as empresas armazenar

Leia mais

Prof. Msc. Paulo Muniz de Ávila

Prof. Msc. Paulo Muniz de Ávila Prof. Msc. Paulo Muniz de Ávila O que é Data Mining? Mineração de dados (descoberta de conhecimento em bases de dados): Extração de informação interessante (não-trivial, implícita, previamente desconhecida

Leia mais

FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO:

FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO: FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO: Bacharelado em Sistemas de Informação DISCIPLINA: Fundamentos de Sistemas de Informação PROFESSOR: Paulo de Tarso Costa de Sousa TURMA: BSI 2B

Leia mais

SAD orientado a MODELO

SAD orientado a MODELO Universidade do Contestado Campus Concórdia Curso de Sistemas de Informação Prof.: Maico Petry SAD orientado a MODELO DISCIPLINA: Sistemas de Apoio a Decisão SAD Orientado a Modelo De acordo com ALTER

Leia mais

MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO

MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO Fernanda Delizete Madeira 1 ; Aracele Garcia de Oliveira Fassbinder 2 INTRODUÇÃO Data

Leia mais

MINERAÇÃO DE DADOS: APLICAÇÃO PRÁTICA EM PEQUENAS E MÉDIAS EMPRESAS

MINERAÇÃO DE DADOS: APLICAÇÃO PRÁTICA EM PEQUENAS E MÉDIAS EMPRESAS MINERAÇÃO DE DADOS: APLICAÇÃO PRÁTICA EM PEQUENAS E MÉDIAS EMPRESAS RONALDO RIBEIRO GOLDSCHMIDT RESUMO. O intenso crescimento do volume de informações nas bases de dados corporativas de pequenas, médias

Leia mais

http://www.publicare.com.br/site/5,1,26,5480.asp

http://www.publicare.com.br/site/5,1,26,5480.asp Página 1 de 7 Terça-feira, 26 de Agosto de 2008 ok Home Direto da redação Última edição Edições anteriores Vitrine Cross-Docking Assine a Tecnologística Anuncie Cadastre-se Agenda Cursos de logística Dicionário

Leia mais

APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA

APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA Lizianne Priscila Marques SOUTO 1 1 Faculdade de Ciências Sociais e Aplicadas

Leia mais

Algoritmos Genéticos em Mineração de Dados. Descoberta de Conhecimento. Descoberta do Conhecimento em Bancos de Dados

Algoritmos Genéticos em Mineração de Dados. Descoberta de Conhecimento. Descoberta do Conhecimento em Bancos de Dados Algoritmos Genéticos em Mineração de Dados Descoberta de Conhecimento Descoberta do Conhecimento em Bancos de Dados Processo interativo e iterativo para identificar padrões válidos, novos, potencialmente

Leia mais

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka 1 Introdução A mineração de dados (data mining) pode ser definida como o processo automático de descoberta de conhecimento em bases de

Leia mais

Motivação: inundação de informação. Data warehouse. Inteligência computacional aplicada em finanças, comércio e indústria

Motivação: inundação de informação. Data warehouse. Inteligência computacional aplicada em finanças, comércio e indústria Programa de Especialização em Inteligência Computacional Motivação: inundação de informação Morrendo de sede por conhecimento em um oceano de dados Inteligência computacional aplicada em finanças, comércio

Leia mais

Curso de Data Mining

Curso de Data Mining Curso de Data Mining Sandra de Amo Aula 2 - Mineração de Regras de Associação - O algoritmo APRIORI Suponha que você seja gerente de um supermercado e esteja interessado em conhecer os hábitos de compra

Leia mais

O Uso da Descoberta de Conhecimento em Base de Dados para Apoiar a Tomada de Decisões

O Uso da Descoberta de Conhecimento em Base de Dados para Apoiar a Tomada de Decisões 1 O Uso da Descoberta de Conhecimento em Base de Dados para Apoiar a Tomada de Decisões José Carlos Almeida Ryan Ribeiro de Eric Rommel G. Dantas Daniel Silva de Lima Patrício Júnior Azevedo Centro de

Leia mais

MINERAÇÃO DE DADOS. Mineração de Dados

MINERAÇÃO DE DADOS. Mineração de Dados MINERAÇÃO DE DADOS Mineração de Dados Sumário Conceitos / Autores chave... 3 1. Introdução... 4 2. Conceitos de Mineração de Dados... 5 3. Aplicações de Mineração de Dados... 7 4. Ferramentas de Mineração

Leia mais

KDD E MINERAÇÃO DE DADOS:

KDD E MINERAÇÃO DE DADOS: KDD E MINERAÇÃO DE DADOS: Introdução e Motivação Prof. Ronaldo R. Goldschmidt ronaldo@de9.ime.eb.br rribeiro@univercidade.br geocities.yahoo.com.br/ronaldo_goldschmidt Fatos: Avanços em TI e o crescimento

Leia mais

IC Inteligência Computacional Redes Neurais. Redes Neurais

IC Inteligência Computacional Redes Neurais. Redes Neurais Universidade Federal do Rio de Janeiro PÓS-GRADUAÇÃO / 2008-2 IC Inteligência Computacional Redes Neurais www.labic.nce.ufrj.br Antonio G. Thomé thome@nce.ufrj.br Redes Neurais São modelos computacionais

Leia mais

Sistema de mineração de dados para descobertas de regras e padrões em dados médicos

Sistema de mineração de dados para descobertas de regras e padrões em dados médicos Sistema de mineração de dados para descobertas de regras e padrões em dados médicos Pollyanna Carolina BARBOSA¹; Thiago MAGELA² 1Aluna do Curso Superior Tecnólogo em Análise e Desenvolvimento de Sistemas

Leia mais

Revisão Inteligência Artificial ENADE. Prof a Fabiana Lorenzi Outubro/2011

Revisão Inteligência Artificial ENADE. Prof a Fabiana Lorenzi Outubro/2011 Revisão Inteligência Artificial ENADE Prof a Fabiana Lorenzi Outubro/2011 Representação conhecimento É uma forma sistemática de estruturar e codificar o que se sabe sobre uma determinada aplicação (Rezende,

Leia mais

Pós-Graduação em Engenharia Elétrica Inteligência Artificial

Pós-Graduação em Engenharia Elétrica Inteligência Artificial Pós-Graduação em Engenharia Elétrica Inteligência Artificial João Marques Salomão Rodrigo Varejão Andreão Inteligência Artificial Definição (Fonte: AAAI ): "the scientific understanding of the mechanisms

Leia mais

Data Mining aplicado na base de dados das categorias mais vendidas de um supermercado

Data Mining aplicado na base de dados das categorias mais vendidas de um supermercado Data Mining aplicado na base de dados das categorias mais vendidas de um supermercado Celso Bilynkievycz dos Santos (UTFPR/UEPG) bilynkievycz@uepg.br Vicente Toniolo Zander (UTFPR) vicente_2006@pg.cefetpr.br

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial As organizações estão ampliando significativamente suas tentativas para auxiliar a inteligência e a produtividade de seus trabalhadores do conhecimento com ferramentas e técnicas

Leia mais

Extração de Conhecimento a partir dos Sistemas de Informação

Extração de Conhecimento a partir dos Sistemas de Informação Extração de Conhecimento a partir dos Sistemas de Informação Gisele Faffe Pellegrini & Katia Collazos Grupo de Pesquisa em Eng. Biomédica Universidade Federal de Santa Catarina Jorge Muniz Barreto Prof.

Leia mais

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence É um conjunto de conceitos e metodologias que, fazem uso de acontecimentos e sistemas e apoiam a tomada de decisões. Utilização de várias fontes de informação para se definir estratégias de competividade

Leia mais

Exemplos de aplicação. Mineração de Dados 2013

Exemplos de aplicação. Mineração de Dados 2013 Exemplos de aplicação Mineração de Dados 2013 Luís Rato Universidade de Évora, 2013 Mineração de dados / Data Mining 1 Classificação: Definição Dado uma conjunto de registos (conjunto de treino training

Leia mais

Aplicativo de Mineração de Dados Aplicado em Bases de Dados Acadêmicas

Aplicativo de Mineração de Dados Aplicado em Bases de Dados Acadêmicas 22 - Encontro Anual de Tecnologia da Informação Aplicativo de Mineração de Dados Aplicado em Bases de Dados Acadêmicas Elisa Maria Vissotto1, Adriane Barbosa Camargo2 1 Universidade Regional Integrada

Leia mais

Data mining na descoberta de padrões de sintomas com foco no auxílio ao diagnóstico médico

Data mining na descoberta de padrões de sintomas com foco no auxílio ao diagnóstico médico Data mining na descoberta de padrões de sintomas com foco no auxílio ao diagnóstico médico Alexander Rivas de Melo Junior 1, Márcio Palheta Piedade 1 1 Ciência da Computação Centro de Ensino Superior FUCAPI

Leia mais

MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD)

MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD) AULA 07 MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD) JAMES A. O BRIEN MÓDULO 01 Páginas 286 à 294 1 AULA 07 SISTEMAS DE APOIO ÀS DECISÕES 2 Sistemas de Apoio à Decisão (SAD)

Leia mais

Aprendizagem de Máquina. Ivan Medeiros Monteiro

Aprendizagem de Máquina. Ivan Medeiros Monteiro Aprendizagem de Máquina Ivan Medeiros Monteiro Definindo aprendizagem Dizemos que um sistema aprende se o mesmo é capaz de melhorar o seu desempenho a partir de suas experiências anteriores. O aprendizado

Leia mais

Análise de Técnicas de Mineração de Dados

Análise de Técnicas de Mineração de Dados Análise de Técnicas de Mineração de Dados Taylor Pablo Evaristo Silva 1, Lívia Márcia Silva 1 1 Universidade Presidente Antônio Carlos - Departamento de Ciência da Computação (UNIPAC) Rua Palma Bageto

Leia mais

srbo@ufpa.br www.ufpa.br/srbo

srbo@ufpa.br www.ufpa.br/srbo CBSI Curso de Bacharelado em Sistemas de Informação BI Prof. Dr. Sandro Ronaldo Bezerra Oliveira srbo@ufpa.br www.ufpa.br/srbo Tópicos Especiais em Sistemas de Informação Faculdade de Computação Instituto

Leia mais

INTRODUÇÃO A MINERAÇÃO DE DADOS UTILIZANDO O WEKA

INTRODUÇÃO A MINERAÇÃO DE DADOS UTILIZANDO O WEKA INTRODUÇÃO A MINERAÇÃO DE DADOS UTILIZANDO O WEKA Marcelo DAMASCENO(1) (1) Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte/Campus Macau, Rua das Margaridas, 300, COHAB, Macau-RN,

Leia mais

Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro

Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro Tiago Mendes Dantas t.mendesdantas@gmail.com Departamento de Engenharia Elétrica,

Leia mais

UNIMEP MBA em Gestão e Negócios

UNIMEP MBA em Gestão e Negócios UNIMEP MBA em Gestão e Negócios Módulo: Sistemas de Informações Gerenciais Aula 3 TI com foco nos Negócios: Áreas envolvidas (Parte I) Flávio I. Callegari O perfil do profissional de negócios Planejamento

Leia mais

XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO

XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO EPE0147 UTILIZAÇÃO DA MINERAÇÃO DE DADOS EM UMA AVALIAÇÃO INSTITUCIONAL

Leia mais

Agregando valor ao negócio com Data Mining: uma ferramenta de apoio a decisão

Agregando valor ao negócio com Data Mining: uma ferramenta de apoio a decisão Agregando valor ao negócio com Data Mining: uma ferramenta de apoio a decisão Adding value to the business with Data Mining: a tool to support the Decision Sandra Santos Leodoro 1 Victor Felipe Martins

Leia mais

Gestão do Conhecimento. Capitulo 11

Gestão do Conhecimento. Capitulo 11 Gestão do Conhecimento Capitulo 11 Gestão do Conhecimento Objetivos da aula Gestão de Conhecimento Sistemas de Gestão de Conhecimento Por que hoje as empresas necessitam de programas de gestão do conhecimento

Leia mais

Universidade de Caxias do Sul Centro de Ciências Exatas e Tecnologia Departamento de Informática Curso de Bacharelado em Ciência da Computação

Universidade de Caxias do Sul Centro de Ciências Exatas e Tecnologia Departamento de Informática Curso de Bacharelado em Ciência da Computação Universidade de Caxias do Sul Centro de Ciências Exatas e Tecnologia Departamento de Informática Curso de Bacharelado em Ciência da Computação APLICAÇÃO DE REDES NEURAIS ARTIFICIAIS À MINERAÇÃO DE DADOS

Leia mais

SISTEMAS INTELIGENTES DE APOIO À DECISÃO

SISTEMAS INTELIGENTES DE APOIO À DECISÃO SISTEMAS INTELIGENTES DE APOIO À DECISÃO As organizações estão ampliando significativamente suas tentativas para auxiliar a inteligência e a produtividade de seus trabalhadores do conhecimento com ferramentas

Leia mais

Data Science e Big Data

Data Science e Big Data InforAbERTA IV Jornadas de Informática Data Science e Big Data Luís Cavique, Porto, março 2014 Agenda 1. Definições: padrões micro e Macro 2. Novos padrões para velhos problemas: Similis, Ramex, Process

Leia mais

BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES.

BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES. Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 88 BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES. Andrios Robert Silva Pereira, Renato Zanutto

Leia mais

DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS

DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS Tácio Dias Palhão Mendes Bacharelando em Sistemas de Informação Bolsista de Iniciação Científica da FAPEMIG taciomendes@yahoo.com.br Prof.

Leia mais

FUNDAÇÃO DE APOIO AO ENSINO TÉCNICO DO ESTADO DO RIO DE JANEIRO FAETERJ Petrópolis Área de Extensão PLANO DE CURSO

FUNDAÇÃO DE APOIO AO ENSINO TÉCNICO DO ESTADO DO RIO DE JANEIRO FAETERJ Petrópolis Área de Extensão PLANO DE CURSO FUNDAÇÃO DE APOIO AO ENINO TÉCNICO DO ETADO DO RIO DE JANEIRO PLANO DE CURO 1. Identificação Curso de Extensão: INTRODUÇÃO AO ITEMA INTELIGENTE Professor Regente: José Carlos Tavares da ilva Carga Horária:

Leia mais

Administração de Sistemas de Informação Gerenciais UNIDADE IV: Fundamentos da Inteligência de Negócios: Gestão da Informação e de Banco de Dados Um banco de dados é um conjunto de arquivos relacionados

Leia mais

Módulo 6: Inteligência Artificial

Módulo 6: Inteligência Artificial Módulo 6: Inteligência Artificial Assuntos: 6.1. Aplicações da IA 6.2. Sistemas Especialistas 6.1. Aplicações da Inteligência Artificial As organizações estão ampliando significativamente suas tentativas

Leia mais

No mundo atual, globalizado e competitivo, as organizações têm buscado cada vez mais, meios de se destacar no mercado. Uma estratégia para o

No mundo atual, globalizado e competitivo, as organizações têm buscado cada vez mais, meios de se destacar no mercado. Uma estratégia para o DATABASE MARKETING No mundo atual, globalizado e competitivo, as organizações têm buscado cada vez mais, meios de se destacar no mercado. Uma estratégia para o empresário obter sucesso em seu negócio é

Leia mais

SISTEMAS DE INFORMAÇÃO GERENCIAIS

SISTEMAS DE INFORMAÇÃO GERENCIAIS SISTEMAS DE INFORMAÇÃO GERENCIAIS O PODER DA INFORMAÇÃO Tem PODER quem toma DECISÃO Toma DECISÃO correta quem tem SABEDORIA Tem SABEDORIA quem usa CONHECIMENTO Tem CONHECIMENTO quem possui INFORMAÇÃO (Sem

Leia mais

Sistemas de Apoio à Decisão. Vocabulário e conceitos Vista geral

Sistemas de Apoio à Decisão. Vocabulário e conceitos Vista geral Sistemas de Apoio à Decisão Vocabulário e conceitos Vista geral Decisão A escolha de uma entre várias alternativas Processo de tomada de decisão (decision making) Avaliar o problema Recolher e verificar

Leia mais

Data Warehouse - DW ADM. MARTÍN GLASS CRA/MT 4742

Data Warehouse - DW ADM. MARTÍN GLASS CRA/MT 4742 Data Warehouse - DW Data Warehouse (Armazém de Dados) é um depósito integrado de informações, disponíveis para análise e para a construção de filtros de busca; Centraliza informações localizadas em diferentes

Leia mais

MINERAÇÃO DE DADOS PARA DETECÇÃO DE SPAMs EM REDES DE COMPUTADORES

MINERAÇÃO DE DADOS PARA DETECÇÃO DE SPAMs EM REDES DE COMPUTADORES MINERAÇÃO DE DADOS PARA DETECÇÃO DE SPAMs EM REDES DE COMPUTADORES Kelton Costa; Patricia Ribeiro; Atair Camargo; Victor Rossi; Henrique Martins; Miguel Neves; Ricardo Fontes. kelton.costa@gmail.com; patriciabellin@yahoo.com.br;

Leia mais

Marcio Cataldi 1, Carla da C. Lopes Achão 2, Bruno Goulart de Freitas Machado 1, Simone Borim da Silva 1 e Luiz Guilherme Ferreira Guilhon 1

Marcio Cataldi 1, Carla da C. Lopes Achão 2, Bruno Goulart de Freitas Machado 1, Simone Borim da Silva 1 e Luiz Guilherme Ferreira Guilhon 1 Aplicação das técnicas de Mineração de Dados como complemento às previsões estocásticas univariadas de vazão natural: estudo de caso para a bacia do rio Iguaçu Marcio Cataldi 1, Carla da C. Lopes Achão

Leia mais

Preparando sua empresa para o forecasting:

Preparando sua empresa para o forecasting: Preparando sua empresa para o forecasting: Critérios para escolha de indicadores. Planejamento Performance Dashboard Plano de ação Relatórios Indicadores Embora o forecasting seja uma realidade, muitas

Leia mais

SIMULAÇÃO DE GESTÃO EMPRESARIAL

SIMULAÇÃO DE GESTÃO EMPRESARIAL SIMULAÇÃO DE GESTÃO EMPRESARIAL I INTRODUÇÃO O JOGO DE GESTÃO EMPRESARIAL é uma competição que simula a concorrência entre empresas dentro de um mercado. O jogo se baseia num modelo que abrange ao mesmo

Leia mais

4. Que tipos de padrões podem ser minerados. 5. Critérios de classificação de sistemas de Data Mining. 6. Tópicos importantes de estudo em Data Mining

4. Que tipos de padrões podem ser minerados. 5. Critérios de classificação de sistemas de Data Mining. 6. Tópicos importantes de estudo em Data Mining Curso de Data Mining - Aula 1 1. Como surgiu 2. O que é 3. Em que tipo de dados pode ser aplicado 4. Que tipos de padrões podem ser minerados 5. Critérios de classificação de sistemas de Data Mining 6.

Leia mais

Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade

Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade Carlos Eduardo R. de Mello, Geraldo Zimbrão da Silva, Jano M. de Souza Programa de Engenharia de Sistemas e Computação Universidade

Leia mais

Projeto Pedagógico do Bacharelado em Ciência da Computação. Comissão de Curso e NDE do BCC

Projeto Pedagógico do Bacharelado em Ciência da Computação. Comissão de Curso e NDE do BCC Projeto Pedagógico do Bacharelado em Ciência da Computação Comissão de Curso e NDE do BCC Fevereiro de 2015 Situação Legal do Curso Criação: Resolução CONSU no. 43, de 04/07/2007. Autorização: Portaria

Leia mais

EMPREENDEDORISMO E PLANO DE NEGÓCIOS

EMPREENDEDORISMO E PLANO DE NEGÓCIOS EMPREENDEDORISMO E PLANO DE NEGÓCIOS Professor: Luis Guilherme Magalhães professor@luisguiherme.adm.br www.luisguilherme.adm.br (62) 9607-2031 PLANO DE MARKETING O QUE UM BOM PLANO DE EMPREENDEDORISMO

Leia mais

INSTITUTO VIANNA JÚNIOR LTDA FACULDADES INTEGRADAS DO INSTITUTO VIANNA JUNIOR O TEXT MINING PARA APOIO A TOMADA DE DECISÃO

INSTITUTO VIANNA JÚNIOR LTDA FACULDADES INTEGRADAS DO INSTITUTO VIANNA JUNIOR O TEXT MINING PARA APOIO A TOMADA DE DECISÃO INSTITUTO VIANNA JÚNIOR LTDA FACULDADES INTEGRADAS DO INSTITUTO VIANNA JUNIOR O TEXT MINING PARA APOIO A TOMADA DE DECISÃO Lúcia Helena de Magalhães 1 Márcio Aarestrup Arbex 2 Resumo Este artigo tem como

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Tipos de aprendizagem 3. Paradigmas de aprendizagem 4. Modos de aprendizagem

Leia mais

Data Warehouse Mineração de Dados

Data Warehouse Mineração de Dados Data Warehouse Mineração de Dados Profa. Roberta Macêdo M. Gouveia robertammg@gmail.com 1 18/12/2014 Data Warehouse Data Mining Big Data A mina de ouro debaixo dos bits 2 Data Warehouse: A Memória da Empresa

Leia mais

INFLUÊNCIA DOS JOGOS NO CAMPO DA INTELIGÊNCIA ARTIFICIAL

INFLUÊNCIA DOS JOGOS NO CAMPO DA INTELIGÊNCIA ARTIFICIAL INFLUÊNCIA DOS JOGOS NO CAMPO DA INTELIGÊNCIA ARTIFICIAL Marcelo de Souza 1 bsi.marcelo@gmail.com Prof. Adilson Vahldick, Inteligência Artificial RESUMO: O desenvolvimento de jogos é um campo que atrai

Leia mais

EXTRAÇÃO DE CONHECIMENTO ATRAVÉS DA MINERAÇÃO DE DADOS KNOWLEDGE EXTRACTION THROUGH OF THE MINING OF DATA

EXTRAÇÃO DE CONHECIMENTO ATRAVÉS DA MINERAÇÃO DE DADOS KNOWLEDGE EXTRACTION THROUGH OF THE MINING OF DATA EXTRAÇÃO DE CONHECIMENTO ATRAVÉS DA MINERAÇÃO DE DADOS Dayana Carla de Macedo (UTFPR/ UEPG) dayanamacedo@yahoo.com.br Simone Nasser Matos (UTFPR) snasser@utfpr.edu.br Resumo: Para garantir sua permanência

Leia mais

Referências bibliográficas

Referências bibliográficas Referências bibliográficas MOUTINHO, Adriano M.; SILVA, Viviane S.R. Aplicação do Algoritmo de Categorização FCM e avaliação das Medidas de Validação ICC e CS, 2002. Disponível em

Leia mais

Inteligência de Negócio. Brian Cowhig

Inteligência de Negócio. Brian Cowhig Inteligência de Negócio Brian Cowhig Inteligência de Negócio O Que é Inteligência de Negócio? Três Níveis de Inteligência de Negócio Database Query OLAP Data Mining Produtos de Inteligência de Negócio

Leia mais

IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES ENTRE PRODUTOS DE UMA BASE DE DADOS REAL

IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES ENTRE PRODUTOS DE UMA BASE DE DADOS REAL Universidade Federal de Ouro Preto - UFOP Instituto de Ciências Exatas e Biológicas - ICEB Departamento de Computação - DECOM IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES

Leia mais

INTELIGÊNCIA COMPUTACIONAL

INTELIGÊNCIA COMPUTACIONAL INTELIGÊNCIA COMPUTACIONAL Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto Dados pessoais Rosalvo Ferreira de Oliveira Neto MSc. em ciência da computação (UFPE) rosalvo.oliveira@univasf.edu.br

Leia mais

6 Construção de Cenários

6 Construção de Cenários 6 Construção de Cenários Neste capítulo será mostrada a metodologia utilizada para mensuração dos parâmetros estocásticos (ou incertos) e construção dos cenários com respectivas probabilidades de ocorrência.

Leia mais

MBA em Gestão de Empreendimentos Turísticos

MBA em Gestão de Empreendimentos Turísticos Prof. Martius V. Rodriguez y Rodriguez, DSc martius@kmpress.com.br MBA em Gestão de Empreendimentos Turísticos Gestão do Conhecimento e Tecnologia da Informação Gestão do Conhecimento evolução conceitual.

Leia mais

Estudo e Análise da Base de Dados do Portal Corporativo da Sexta Região da Polícia Militar com vista à aplicação de Técnicas de Mineração de Dados1

Estudo e Análise da Base de Dados do Portal Corporativo da Sexta Região da Polícia Militar com vista à aplicação de Técnicas de Mineração de Dados1 Estudo e Análise da Base de Dados do Portal Corporativo da Sexta Região da Polícia Militar com vista à aplicação de Técnicas de Mineração de Dados1 Rafaela Giroto, 10º módulo de Ciência da Computação,

Leia mais

FERRAMENTAS COMPUTACIONAIS ANALÍTICAS PARA O SUPORTE AO GERENCIAMENTO ESTRATÉGICO DOS NEGÓCIOS NAS MICRO E PEQUENAS EMPRESAS DO BRASIL

FERRAMENTAS COMPUTACIONAIS ANALÍTICAS PARA O SUPORTE AO GERENCIAMENTO ESTRATÉGICO DOS NEGÓCIOS NAS MICRO E PEQUENAS EMPRESAS DO BRASIL FERRAMENTAS COMPUTACIONAIS ANALÍTICAS PARA O SUPORTE AO GERENCIAMENTO ESTRATÉGICO DOS NEGÓCIOS NAS MICRO E PEQUENAS EMPRESAS DO BRASIL Carlos Alberto Ferreira Bispo Universidade de São Paulo (USP) Escola

Leia mais

Data Mining. Rodrigo Leite Durães

Data Mining. Rodrigo Leite Durães Data Mining Rodrigo Leite Durães Introdução Aplicação de processos de análise inteligentes visando manipulação automática de quantidades imensas de dados Larga aplicação nos mais variados ramos da indústria,

Leia mais

Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 1.1

Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 1.1 Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 1.1 SISTEMA DE APOIO À DECISÃO Grupo: Denilson Neves Diego Antônio Nelson Santiago Sabrina Dantas CONCEITO É UM SISTEMA QUE AUXILIA O PROCESSO DE DECISÃO

Leia mais

Extração de Regras de Redes Neurais via Algoritmos Genéticos

Extração de Regras de Redes Neurais via Algoritmos Genéticos Proceedings of the IV Brazilian Conference on Neural Networks - IV Congresso Brasileiro de Redes Neurais pp. 158-163, July 20-22, 1999 - ITA, São José dos Campos - SP - Brazil Extração de Regras de Redes

Leia mais

Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de

Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de 1 Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de relatórios dos sistemas de informação gerencial. Descrever

Leia mais

Sumário. Mineração de Dados aplicada à Gestão de Negócios. 1) Mineração de Dados

Sumário. Mineração de Dados aplicada à Gestão de Negócios. 1) Mineração de Dados Aula 1 Introdução -Mineração de Dados Prof. Dr. Sylvio Barbon Junior barbon@uel.br Sumário 1) Mineração de Dados 1) Atividades Relacionadas; 2) Desafios; 3) Exemplos de aplicativos; 4) Últimos assuntos;

Leia mais

Informativo Bimestral da Siqueira Campos Associados agosto de 2013 - ano VII - Número 21. Catálogo de Treinamentos 2013

Informativo Bimestral da Siqueira Campos Associados agosto de 2013 - ano VII - Número 21. Catálogo de Treinamentos 2013 Informativo Bimestral da Siqueira Campos Associados agosto de 2013 - ano VII - Número 21 Nesta edição Lean Office - Dez dicas para economizar tempo no trabalho Estatística Seis Sigma - Estatística não

Leia mais

2 Descoberta de Conhecimento em Bases de Dados 2.1. Introdução

2 Descoberta de Conhecimento em Bases de Dados 2.1. Introdução 2 Descoberta de Conhecimento em Bases de Dados 2.1. Introdução De acordo com [FAYY96], o conceito de descoberta de conhecimento em bases de dados pode ser resumido como o processo não-trivial de identificar

Leia mais

6 Conclusões e recomendações 6.1. Resumo do estudo

6 Conclusões e recomendações 6.1. Resumo do estudo 6 Conclusões e recomendações 6.1. Resumo do estudo As operadoras de telefonia móvel do mercado brasileiro estão diante de um contexto em que é cada vez mais difícil a aquisição de novos clientes. Dado

Leia mais

Extração de Conhecimento & Mineração de Dados

Extração de Conhecimento & Mineração de Dados Extração de Conhecimento & Mineração de Dados Nesta apresentação é dada uma breve introdução à Extração de Conhecimento e Mineração de Dados José Augusto Baranauskas Departamento de Física e Matemática

Leia mais

SISTEMA DE INFORMAÇÃO EXECUTIVA UTILIZANDO DATA MINING BASEADO NA TÉCNICA ÁRVORE DE DECISÃO

SISTEMA DE INFORMAÇÃO EXECUTIVA UTILIZANDO DATA MINING BASEADO NA TÉCNICA ÁRVORE DE DECISÃO SISTEMA DE INFORMAÇÃO EXECUTIVA UTILIZANDO DATA MINING BASEADO NA TÉCNICA ÁRVORE DE DECISÃO OSCAR DALFOVO, M.A. dalfovo@furb.rct-sc.br Professor da Universidade Regional de Blumenau - FURB Professor do

Leia mais

Complemento II Noções Introdutória em Redes Neurais

Complemento II Noções Introdutória em Redes Neurais Complemento II Noções Introdutória em Redes Neurais Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

Identificando o grau de importância dos programas eleitorais a partir da mineração de dados

Identificando o grau de importância dos programas eleitorais a partir da mineração de dados Identificando o grau de importância dos programas eleitorais a partir da mineração de dados Lucinéia Rodrigues Magalhães (Bacharel) Curso de Bacharelado em Sistemas de Informação Universidade Tuiuti do

Leia mais

OqueéBI? QualéoobjetivodeBI? 15/03/2009

OqueéBI? QualéoobjetivodeBI? 15/03/2009 Profª. Kelly Business Intelligence (BI) OqueéBI? É um conjunto de conceitos e metodologias que, fazendo uso de acontecimentos (fatos) e sistemas baseados nos mesmos, apóia a tomada de decisões em negócios;

Leia mais

DATA WAREHOUSE & DATA MINING

DATA WAREHOUSE & DATA MINING UNIVERSIDADE FEDERAL DE SANTA CATARINA UFSC Centro Tecnológico - Departamento de Informática e Estatística - INE Disciplina: EPS 5216 Sistemas de Informações Gerenciais Professora: Aline França de Abreu

Leia mais