1. Objetivo: determinar as tensões normais nas seções transversais de uma viga sujeita a flexão pura e flexão simples.

Tamanho: px
Começar a partir da página:

Download "1. Objetivo: determinar as tensões normais nas seções transversais de uma viga sujeita a flexão pura e flexão simples."

Transcrição

1 FACULDADES NTEGRADAS ENSTEN DE LMERA Curso de Graduação em Egeharia Civil Resistêcia dos Materiais - 0 Prof. José Atoio Schiavo, MSc. NOTAS DE AULA Aula : Flexão Pura e Flexão Simples. Objetivo: determiar as tesões ormais as seções trasversais de uma viga sujeita a flexão pura e flexão simples.. trodução Elemetos delgados que suportam carregametos aplicados perpedicularmete ao seu eixo logitudial são deomiados vigas.. Em geral, vigas são tratadas como elemetos de barra logos e retos, com área da seção trasversal costate e são classificadas coforme o modo como são apoiados. Por exemplo, uma viga simplesmete apoiada é suportada por um apoio fixo em uma extremidade e um apoio móvel (ou rolete) a outra. Uma viga apoiada com extremidade em balaço é uma viga a qual uma ou ambas as extremidades ultrapassam livremete os apoios. Além disso, uma vez que esses diagramas forecem iformações detalhadas sobre a variação dos esforços solicitates ao logo do eixo da viga, os egeheiros podem utilizá-los los para decidir ode colocar materiais de reforço o iterior da viga ou calcular as dimesões da seção trasversal da viga.. Flexão Ao supor uma barra reta prismática submetida a atuação de mometos fletores M aplicados a extremidade da peça, tem-se o mometo costate ao logo do eixo da barra. Todos os potos da barra têm a mesma curvatura, portato a forma da curvatura é um arco de circuferêcia. Os carregametos aplicados perpedicularmete ao eixo logitudial provocam uma deflexão da viga. Esforços físicos iteros aparecerão como resultado da deformação das partículas da viga etre si. Por cota desses carregametos aplicados, a viga desevolverá etão um mometo fletor e uma força de cisalhameto itera (força cortate). Estes dois esforços irão variar de poto para poto ao logo do comprimeto do eixo da viga. Para projetar uma viga correte, é ecessário determiar a força de cisalhameto (V) e o mometo fletor (M) máximos que agem a viga. Um modo de fazer isso é expressar V e M em fução de uma posição qualquer x ao logo do eixo da viga. Etão, essas fuções de cisalhameto e mometo podem ser represetadas em gráficos deomiados diagramas de força cortate e mometo fletor. Os valores máximos desses esforços podem ser obtidos desses gráficos. Depois que a barra se deforma, o segmeto BB ' aumeta de comprimeto, equato o segmeto AA ' dimiui. Ao logo da altura da barra, etre esses dois segmetos, deve haver um segmeto CC' que matém o mesmo comprimeto. O eixo logitudial que cotém esse segmeto é deomiado eixo eutro ou liha eutra,, porque ão se deforma. Parece claro que a parte da barra acima do eixo eutro é toda comprimida, com maior ecurtameto as fibras mais superiores. Abaixo do eixo eutro toda a região está tracioada, com maior alogameto das fibras mais iferiores. Faculdades tegradas Eistei de Limeira Eg. Civil Resistêcia dos Materiais - 0

2 Sabe-se que quato mais alogameto, maior a itesidade de tesão a fibra está submetida. Portato, as fibras superiores e iferiores mais extremas estarão sujeitas a tesões maiores, em valor absoluto. Se a fibra se ecurta, ela está comprimida. Se ela se aloga, está tracioada. Tesões de compressão e de tração são aquelas que atuam perpedicularmete ao plao de aálise. Portato, são tesões ormais (σ). Um exemplo de ocorrêcia de tesões ormais é o problema de um cabo submetido à ação de uma força perpedicular à sua seção trasversal. Na resistêcia dos materiais, supomos que as seções plaas de uma barra permaecerão plaas após a deformação de flexão. É como se a seção girasse em toro da liha eutra como um corpo rígido. Pode-se observar esse giro as extremidades da viga da figura aterior. A face vertical da viga gira em toro do poto localizado a liha eutra da peça. Supõe-se que a variação da deformação logitudial (ε) seja liear ao logo da seção trasversal. Na viga submetida à flexão também há compressão e tração em suas partículas. Etão, tesões ormais (σ) também ocorrem a flexão. Para cofirmar isso, vamos dividir uma viga fletida em várias áreas elemetares. Ao aalisar duas dessas áreas vizihas, veremos que a flexão faz com que uma área aplique uma força sobre a outra. Parte dessa força é perpedicular ao plao de cotato etre as áreas. Daí tem-se uma tesão ormal (σ) aplicada a iterface etre as áreas. De acordo como a Lei de Hooke, para materiais de comportameto elástico-liear, liear, a tesão ormal é proporcioal à deformação logitudial: σ E.ε. Assim, temos que a tesão ormal também varia liearmete ao logo da seção trasversal da barra. Em duas regiões distitas de uma viga fletida, tomemos outras duas áreas elemetares em cada região. Na região iferior da viga, tracioada, o alogameto é maior quato mais próximo for da borda iferior. Na outra região, o ecurtameto máximo ocorrerá a borda superior. Caso tivermos uma barra com seção trasversal retagular, teremos que a máxima tesão ormal de tração será igual à máxima tesão ormal de compressão, em valor absoluto. A força resultate de compressão C terá a mesma itesidade da força resultate de tração T. Ambas são aplicadas o CG da figura formada pelo diagrama de distribuição de tesões ormais. Essas duas forças costituem um biário oriudo do mometo fletor. Faculdades tegradas Eistei de Limeira Eg. Civil Resistêcia dos Materiais - 0

3 Se agora tomarmos duas faixas logitudiais, uma abaixo e outra acima da liha eutra dessa mesma viga, veremos que a faixa iferior sofre alogameto, e a superior sofre ecurtameto. Surgem etão tesões de cisalhameto a iterface das duas faixas devido a essa difereça de deformação. Se a seção há, além do mometo fletor, força cortate, a flexão é cohecida como flexão ormal simples.. Na figura aterior temos flexão simples os trechos etre o apoios e as cargas cocetradas. A figura a seguir é o resultado de uma aálise fotoelástica de um modelo de viga em flexão pura. Nela, pode-se observar faixas horizotais de mesma cor. sso quer dizer que a tesão ormal em uma mesma altura da viga ão varia ao logo de seu eixo. Etão, costata-se que o mometo fletor é costate equato as faixas coloridas se apresetarem a horizotal. A faixa egra idica os lugares geométricos ode a tesão é ula, ou seja, a liha eutra. Quado aalisamos uma área elemetar bem a iterface das duas faixas, veremos que a tesão de cisalhameto tederia a fazer essa área girar em toro de seu cetro. Para mater o equilibro estático do elemeto, surgem etão tesões de cisalhameto que atuam as faces verticais do elemeto. Cocluímos etão que as tesões de cisalhameto devem atuar em duas direções mutuamete ortogoais para que o elemeto se mateha em equilibro. O cisalhameto a flexão será objeto de aula futura, portato ão abordaremos mais detalhes esta ota de aula.. Tesões ormais a flexão Quado o vetor mometo fletor é perpedicular a um eixo pricipal de iércia, o eixo z por exemplo, a flexão é deomiada flexão ormal. Existido apeas o mometo fletor a seção (cortate e ormal são ulos), a flexão é chamada de flexão ormal pura.. Na figura abaixo, o trecho BC da viga, etre as cargas cocetradas, está submetido à flexão pura. Há também outros casos de flexão que serão objetos de estudo de aulas posteriores... Equação da flexão Para aplicar o coceito de tesão o caso da flexão, vamos cosiderar que, em áreas ifiitesimais da de uma seção da barra, há forças dn perpediculares à seção. Sedo as áreas da cofudidas com um poto, podemos supor que as tesões elas sejam uiformes. Etão a tesão ormal média em cada área pode ser defiida por: dn σ da Como a largura (e) e a altura da barra (h) são pequeas quado comparadas com seu comprimeto, podemos admitir que a tesão ormal em todos os potos ao logo da largura seja costate. Se somarmos dn ao logo de toda a área da viga submetida a tesões ormais de compressão teremos a força de compressão resultate (a força de compressão do biário): C A σ da Faculdades tegradas Eistei de Limeira Eg. Civil Resistêcia dos Materiais - 0

4 Fazedo da mesma maeira para as tesões ormais de tração, teremos: + T A σ da + em que A - e A + são as áreas em que as tesões são egativas e positivas, respectivamete. Para que haja equilíbrio, o biário itero deve equilibrar o mometo extero aplicado M. Assim: M Td C d Como vimos, a tesão ormal um poto da seção trasversal da barra é: dn σda. Como as tesões variam liearmete a altura da seção trasversal, tomemos uma costate K pela qual multiplicaremos pela distâcia (z) da força até a liha eutra para determiarmos o valor de σ. A força ormal dn será: dn K z da O mometo elemetar de cada força dn em relação à liha eutra será: dm z dn K z da A soma de todos esses ifiitos mometos elemetares tem de ser igual ao mometo M (biário resultate das tesões). M K z da K A sedo, A z da que é o mometo de iércia da seção em toro do eixo. Sabedo que K σ / z, a tesão ormal será: M σ z em que z é a distâcia a vertical etre o poto de aálise e a liha eutra. Exemplo Determiar as máximas tesões de tração e compressão a viga abaixo. Passo: cálculo das características geométricas da seção trasversal. Cetróide em relação ao eixo : h 0 z g 0cm Mometo de iércia em relação ao eixo. Para retâgulos, o mometo de iércia vale: b h cm Passo: Tesões ormais. Por se tratar de caso de flexão simples, as máximas tesões ormais serão ecotradas as fibras mais distates da liha eutra (o CG). Por coveção, a distâcia etre o eixo e um poto abaixo dele é cosiderada positiva. A distâcia etre o eixo e um poto acima dele será egativa. - tesão ormal a fibra iferior: M 98 σ z 0 0, 5 kn cm², MPa tesão ormal a fibra superior: M 98 σ z ( 0) 0, 5 kn cm², MPa Passo: Máximas tesões ormais. σ, MPa max σ mi, MPa (tesão ormal de compressão) Exemplo Verificar se a viga pode ser utilizada com seguraça. Dados: σ t 80 MPa e σ c 60MPa. Passo: determiar o diagrama de mometo fletor. (tesão ormal de tração) Passo: determiar o diagrama de mometo fletor. Reações os apoios: 5 RA RB 7, 5kN Diagrama de mometo fletor: p l 5 9, 8kNm 8 8 M max + M max M max 7, 8kNm, 00kNm Faculdades tegradas Eistei de Limeira Eg. Civil Resistêcia dos Materiais - 0

5 Passo: cálculo das características geométricas da seção trasversal. Vamos desmembrar a figura da seção trasversal em duas figuras simples. - tesão ormal a fibra superior: 00 σ (, 6 0) 0, 65kN cm² 6, 5 MPa 89, 6 (tesão ormal de tração) Cetróide da figura em relação a : z g 7 + 8, 5cm Cetróide da figura em relação a : 7 z g 8, 5cm Cetróide da seção trasversal: ( 8, 5 8) + ( 8, 5 7 ) z g, 6cm ( ) ( ) Mometo de iércia em relação ao eixo : + ( z g z ) A b h + g (, 6 8, 5) ( 8) 5, cm Passo: Máximas tesões ormais. σ 6, MPa max σ mi, 0 MPa 5 Passo: Comparação com as tesões admissíveis. σ < σ Ok! max t σ mi < σ c Ok! A estrutura é segura quato às tesões ormais de flexão. Numa seção com mometo fletor cohecido queremos achar quase sempre apeas a tesão máxima para compará-la com a tesão admissível. Assim, M M M σ máximo zmáximo z W máximo a qual W é o módulo de resistêcia da seção zmáx e caracteriza a capacidade de resistêcia da seção à flexão. ( z g z ) A b h + g , 6 cm (, 6 8, 5) ( 7 ) 575, cm Passo: Tesões ormais. Para o caso de M + max: - tesão ormal a fibra iferior: σ M 78 z, 6, 6 kn cm² 6, MPa 89, 6 (tesão ormal de tração) - tesão ormal a fibra superior: M 78 σ z, 6 0, kn cm², 89, 6 ( ) MPa (tesão ormal de compressão) Para o caso de M - max: - tesão ormal a fibra iferior: M 00 σ z, 6, 0 kn 89, 6 cm², 0 MPa (tesão ormal de compressão) Faculdades tegradas Eistei de Limeira Eg. Civil Resistêcia dos Materiais - 0 5

6 ANEXO Características geométricas das seções trasversais: cetro de gravidade, mometo de iércia e raio de giração. Cetro de Gravidade (CG), baricetro ou cetróide Uma figura complexa pode ser dividida em figuras mais simples. Cada figura tem uma área i e as coordeadas dessa área são ( i,z i ). Para respoder estas questões basta saber que quato maior a distâcia de uma massa em relação a seu eixo de giro, mais difícil se tora girar essa massa. O mometo de iércia () é uma medida da resistêcia ao giro que um corpo oferece. Ele mede a distribuição da massa em toro de seu eixo. z da z z da Ao tomar o mometo de cada área em relação à origem O, temos: A g A + A A i Ai i A área total é a somatória de todas as áreas: A A i A i Combiado as duas equações teremos: A i Ai g i Ai i g e, aalogamete, z g i zi i i i i No caso de um sólido homogêeo plao, podemos dizer que o cetro de gravidade é o poto por ode passa a liha de ação da força peso. O mometo de iércia em relação ao poto de origem dos eixos coordeados é chamado de mometo polar de iércia: ( x ) p r da + da + z Uma característica importate das figuras geométricas quado se trata de uma seção sem eixo de simetria, ou o caso de rotação de eixos, é o produto de iércia.. O produto de iércia de uma área A de uma figura em relação ao dois eixos coplaares com ela, eixos coordeados x e,, é dado por: xda z O mometo de iércia de uma seção retagular em relação ao seu CG é: h / b h z da z b dz h / h / z da b dz h / h b Mometo de ércia ou Mometo de Seguda Ordem tuitivamete, o que é mais fácil girar em toro de seu eixo, um disco fio de grade diâmetro ou um eixo de pequeo diâmetro com mesma massa do disco? É mais fácil girar um corpo em toro de um eixo com um raio de giro grade ou pequeo? Faculdades tegradas Eistei de Limeira Eg. Civil Resistêcia dos Materiais - 0 6

7 ANEXO (retirado da apostila do Prof. Serra) Propriedades de Figuras Plaas Notação: A área mometo de iércia em relação ao eixo P m produto de iércia em relação aos eixos m e J m m + mometo polar de iércia em relação aos eixos m e i raio de giração em relação ao eixo Seção Propriedades A P b i imí (b<h) b h (h J b + ) P 0 (h J b + ) W 6 W 6 h/ h A (h J b ) 6 i 6 h W superior W if erior b triâgulo isosceles 8 P 0 6 i b W D R A J R D i i W W D d π A (D π 5π d ) (D d ) (D d ) 6 6 π J (D d ) i i D d π(d d ) W W D Ael circular Fórmulas aproximadas para o caso de t pequeo DR (valor médio) t<<d A t t t t t t maior precisão com ( + ) 8 8 D t J t i i D πtd W W π 8 A R 0,098R 8 8 9π 8 R DR c R 6 c i imíimo R 0,6R π 9π R i W superior 0,907R W if erior 0,587 R W 8 JLSerra Faculdades tegradas Eistei de Limeira Eg. Civil Resistêcia dos Materiais - 0 7

MOMENTOS DE INÉRCIA. Física Aplicada à Engenharia Civil II

MOMENTOS DE INÉRCIA. Física Aplicada à Engenharia Civil II Física Aplicada à Egeharia Civil MOMENTOS DE NÉRCA Neste capítulo pretede-se itroduzir o coceito de mometo de iércia, em especial quado aplicado para o caso de superfícies plaas. Este documeto, costitui

Leia mais

Demonstrações especiais

Demonstrações especiais Os fudametos da Física Volume 3 Meu Demostrações especiais a ) RLAÇÃO NTR próx. e sup. osidere um codutor eletrizado e em equilíbrio eletrostático. Seja P sup. um poto da superfície e P próx. um poto extero

Leia mais

+... + a k. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

+... + a k. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. MATEMÁTICA NOTAÇÕES : cojuto dos úmeros aturais; = {,,, } : cojuto dos úmeros iteiros : cojuto dos úmeros racioais : cojuto dos úmeros reais : cojuto dos úmeros complexos i: uidade imagiária, i = z: módulo

Leia mais

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC) A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE I-0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Um professor de matemática, após corrigir

Leia mais

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO:

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam da etiqueta fixada

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

PG Progressão Geométrica

PG Progressão Geométrica PG Progressão Geométrica 1. (Uel 014) Amalio Shchams é o ome cietífico de uma espécie rara de plata, típica do oroeste do cotiete africao. O caule dessa plata é composto por colmos, cujas características

Leia mais

Eletrodinâmica III. Geradores, Receptores Ideais e Medidores Elétricos. Aula 6

Eletrodinâmica III. Geradores, Receptores Ideais e Medidores Elétricos. Aula 6 Aula 6 Eletrodiâmica III Geradores, Receptores Ideais e Medidores Elétricos setido arbitrário. A ddp obtida deve ser IGUAL a ZERO, pois os potos de partida e chegada são os mesmos!!! Gerador Ideal Todo

Leia mais

somente um valor da variável y para cada valor de variável x.

somente um valor da variável y para cada valor de variável x. Notas de Aula: Revisão de fuções e geometria aalítica REVISÃO DE FUNÇÕES Fução como regra ou correspodêcia Defiição : Uma fução f é uma regra ou uma correspodêcia que faz associar um e somete um valor

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

Questão 11. Questão 13. Questão 12. Questão 14. alternativa B. alternativa E. alternativa A

Questão 11. Questão 13. Questão 12. Questão 14. alternativa B. alternativa E. alternativa A Questão Em uma pesquisa, foram cosultados 00 cosumidores sobre sua satisfação em relação a uma certa marca de sabão em pó. Cada cosumidor deu uma ota de 0 a 0 para o produto, e a média fial das otas foi

Leia mais

Resposta: L π 4 L π 8

Resposta: L π 4 L π 8 . A figura a seguir ilustra as três primeiras etapas da divisão de um quadrado de lado L em quadrados meores, com um círculo iscrito em cada um deles. Sabedo-se que o úmero de círculos em cada etapa cresce

Leia mais

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21 Nome: ºANO / CURSO TURMA: DATA: 0 / 0 / 05 Professor: Paulo. (Pucrj 0) Vamos empilhar 5 caixas em ordem crescete de altura. A primeira caixa tem m de altura, cada caixa seguite tem o triplo da altura da

Leia mais

Os juros compostos são conhecidos, popularmente, como juros sobre juros.

Os juros compostos são conhecidos, popularmente, como juros sobre juros. Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

defi departamento de física www.defi.isep.ipp.pt

defi departamento de física www.defi.isep.ipp.pt defi departameto de física Laboratórios de Física www.defi.isep.ipp.pt stituto Superior de Egeharia do Porto- Departameto de Física Rua Dr. Atóio Berardio de Almeida, 431 4200-072 Porto. T 228 340 500.

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (III ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice Itrodução Aplicação do cálculo matricial aos

Leia mais

O poço de potencial infinito

O poço de potencial infinito O poço de potecial ifiito A U L A 14 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial V(x) que tem a forma de um poço ifiito: o potecial é ifiito para x < a/ e para x > a/, e tem o valor

Leia mais

I - FUNDAMENTOS DO CONCRETO ARMADO 1- INTRODUÇÃO GERAL. 1.1- Definição

I - FUNDAMENTOS DO CONCRETO ARMADO 1- INTRODUÇÃO GERAL. 1.1- Definição I - FUNDAMENTOS DO CONCRETO ARMADO - INTRODUÇÃO GERAL.- Defiição O cocreto armado é um material composto, costituído por cocreto simples e barras ou fios de aço. Os dois materiais costituites (cocreto

Leia mais

Até que tamanho podemos brincar de esconde-esconde?

Até que tamanho podemos brincar de esconde-esconde? Até que tamaho podemos bricar de escode-escode? Carlos Shie Sejam K e L dois subcojutos covexos e compactos de R. Supoha que K sempre cosiga se escoder atrás de L. Em termos mais precisos, para todo vetor

Leia mais

CPV seu Pé Direito no INSPER

CPV seu Pé Direito no INSPER CPV seu Pé Direito o INSPE INSPE esolvida /ovembro/0 Prova A (Marrom) MATEMÁTICA 7. Cosidere o quadrilátero coveo ABCD mostrado a figura, em que AB = cm, AD = cm e m(^a) = 90º. 8. No plao cartesiao da

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 Esio Médio) GABARITO GABARITO NÍVEL 3 ) B ) A ) B ) D ) C ) B 7) C ) C 7) B ) C 3) D 8) E 3) A 8) E 3) A ) C 9) B ) B 9) B ) C ) E 0) D ) A

Leia mais

mgh = 1 2 mv2 + 1 2 Iω2 (1)

mgh = 1 2 mv2 + 1 2 Iω2 (1) a Supoha que um ioiô parte do repouso e desce até uma altura (deslocameto vertical) h, medida desde o poto de ode o ioiô foi solto. Ecotrar a sua velocidade fial de traslação e rotação, e sua aceleração

Leia mais

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries Departameto de Matemática - Uiversidade de Coimbra Mestrado Itegrado em Egeharia Civil Exercícios Teórico-Práticos 200/20 Capítulo : Sucessões e séries. Liste os primeiros cico termos de cada uma das sucessões

Leia mais

a) Calcule o módulo da velocidade na direção vertical no instante em que a bola foi chutada.

a) Calcule o módulo da velocidade na direção vertical no instante em que a bola foi chutada. Proa de Física Professores: Amilcar, Maragato e Elto Jr. 0 - Na cobraça de uma falta durate uma partida de futebol, a bola, ates do chute, está a uma distâcia horizotal de m da liha do gol. Após o chute,

Leia mais

PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO MESTRADO/UFMG 2008. são fixos (não aleatórios), α e β são parâmetros desconhecidos e os εi

PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO MESTRADO/UFMG 2008. são fixos (não aleatórios), α e β são parâmetros desconhecidos e os εi PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO MESTRADO/UFMG 008 Istruções para a prova: a) Cada questão respodida corretamete vale um poto. b) Questões deixadas em braco valem zero potos (este caso marque

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é:

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é: Resolução das atividades complemetares Matemática M0 Progressões p. 46 (UFBA) A soma dos o e 4 o termos da seqüêcia abaio é: a 8 * a 8 ( )? a, IN a) 6 c) 0 e) 6 b) 8 d) 8 a 8 * a 8 ( )? a, IN a 8 ()? a

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA VALOR DO DINHEIRO NO TEMPO Notas de aulas Gereciameto do Empreedimeto de Egeharia Egeharia Ecoômica e Aálise de Empreedimetos Prof. Márcio Belluomii Moraes, MsC CONCEITOS BÁSICOS

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades:

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades: CURTOSE O que sigifica aalisar um cojuto quato à Curtose? Sigifica apeas verificar o grau de achatameto da curva. Ou seja, saber se a Curva de Freqüêcia que represeta o cojuto é mais afilada ou mais achatada

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

ANÁLISE DO RETORNO ELÁSTICO EM DOBRAMENTO DE CHAPAS VIA MÉTODO DOS ELEMENTOS FINITOS

ANÁLISE DO RETORNO ELÁSTICO EM DOBRAMENTO DE CHAPAS VIA MÉTODO DOS ELEMENTOS FINITOS ANÁLISE DO ETONO ELÁSTICO EM DOBAMENTO DE CHAPAS VIA MÉTODO DOS ELEMENTOS FINITOS Alexadre Tácito Malavolta Escola de Egeharia de São Carlos, Av. Trabalhador São-Carlese 400, CEP 13566-590, São Carlos

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM SEPARÁVEIS, HOMOGÊNEAS, EXATAS, FATORES

Leia mais

Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física

Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física Uiversidade Federal do Marahão Cetro de Ciêcias Exatas e Tecologia Coordeação do Programa de Pós-Graduação em Física Exame de Seleção para Igresso o 1º. Semestre de 2011 Disciplia: Mecâica Clássica 1.

Leia mais

RESPOSTA DINÂMICA SOBRE UMA HASTE EM QUEDA LIVRE CHOCANDO-SE TRANSVER- SALMENTE CONTRA UM APOIO RÍGIDO

RESPOSTA DINÂMICA SOBRE UMA HASTE EM QUEDA LIVRE CHOCANDO-SE TRANSVER- SALMENTE CONTRA UM APOIO RÍGIDO RESPOSTA DINÂMICA SOBRE UMA HASTE EM QUEDA LIVRE CHOCANDO-SE TRANSVER- SALMENTE CONTRA UM APOIO RÍGIDO ALEXANDRE U. HOFFMANN 1, ANG CHONG. 1. Grupo de Mecâica Aplicada, Programa de Pós-graduação em Egeharia,

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como

Leia mais

UNIVERSIDADE DA MADEIRA

UNIVERSIDADE DA MADEIRA Biofísica UNIVERSIDADE DA MADEIRA P9:Lei de Sell. Objetivos Verificar o deslocameto lateral de um feixe de luz LASER uma lâmia de faces paralelas. Verificação do âgulo critico e reflexão total. Determiação

Leia mais

(1) E que a força contra-eletromotriz é dada por: (2)

(1) E que a força contra-eletromotriz é dada por: (2) Resolução da questão 3 Para respoder essa questão é ecessário veriicar que o motor já está operado e que em determiado mometo algum gradeza do motor irá variar. Frete a essa variação, deve-se determiar

Leia mais

Probabilidades. José Viegas

Probabilidades. José Viegas Probabilidades José Viegas Lisboa 001 1 Teoria das probabilidades Coceito geral de probabilidade Supoha-se que o eveto A pode ocorrer x vezes em, igualmete possíveis. Etão a probabilidade de ocorrêcia

Leia mais

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li Média Aritmética Simples e Poderada Média Geométrica Média Harmôica Mediaa e Moda Fracisco Cavalcate(f_c_a@uol.com.br)

Leia mais

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA INE 5111- ESTATÍSTICA APLICADA I - TURMA 534 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA 1. Aalise as situações descritas abaixo e decida se a pesquisa deve ser feita por

Leia mais

Exercícios de Matemática Polinômios

Exercícios de Matemática Polinômios Exercícios de Matemática Poliômios ) (ITA-977) Se P(x) é um poliômio do 5º grau que satisfaz as codições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, etão temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d)

Leia mais

O oscilador harmônico

O oscilador harmônico O oscilador harmôico A U L A 5 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial de um oscilador harmôico simples, V( x) kx. objetivos obter a solução da equação de Schrödiger para um oscilador

Leia mais

J. A. M. Felippe de Souza 9 Diagramas de Bode

J. A. M. Felippe de Souza 9 Diagramas de Bode 9 Diagramas de Bode 9. Itrodução aos diagramas de Bode 3 9. A Fução de rasferêcia 4 9.3 Pólos e zeros da Fução de rasferêcia 8 Equação característica 8 Pólos da Fução de rasferêcia 8 Zeros da Fução de

Leia mais

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais.

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais. 03 Capítulo 3 Regressão liear e poliomial Neste capítulo, pretedemos ajustar retas ou poliômios a um cojuto de potos experimetais. Regressão liear A tabela a seguir relacioa a desidade (g/cm 3 ) do sódio

Leia mais

Aula 7. Em outras palavras, x é equivalente a y se, ao aplicarmos x até a data n, o montante obtido for igual a y.

Aula 7. Em outras palavras, x é equivalente a y se, ao aplicarmos x até a data n, o montante obtido for igual a y. DEPARTAMENTO...: ENGENHARIA CURSO...: PRODUÇÃO DISCIPLINA...: ENGENHARIA ECONÔMICA / MATEMÁTICA FINANCEIRA PROFESSORES...: WILLIAM FRANCINI PERÍODO...: NOITE SEMESTRE/ANO: 2º/2008 Aula 7 CONTEÚDO RESUMIDO

Leia mais

UM NOVO OLHAR PARA O TEOREMA DE EULER

UM NOVO OLHAR PARA O TEOREMA DE EULER X Ecotro Nacioal de Educação Matemática UM NOVO OLHA PAA O TEOEMA DE EULE Iácio Atôio Athayde Oliveira Secretária de Educação do Distrito Federal professoriacio@gmail.com Aa Maria edolfi Gadulfo Uiversidade

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR DA UNICAMP-FASE PROFA MARIA ANTÔNIA C GOUVEIA O velocíetro é u istrueto que idica a velocidade de u veículo A figura abaio ostra o velocíetro de u carro que

Leia mais

Prova 3 Física. N ọ DE INSCRIÇÃO:

Prova 3 Física. N ọ DE INSCRIÇÃO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REAIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme o que costa a etiqueta

Leia mais

RESISTORES E RESISTÊNCIAS

RESISTORES E RESISTÊNCIAS ELETICIDADE CAPÍTULO ESISTOES E ESISTÊNCIAS No Capítulo estudamos, detre outras coisas, o coceito de resistêcia elétrica. Vimos que tal costitui a capacidade de um corpo qualquer se opôr a passagem de

Leia mais

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS Miistério do Plaejameto, Orçameto e GestãoSecretaria de Plaejameto e Ivestimetos Estratégicos AJUSTE COMPLEMENTAR ENTRE O BRASIL E CEPAL/ILPES POLÍTICAS PARA GESTÃO DE INVESTIMENTOS PÚBLICOS CURSO DE AVALIAÇÃO

Leia mais

1- REFRAÇÃO LUMINOSA é a variação de velocidade da luz devido à mudança do meio de propagação. refração do meio em que o raio se encontra.

1- REFRAÇÃO LUMINOSA é a variação de velocidade da luz devido à mudança do meio de propagação. refração do meio em que o raio se encontra. REFRAÇÃO - LENTES - REFRAÇÃO LUMINOSA é a variação de velocidade da luz devido à mudaça do meio de propagação. - Ídice de refração absoluto: é uma relação etre a velocidade da luz em um determiado meio

Leia mais

MAC122 Princípios de Desenvolvimento de Algoritmos EP no. 1

MAC122 Princípios de Desenvolvimento de Algoritmos EP no. 1 MAC122 Pricípios de Desevolvimeto de Algoritmos EP o. 1 Prof. Dr. Paulo Mirada 1 Istituto de Matemática e Estatística (IME) Uiversidade de São Paulo (USP) 1. Estrutura dos arquivos de images o formato

Leia mais

Aplicação de geomarketing em uma cidade de médio porte

Aplicação de geomarketing em uma cidade de médio porte Aplicação de geomarketig em uma cidade de médio porte Guilherme Marcodes da Silva Vilma Mayumi Tachibaa Itrodução Geomarketig, segudo Chasco-Yrigoye (003), é uma poderosa metodologia cietífica, desevolvida

Leia mais

CAPÍTULO 8 - Noções de técnicas de amostragem

CAPÍTULO 8 - Noções de técnicas de amostragem INF 6 Estatística I JIRibeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção É uma ciêcia

Leia mais

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Módulo VI Séries ou Fluxos de Caixas Uiformes Daillo Touriho S. da Silva, M.Sc. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Coceito A resolução de problemas de matemática fiaceira tora-se muito

Leia mais

CAPITULO 05 - EIXOS E ARVORES DE TRANSMISSÃO

CAPITULO 05 - EIXOS E ARVORES DE TRANSMISSÃO CAPITULO 05 - EIXOS E ARVORES DE TRANSMISSÃO 5. - INTRODUÇÃO Eixo é um elemeto mecâico rotativo ou estacioário (codição estática) de secção usualmete circular ode são motados outros elemetos mecâicos de

Leia mais

SIMULADO DE MATEMÁTICA - TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 2012. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO.

SIMULADO DE MATEMÁTICA - TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 2012. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. SIMULADO DE MATEMÁTICA - TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO 0 Muitas vezes

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

LOCALIZAÇÃO ÓTIMA DE TRANSFORMADORES E OTIMIZAÇÃO DE INSTALAÇÕES ELÉTRICAS EM PROPRIEDADES RURAIS

LOCALIZAÇÃO ÓTIMA DE TRANSFORMADORES E OTIMIZAÇÃO DE INSTALAÇÕES ELÉTRICAS EM PROPRIEDADES RURAIS LOCALIZAÇÃO ÓTIMA E TRANSFORMAORES E OTIMIZAÇÃO E INSTALAÇÕES ELÉTRICAS EM PROPRIEAES RURAIS *ROGÉRIO SILVA A CUNHA (BSC) - JOSÉ ROBERTO CAMACHO (PH) SEBASTIÃO CAMARGO GUIMARÃES JR. (R.) *UNIVERSIAE FEERAL

Leia mais

Computação Científica - Departamento de Informática Folha Prática 1

Computação Científica - Departamento de Informática Folha Prática 1 1. Costrua os algoritmos para resolver os problemas que se seguem e determie as respetivas ordes de complexidade. a) Elaborar um algoritmo para determiar o maior elemeto em cada liha de uma matriz A de

Leia mais

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço 4 Matemática Alexader dos Satos Dutra Igrid Regia Pellii Valeço Professor SUMÁRIO Reprodução proibida. Art. 84 do Código Peal e Lei 9.60 de 9 de fevereiro de 998. Módulo 0 Progressão aritmérica.................................

Leia mais

ANÁLISE DE PLACAS COM VARIAÇÃO DE ESPESSURA ATRAVÉS DO MÉTODO DOS ELEMENTOS DE CONTORNO

ANÁLISE DE PLACAS COM VARIAÇÃO DE ESPESSURA ATRAVÉS DO MÉTODO DOS ELEMENTOS DE CONTORNO ANÁLISE DE PLACAS COM VARIAÇÃO DE ESPESSURA ATRAVÉS DO MÉTODO DOS ELEMENTOS DE CONTORNO EDUARDO WALTER VIEIRA CHAVES Dissertação apresetada à Escola de Egeharia de São Carlos, da Uiversidade de São Paulo,

Leia mais

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil Carteiras de Míimo VAR ( Value at Risk ) o Brasil Março de 2006 Itrodução Este texto tem dois objetivos pricipais. Por um lado, ele visa apresetar os fudametos do cálculo do Value at Risk, a versão paramétrica

Leia mais

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan Aula - POT - Teoria dos Números - Nível III - Pricípios Fabio E. Brochero Martiez Carlos Gustavo T. de A. Moreira Nicolau C. Saldaha Eduardo Tega de Julho de 01 Pricípios Nesta aula apresetaremos algus

Leia mais

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2012, 2.ª fase, versão 1. constante

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2012, 2.ª fase, versão 1. constante Proposta de Resolução do Exame Nacioal de Física e Química A 11.º ao, 01,.ª fase, versão 1 Sociedade Portuuesa de Física, Divisão de Educação, 18 de julho de 01, http://de.spf.pt/moodle/ Grupo I 1. (D)

Leia mais

1.5 Aritmética de Ponto Flutuante

1.5 Aritmética de Ponto Flutuante .5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.

Leia mais

1. GENERALIDADES 2. CHEIA DE PROJETO

1. GENERALIDADES 2. CHEIA DE PROJETO Capítulo Previsão de Echetes. GENERALIDADES Até agora vimos quais as etapas do ciclo hidrológico e como quatificá-las. O problema que surge agora é como usar estes cohecimetos para prever, a partir de

Leia mais

Dimensionamento de Perfis de Aço Formados a Frio via Método da Resistência Direta

Dimensionamento de Perfis de Aço Formados a Frio via Método da Resistência Direta Dimesioameto de Perfis de Aço Formados a Frio via Método da Resistêcia Direta Gladimir de Campos Grigoletti Dr. Grigoletti@uiritter.edu.br Resumo: A utilização de perfis formados a frio tem aumetado cosideravelmete

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos Aálise de Projectos ESAPL / IPVC Critérios de Valorização e Selecção de Ivestimetos. Métodos Estáticos Como escolher ivestimetos? Desde sempre que o homem teve ecessidade de ecotrar métodos racioais para

Leia mais

Resistência. dos Materiais II

Resistência. dos Materiais II Resistência Prof. MSc Eng Halley Dias dos Materiais II Material elaborado pelo Prof. MSc Eng Halley Dias Instituto Federal de Educação Ciência e Tecnologia de Santa Catarina Aplicado ao Curso Técnico de

Leia mais

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO Ferado Mori DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA Resumo [Atraia o leitor com um resumo evolvete, em geral, uma rápida visão geral do

Leia mais

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2 Faculdade Campo Limpo Paulista Mestrado em Ciêcia da Computação Complexidade de Algoritmos Avaliação 2. (2,0): Resolva a seguite relação de recorrêcia. T() = T( ) + 3 T() = 3 Pelo método iterativo progressivo.

Leia mais

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013 ANDRÉ REIS MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis ª Edição NOV 0

Leia mais

Matemática Em Nível IME/ITA

Matemática Em Nível IME/ITA Caio dos Satos Guimarães Matemática Em Nível IME/ITA Volume 1: Números Complexos e Poliômios 1ª Edição São José dos Campos 007 SP Prefácio O livro Matemática em Nível IME/ITA tem como objetivo ão somete

Leia mais

A = Amplitude (altura máxima da onda) c = velocidade da luz = 2,998 x 10 8 m.s -1 3,00 x 10 8 m.s -1. 10 14 Hz. Verde: λ = = Amarela: λ =

A = Amplitude (altura máxima da onda) c = velocidade da luz = 2,998 x 10 8 m.s -1 3,00 x 10 8 m.s -1. 10 14 Hz. Verde: λ = = Amarela: λ = RADIAÇÃO ELETROMAGNÉ QUÍMICA BÁSICAB ESTRUTURA ATÔMICA II PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DAQBI Prof. Luiz Alberto RADIAÇÃO ELETROMAGNÉ RADIAÇÃO ELETROMAGNÉ λ comprimeto de oda Uidade: metro

Leia mais

Equações Diferenciais Lineares de Ordem n

Equações Diferenciais Lineares de Ordem n PUCRS Faculdade de Matemática Equações Difereciais - Prof. Eliete Equações Difereciais Lieares de Ordem Cosideremos a equação diferecial ordiária liear de ordem escrita a forma 1 d y d y dy L( y( x ))

Leia mais

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas.

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas. !"$# &%$" ')( * +-,$. /-0 3$4 5 6$7 8:9)$;$< =8:< > Deomiaremos equação diofatia (em homeagem ao matemático grego Diofato de Aleadria) uma equação em úmeros iteiros. Nosso objetivo será estudar dois tipos

Leia mais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre

Leia mais

ENGENHARIA ECONÔMICA AVANÇADA

ENGENHARIA ECONÔMICA AVANÇADA ENGENHARIA ECONÔMICA AVANÇADA INTRODUÇÃO MATERIAL DE APOIO ÁLVARO GEHLEN DE LEÃO gehleao@pucrs.br 1 1 Itrodução à Egeharia Ecoômica A egeharia, iserida detro do cotexto de escassez de recursos, pode aplicar

Leia mais

Análise no domínio dos tempos de sistemas representados no Espaço dos Estados

Análise no domínio dos tempos de sistemas representados no Espaço dos Estados MEEC Mestrado em Egeharia Electrotécica e de Computadores MCSDI Guião do trabalho laboratorial º 3 Aálise o domíio dos tempos de sistemas represetados o Espaço dos Estados Aálise o domíio dos tempos de

Leia mais

Tabela Price - verdades que incomodam Por Edson Rovina

Tabela Price - verdades que incomodam Por Edson Rovina Tabela Price - verdades que icomodam Por Edso Rovia matemático Mestrado em programação matemática pela UFPR (métodos uméricos de egeharia) Este texto aborda os seguites aspectos: A capitalização dos juros

Leia mais

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA Uesp Uiversidade Estadual Paulista FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ MBA-PRO ESTATÍSTICA PARA A TOMADA DE DECISÃO Prof. Dr. Messias Borges Silva e Prof. M.Sc. Fabricio Maciel Gomes GUARATINGUETÁ,

Leia mais

CONCURSO PÚBLICO 2013 MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE "D" TEORIA E 146 QUESTÕES POR TÓPICOS. 1ª Edição JUN 2013

CONCURSO PÚBLICO 2013 MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE D TEORIA E 146 QUESTÕES POR TÓPICOS. 1ª Edição JUN 2013 CONCURSO PÚBLICO 01 FUNDAÇÃO UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL UFMS MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE "D" TEORIA E 16 QUESTÕES POR TÓPICOS Coordeação e Orgaização: Mariae dos Reis 1ª Edição

Leia mais

5 Análise de sistemas no domínio da frequência. 5.1 Resposta em regime estacionário a uma onda sinusoidal

5 Análise de sistemas no domínio da frequência. 5.1 Resposta em regime estacionário a uma onda sinusoidal 5 Aálise de sistemas o domíio da frequêcia O termo resposta a frequêcia utiliza-se para desigar a resposta de um sistema, em regime estacioário, a uma oda siusoidal. Esta resposta, para o caso de um sistema

Leia mais

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA Paulo César de Resede ANDRADE Lucas Moteiro CHAVES 2 Devail Jaques de SOUZA 2 RESUMO: Este trabalho apreseta a teoria do teste de Galto

Leia mais

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos Aexo VI Técicas Básicas de Simulação do livro Apoio à Decisão em Mauteção a Gestão de Activos Físicos LIDEL, 1 Rui Assis rassis@rassis.com http://www.rassis.com ANEXO VI Técicas Básicas de Simulação Simular

Leia mais

UM ESTUDO DO MODELO ARBITRAGE PRICING THEORY (APT) APLICADO NA DETERMINAÇÃO DA TAXA DE DESCONTOS

UM ESTUDO DO MODELO ARBITRAGE PRICING THEORY (APT) APLICADO NA DETERMINAÇÃO DA TAXA DE DESCONTOS UM ESTUDO DO MODELO ARBITRAGE PRICING THEORY (APT) APLICADO NA DETERMINAÇÃO DA TAXA DE DESCONTOS Viícius Atoio Motgomery de Mirada e-mail: vmotgomery@hotmail.com Edso Oliveira Pamploa e-mail: pamploa@iem.efei.rmg.br

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

Disciplina: Séries e Equações Diferenciais Ordinárias Prof Dr Marivaldo P Matos Curso de Matemática UFPBVIRTUAL matos@mat.ufpb.br

Disciplina: Séries e Equações Diferenciais Ordinárias Prof Dr Marivaldo P Matos Curso de Matemática UFPBVIRTUAL matos@mat.ufpb.br Disciplia: Séries e Equações Difereciais Ordiárias Prof Dr Marivaldo P Matos Curso de Matemática UFPBVIRTUAL matos@mat.ufpb.br Ambiete Virtual de Apredizagem: Moodle (www.ead.ufpb.br) Site do Curso: www.mat.ufpb.br/ead

Leia mais

Capítulo 6 - Centro de Gravidade de Superfícies Planas

Capítulo 6 - Centro de Gravidade de Superfícies Planas Capítulo 6 - Cetro de ravdade de Superfíces Plaas 6. Itrodução O Cetro de ravdade (C) de um sóldo é um poto localzado o própro sóldo, ou fora dele, pelo qual passa a resultate das forças de gravdade que

Leia mais

[Type the document subtitle] Análise Técnica Principais conceitos, indicadores e formações gráficas

[Type the document subtitle] Análise Técnica Principais conceitos, indicadores e formações gráficas Aálise Técica Coceitos [Type the documet subtitle] Aálise Técica Pricipais coceitos, idicadores e formações gráficas A Aálise Técica (AT) tem por objetivo forecer idicações dos movimetos ou formação de

Leia mais

ESTRUTURAS METÁLICAS UFPR CAPÍTULO 5 FLEXÃO SIMPLES

ESTRUTURAS METÁLICAS UFPR CAPÍTULO 5 FLEXÃO SIMPLES ESTRUTURAS METÁLICAS UFPR CAPÍTULO 5 FLEXÃO SIMPLES 1 INDICE CAPÍTULO 5 DIMENSIONAMENTO BARRAS PRISMÁTICAS À FLEXÃO... 1 1 INTRODUÇÃO... 1 2 CONCEITOS GERAIS... 1 2.1 Comportamento da seção transversal

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

CURSO ONLINE REGULAR ESTATÍSTICA BÁSICA PROF. SÉRGIO CARVALHO

CURSO ONLINE REGULAR ESTATÍSTICA BÁSICA PROF. SÉRGIO CARVALHO AULA 14 RESOLUÇÕES FINAIS DA LISTA DE QUESTÕES Olá, amigos! Espero que estejam todos bem! Apreseto-lhes, hoje, as vite e duas últimas resoluções da lista origial do osso Curso! Com elas, cocluímos o osso

Leia mais