Elementos de Matemática
|
|
- Zaira Alcaide Quintão
- 2 Há anos
- Visualizações:
Transcrição
1 Elementos de Matemática Álgebra de Boole Roteiro no Atividades didáticas de de Outubro de Arq: elementos10.tex Departamento de Matemática - UEL Prof. Ulysses Sodré ulysses(at)matematica(pt)uel(pt)br Matemática Essencial: Resumo: Notas de aulas para as nossas aulas na Universidade Estadual de Londrina. Desejo que elas sejam um roteiro para as aulas e não espero que estas notas venham a substituir qualquer livro sobre o assunto. Algum material foi obtido em livros citados na Bibliografia, mas os assuntos foram bastante modificados. Sugerimos que o leitor pesquise a Interbet para obter materiais gratuitos para os seus estudos. Mensagem: Melhor é serem dois do que um, porque têm melhor paga do seu trabalho. Pois se caírem, um levantará o seu companheiro; mas ai do que estiver só, pois, caindo, não haverá outro que o levante. Também, se dois dormirem juntos, eles se aquentarão; mas um só como se aquentará? E, se alguém quiser prevalecer contra um, os dois lhe resistirão; e o cordão de três dobras não se quebra tão depressa. A Bíblia Sagrada, Eclesiastes 4:9-12
2 Álgebra de Boole 1 1 Álgebra de Boole Definição 1 (Álgebra de Boole). Uma Álgebra Booleana é uma estrutura matemática denotada por B = (B, s, p, c, θ, I), onde os seis objetos são: B: Um conjunto B não vazio. s: Uma operação binária s : B B B que associa a cada par de elementos (a, b) B B um elemento s(a, b) = a + b B, denominado a soma dos elementos a, b B. p: Uma operação binária p : B B B que associa a cada par de elementos (a, b) B B um elemento p(a, b) = a b B, denominado o produto dos elementos a, b B. c: Uma operação unária c : B B B que associa a cada elemento a B um elemento c(a) B, denominado o complemento do elemento a B. θ: Um elemento nulo θ B, I: Um elemento unidade I B que é diferente de θ B. que, para quaisquer a, b, c B, satisfazem aos oito axiomas: 1. Comutativa: a + b = b + a 2. Distributiva: a + (b c) = (a + b) (a + c) 3. Elemento nulo: a + θ = a 4. Complemento: a + c(a) = I 5. Comutativa: a b = b a 6. Distributiva: a (b + c) = (a b) + (a c) 7. Elemento unidade: a I = a 8. Complemento: a c(a) = θ Exemplo 1 (Álgebra de Boole). A estrutura (B, +,, c, 0, 1), onde B = {0, 1}, θ = 0 e I = 1, com as operações definidas pelas tabelas *
3 Álgebra de Boole 2 Observação 1 (Precedência nas operações). Em uma Álgebra de Boole, embora os parênteses possam alterar a precedência, as operações matemáticas são realizadas na seguinte ordem: 1. Complemento, 2. Produto, 3. Soma. Observação 2 (Precedência nas operações). Na Álgebra de Boole do exemplo anterior, (B, +,, c, 0, 1), onde B = {0, 1}, θ = 0 e I = 1, a expressão booleana x = 1 (1 + 0) + c(1) tem valor x = 1, pois x = 1 (1 + 0) + c(1) = 1 (1 + 0) + 0 = 1 * = = 1 Exemplo 2 (Álgebra de Boole de Conjuntos). A estrutura (X,,, c,, U) formada pela coleção X de todos os conjuntos que é fechada para as operações de reunião, interseção e complementar, sendo o elemento nulo θ = (conjunto vazio), o elemento unidade I = U (universo) e c(a) = U A = A c que é complemento, pois, quaisquer que sejam A, B, C X, tem-se: 1. A B = B A 2. A (B C) = (A B) (A C) 3. A = A 4. A A c = U 5. A B = B A 6. A (B C) = (A B) (A C) 7. A U = A 8. A A c = Observação 3. A palavra fechada em X significa que a reunião, a interseção e o complementar de conjuntos em X ainda está em X.
4 Álgebra de Boole 3 Exemplo 3 (Divisores de 12). Seja a estrutura (D(12),,, c, θ, I), formada pelo conjunto D(12) = {1, 2, 3, 4, 6, 12} dos divisores naturais do número 12, o elemento nulo θ = 1 e o elemento unidade I = 12, com as operações definidas pelas tabelas: a b = MMC(a,b) Mínimo Múltiplo Comum entre a e b a b = MDC(a,b) Máximo Divisor Comum entre a e b c(a) = 12/a Divisão de 12 por a A estrutura (D(12),,, c, θ, I) não representa uma Álgebra de Boole, pois 2 D(12) e c(2) = 6 D(12), mas 2 c(2) = 2 6 = MMC(2, 6) = 6 12 = I 2 c(2) = 2 6 = MDC(2, 6) = 2 1 = θ Exemplo 4 (Álgebra de Boole Z2). A estrutura (Z 2, +,, c, P, I) sendo que Z 2 = {P, I}, P é conjunto dos números pares inteiros, I é o conjunto dos números ímpares inteiros, o elemento nulo θ = P, o elemento unidade é o conjunto I dos números ímpares e o complemento definido no universo Z do conjunto dos números inteiros, com as operações definidas pelas tabelas a P I c(a) I P * P I P P P I P I + P I P P I I I I Exemplo 5 (Z3). Seja z um número inteiro. Se a divisão do número z por 3 tem resto r, escrevemos z [r] (z pertence à classe [r]). O conjunto das classes Z 3 = {[0], [1], [2]} é bem conhecido na Álgebra, mas a estrutura (Z 3, +,, c, [0], [1]) com o elemento nulo θ = [0] e o elemento unidade I = [1], Não é uma Álgebra de Boole com as operações definidas pelas tabelas: [0] [1] [1] [0] [2] [2] * [0] [1] [2] [0] [0] [0] [0] [1] [0] [1] [2] [2] [0] [2] [1] + [0] [1] [2] [0] [0] [1] [2] [1] [1] [2] [0] [2] [2] [0] [1] Se (Z 3, +,, c, [0], [1]) fosse uma Álgebra de Boole, poderíamos tomar a = [2], c(a) = [2] e seguiria que [0] = θ = a c(a) = [2] [2] = [1], o que é falso.
5 Álgebra de Boole 4 Exemplo 6 (Álgebra de Boole {(0,0),(1,1)}). Seja B = {0, 1} e o produto cartesiano B 2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. A estrutura (B 2, +,, c, θ, I)) onde θ = (0, 0) e I = (1, 1) é uma Álgebra de Boole, com as operações: (0,0) (1,1) (0,1) (1,0) (1,0) (0,1) (1,1) (0,0) * (0,0) (0,1) (1,0) (1,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,1) (0,0) (0,1) (0,0) (0,1) (1,0) (0,0) (0,0) (1,0) (1,0) (1,1) (0,0) (0,1) (1,0) (1,1) + (0,0) (0,1) (1,0) (1,1) (0,0) (0,0) (0,1) (1,0) (1,1) (0,1) (0,1) (0,1) (1,1) (1,1) (1,0) (1,0) (1,1) (1,0) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) Exemplo 7. Seja o conjunto B = {0, 1, 2, 3}. Escrevemos um elemento a B na base 2, dividindo a por 2, para obter o quociente q e o resto r. A notação a 2 = qr indica o valor do número a B na base 2. Formamos assim um novo conjunto B 2 = {00, 01, 10, 11}. Se o elemento nulo é θ = 00, o elemento unidade é I = 11 e as operações são definidas pelas tabelas * segue que a estrutura (B 2, +,, c, 00, 11) é uma Álgebra de Boole. Exemplo 8 (Álgebra de Boole das Proposições lógicas ). A estrutura formada por (P,,,, F, V ), em que P é a coleção de todas as proposições lógicas, é a operação de disjunção, é a operação de conjunção, é a operação de negação, θ = F é a contradição representando o elemento nulo e I = V é a tautologia representando o elemento unidade, é uma Álgebra de Boole. Neste caso, duas proposições lógicas equivalentes são tomadas como iguais.
6 Seção 2 Símbolos superior e inferior de Sheffer 5 Definição 2 (Dualidade). Em uma Álgebra de Boole, o dual de uma afirmação é uma outra afirmação obtida da primeira pela troca das operações de soma (+) pelo produto ( ) e pela troca do elementos nulo (θ) pela unidade (I). Exemplo 9 (Dualidade). A afirmação dual corespondente a é a afirmação (a + θ) (b + c(b)) = a (a I) + (b c(b)) = a Observação 4 (Sobre dualidade). Um Teorema é verdadeiro em uma Álgebra de Boole, se e somente se, o Teorema dual correspondente é verdadeiro. Observação 5 (Dualidade no teorema). No próximo teorema, as afirmações (1,2,3,4,5,6), respectivamente, são duais às afirmações (7,8,9,10,11,12), significando que basta demonstrar o primeiro grupo ou o segundo grupo. Teorema 1 (Propriedades). Se B é uma Álgebra de Boole e a, b, c B, então 1. a + a = a 2. a + I = I 3. a + (a b) = a 4. a + (b + c) = (a + b) + c 5. c(θ) = I 6. c(a + b) = c(a) c(b) 7. a a = a 8. a θ = θ 9. a (a + b) = a 10. a (b c) = (a b) c 11. c(i) = θ 12. c(a b) = c(a) + c(b) Exercício: Se B é uma Álgebra de Boole e a, b, c B, mostrar que 1. c(c(a)) = a 2. Se a + x = 1 e a x = 0 então x = c(a). 2 Símbolos superior e inferior de Sheffer Definição 3. Define-se o símbolo superior de Sheffer por p q = ( p) ( q) = p q
7 Seção 2 Símbolos superior e inferior de Sheffer 6 Exemplo 10 (Negação de p). Usando o símbolo superior de Sheffer, obtemos p p = p p = p Exemplo 11 (Conjunção de p e q). Com o símbolo superior de Sheffer aplicado a duas proposições iguais a p q, obtemos (p q) (p q) = ( ( p q)) ( ( p q)) = (p q) (p q) = p q Exemplo 12 (Disjunção de p e q). Com o símbolo superior de Sheffer aplicado às proposições p p e q q, obtemos (p q) (q q) = ( p p) ( q q) = ( p) ( q) = p q Definição 4. Define-se o símbolo inferior de Sheffer por p q = ( p) ( q) = p q Exemplo 13 (Negação de p). Usando o símbolo inferior de Sheffer, obtemos p p = p p = p Exemplo 14 (Disjunção de p e q). Com o símbolo inferior de Sheffer aplicado a duas proposições iguais a p q, obtemos (p q) (p q) = ( ( p q)) ( ( p q)) = (p q) (p q) = p q Exemplo 15 (Conjunção de p e q). Com o símbolo inferior de Sheffer aplicado às proposições p p e q q, obtemos (p p) (q q) = ( p p) ( q q) = ( p) ( q) = p q Complete a tabela com as operações com os símbolos de Sheffer: Proposição Símbolo Símbolo superior Símbolo inferior Negação p p p p p Conjunção p q (p q) (p q) (p p) (q q) Disjunção p q (p p) (q q) (p q) (p q) Condicional p q Bicondicional p q Podemos construir uma Tabela-Verdade com os símbolos de Sheffer: p q p q p q V V V V V F F V F V F V F F V V
UNIP Ciência da Computação Prof. Gerson Pastre de Oliveira
Aula 6 Lógica Matemática Álgebra das proposições e método dedutivo As operações lógicas sobre as proposições possuem uma série de propriedades que podem ser aplicadas, considerando os conectivos inseridos
é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:
Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que
Cálculo proposicional
Notas de aula de MAC0329 (2003) 9 2 Cálculo proposicional Referências para esta parte do curso: capítulo 1 de [Mendelson, 1977], capítulo 3 de [Whitesitt, 1961]. Proposição Proposições são sentenças afirmativas
Álgebra Linear e Geometria Analítica
Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu www.estv.ipv.pt/paginaspessoais/lucas lucas@mat.estv.ipv.pt 2007/2008 Álgebra Linear e Geometria Analítica
Lógica Proposicional e Álgebra de Boole
Lógica Proposicional e Álgebra de Boole A lógica proposicional remonta a Aristóteles, e teve como objectivo modelizar o raciocínio humano. Partindo de frases declarativas ( proposições), que podem ser
MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES
MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Newton José Vieira 21 de agosto de 2007 SUMÁRIO Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova 1 CONJUNTOS A NOÇÃO
Como primeira e indispensável parte da Lógica Matemática temos o Cálculo Proporcional ou Cálculo Sentencial ou ainda Cálculo das Sentenças.
NE-6710 - SISTEMAS DIGITAIS I LÓGICA PROPOSICIONAL, TEORIA CONJUNTOS. A.0 Noções de Lógica Matemática A,0.1. Cálculo Proposicional Como primeira e indispensável parte da Lógica Matemática temos o Cálculo
RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS
Aula 02 TEORIA DOS CONJUNTOS 1. Definição de Conjuntos 2. Como se representa um Conjunto 3. Subconjunto, Pertinência e Continência 4. Conjunto das Partes 5. Operação com Conjuntos 1. União ou Reunião (Conjunção)
Computação e Programação
Computação e Programação 1ª Aula de 2008-2009 Instituto Superior Técnico, Dep. de Engenharia Mecânica - Sistemas O Visual C++ Para Casa (se possível antes da aula!): Veja o video e o screencast que se
MATEMÁTICA I. Ana Paula Figueiredo
I Ana Paula Figueiredo Números Reais IR O conjunto dos números Irracionais reunido com o conjunto dos números Racionais (Q), formam o conjunto dos números Reais (IR ). Assim, os principais conjuntos numéricos
DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA:
DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (18 de setembro a 17 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas
Lógica Boolena. Aula 05. Prof. Msc. Arthur G. Bartsch
Lógica Boolena Aula 05 Prof. Msc. Arthur G. Bartsch Departamento de engenharia elétrica DEE Centro de ciências tecnológicas CCT Universidade do estado de Santa Catarina UDESC Álgebra de Boole ALB0001 arthur.bartsch@udesc.br
Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções
Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções João Paulo Baptista de Carvalho (Prof. Auxiliar do IST) joao.carvalho@inesc.pt Álgebra de Boole Binária A Álgebra de Boole binária
(A1) As operações + e são comutativas, ou seja, para todo x e y em A, x + y = y + x e x y = y x
Notas de aula de MAC0329 (2003) 17 3 Álgebra Booleana Nesta parte veremos uma definição formal de álgebra booleana, a qual é feita via um conjunto de axiomas (ou postulados). Veremos também algumas leis
Métodos para a construção de algoritmo
Métodos para a construção de algoritmo Compreender o problema Identificar os dados de entrada e objetos desse cenário-problema Definir o processamento Identificar/definir os dados de saída Construir o
Observação: Todas as letras em negrito abaixo (x, y, z, a e b) representam números reais.
Para mostrar que menos vezes menos dá mais precisamos admitir alguns fatos relacionados aos números reais. Vamos chamá-los de axiomas e simplesmente aceitá-los como sendo válidos: Observação: Todas as
MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco
MATEMÁTICA 1 Professor Matheus Secco MÓDULO 2 Divisibilidade 1. DIVISIBILIDADE 1.1 DEFINIÇÃO: Dizemos que o inteiro a é divisível pelo inteiro b (ou ainda que a é múltiplo de b) se existe um inteiro c
ÁLGEBRA LINEAR. Subespaços Vetoriais. Prof. Susie C. Keller
ÁLGEBRA LINEAR Subespaços Vetoriais Prof. Susie C. Keller Às vezes, é necessário detectar, dentro de um espaço vetorial V, subconjuntos S que sejam espaços vetoriais menores. Tais conjuntos S são chamados
. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa.
Tema 1 Lógica e Teoria dos Conjuntos 1. Proposições e valores lógicos. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira
RETICULADOS: NOTAS DO SEMINÁRIO DE 7/03/03
RETICULADOS: NOTAS DO SEMINÁRIO DE 7/03/03 PEDRO A. TONELLI 1. Introdução: o esqueleto do espírito E ainda mais remoto que o tempo em que as coisas não tinham nome, é o tempo em que as coisas nem existiam,
Introdução à Automação
Núcleo de Mecânica Introdução à Automação Prof. Wander Gaspar wandergaspar@gmail.com Sistemas Analógicos Um sistema analógico contém dispositivos que manipulam quantidades físicas que variam de forma contínua
DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA:
DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (11 de setembro a 15 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas
Aula 1 Aula 2. Ana Carolina Boero. Página:
Elementos de lógica e linguagem matemática E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Linguagem matemática A linguagem matemática
Lógica Matemática. Prof. Gerson Pastre de Oliveira
Lógica Matemática Prof. Gerson Pastre de Oliveira Programa da Disciplina Proposições e conectivos lógicos; Tabelas-verdade; Tautologias, contradições e contingências; Implicação lógica e equivalência lógica;
Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c
Números Reais Víctor Arturo Martínez León (victor.leon@unila.edu.br) 1 Os números racionais Os números racionais são os números da forma a, sendo a e b inteiros e b 0; o conjunto b dos números racionais
Lógica Proposicional Parte I. Raquel de Souza Francisco Bravo 11 de outubro de 2016
Lógica Proposicional Parte I e-mail: raquel@ic.uff.br 11 de outubro de 2016 Lógica Matemática Cáculo Proposicional Uma aventura de Alice Alice, ao entrar na floresta, perdeu a noção dos dias da semana.
Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3
Proposições Lógicas Proposições O principal conceito usado nos estudos da lógica matemática é o de uma proposição. Uma proposição é essencialmente uma afirmação, transmite pensamentos completos, afirmando
Álgebra Booleana: Axiomas, Teoremas e Leis de De Morgan
Arquitectura de Computadores I Engenharia Informática (11537) Tecnologias e Sistemas de Informação (6616) Álgebra Booleana: Axiomas, Teoremas e Leis de De Morgan Nuno Pombo / Miguel Neto Arquitectura Computadores
Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas. Lógica e Teoria dos conjuntos: Introdução à lógica bivalente e à Teoria dos conjuntos
DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (15 de setembro a 16 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas
Tecnologia dos Computadores 2002/2003. Exercícios
Introdução à Álgebra de Boole 1 Introdução Em 1854, George Boole, um matemático inglês, inventou um sistema algébrico de dois valores, cujo resultado da sua evolução até aos dias de hoje se dá o nome de
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E DA TERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E DA TERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO Álgebra de Boole Disciplina: Lógica Professora Dr.ª: Donizete
Fundamentos 1. Lógica de Predicados
Fundamentos 1 Lógica de Predicados Predicados e Quantificadores Estudamos até agora a lógica proposicional Predicados e Quantificadores Estudamos até agora a lógica proposicional A lógica proposicional
Gestão Empresarial Prof. Ânderson Vieira
NOÇÕES DE LÓGICA Gestão Empresarial Prof. Ânderson ieira A maioria do texto apresentado neste arquivo é do livro Fundamentos de Matemática Elementar, ol. 1, Gelson Iezzi e Carlos Murakami (eja [1]). Algumas
Teoria Elementar dos Conjuntos
Teoria Elementar dos Conjuntos Este capítulo visa oferecer uma breve revisão sobre teoria elementar dos conjuntos. Além de conceitos básicos importantes em matemática, a sua imprtância reside no fato da
Lógica Computacional
Aula Teórica 2: Sintaxe da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,
ENFOQUE USANDO CORTES DE DEDEKIND
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit CONSTRUÇÃO DOS REAIS: UM ENFOQUE
Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros
1. Conjuntos Objetivo: revisar as principais noções de teoria de conjuntos afim de utilizar tais noções para apresentar os principais conjuntos de números. 1.1 Conjunto, elemento e pertinência Conjunto
MATEMÁTICA Questões comentadas Daniela Arboite
MATEMÁTICA Questões comentadas Daniela Arboite TODOS OS DIREITOS RESERVADOS. É vedada a reprodução total ou parcial deste material, por qualquer meio ou processo. A violação de direitos autorais é punível
Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. Exemplos:
1 Noções Básicas de Lógica 1.1 Proposições Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. 1. Os sapos são anfíbios. 2. A capital do Brasil é Porto Alegre. 3. O tomate é um tubérculo.
Professor conteudista: Ricardo Holderegger
Lógica Professor conteudista: Ricardo Holderegger Sumário Lógica Unidade I 1 SISTEMAS DICOTÔMICOS...3 1.1 Proposições...3 1.1.1 Proposições lógicas...3 1.1.2 Símbolos da lógica matemática...4 1.1.3 A negação...4
Álgebra de Boole. George Simon Boole ( ) O criador da álgebra dos circuitos digitais. Profª Jocelma Rios. Out/2012
Out/2012 Álgebra de Boole George Simon Boole (1815-1864) O criador da álgebra dos circuitos digitais Profª Jocelma Rios O que pretendemos: Contar um pouco sobre a história da Álgebra, especialmente a Álgebra
Lóg L ica M ca at M em e ática PROF.. J EAN 1
Lógica Matemática PRO. JEAN 1 LÓGICA MATEMÁTICA - CONTEÚDO Definição de Termo e Proposição alor Lógico Proposição Simples e Proposição Composta Conectivos Tabela-erdade 2 LÓGICA MATEMÁTICA INTRODUÇÃO ao
ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA AULA 1 _ Conjuntos Professor Luciano Nóbrega Maria Auxiliadora 2 Pode-se dizer que a é, em grande parte, trabalho de um único matemático: Georg Cantor (1845-1918). A noção de conjunto não é suscetível
Elementos de Matemática
Elementos de Matemática Roteiro no.1 para as atividades didáticas de 2007 Versão compilada no dia 27 de Abril de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré E-mail: ulysses@matematica.uel.br
a. O conjunto de todos os brasileiros. b. O conjunto de todos os números naturais. c. O conjunto de todos os números reais tal que x²-4=0.
Introdução aos conjuntos No estudo de Conjuntos, trabalhamos com alguns conceitos primitivos, que devem ser entendidos e aceitos sem definição. Para um estudo mais aprofundado sobre a Teoria dos Conjuntos,
Prof. Leonardo Augusto Casillo
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Aula 6 Álgebra de Boole Prof. Leonardo Augusto Casillo Álgebra de Boole (ou Boleana) Desenvolvida pelo matemático britânico George
aula 01 (Lógica) Ementa Professor: Renê Furtado Felix Site:
aula 01 (Lógica) Ementa Professor: Renê Furtado Felix E-mail: rffelix70@yahoo.com.br Site: http://www.renecomputer.net/pdflog.html Plano de Ensino CURSO: Tecnologia em Análise e Desenvolvimento de Sistemas
Aula 4: Álgebra booleana
Aula 4: Álgebra booleana Circuitos Digitais Rodrigo Hausen CMCC UFABC 01 de fevereiro de 2013 http://compscinet.org/circuitos Rodrigo Hausen (CMCC UFABC) Aula 4: Álgebra booleana 01 de fevereiro de 2013
8. Expressões lógicas
8. Expressões lógicas DIM0320 2015.1 DIM0320 8. Expressões lógicas 2015.1 1 / 27 Sumário 1 Lógica proposicional 2 Proposições compostas 3 Expressões lógicas em Portugol 4 Condições compostas 5 Exercícios
Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago
Capítulo 1 Os Números Última atualização em setembro de 2017 por Sadao Massago 1.1 Notação Números naturais: Neste texto, N = {0, 1, 2, 3,...} e N + = {1, 2, 3, }. Mas existem vários autores considerando
Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César
Lógica Matemática UNIDADE II Professora: M. Sc. Juciara do Nascimento César 1 1 - Álgebra das Proposições 1.1 Propriedade da Conjunção Sejam p, q e r proposições simples quaisquer e sejam t e c proposições
Arquitetura e Organização de Computadores. Álgebra Booleana
Arquitetura e Organização de Computadores Álgebra Booleana 1 Histórico e Propriedades Formalizada por George Boole em 1854 Usada por Shannon em 1938 para provar propriedades de circuitos de chaveamento
Matemática Discreta - 01
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
Sumário. 1 CAPÍTULO 1 Revisão de álgebra
Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção
Lógica Computacional
Aula Teórica 4: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,
Matemática Conjuntos - Teoria
Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 2 08/11 1 / 25
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 2 08/11 1 / 25 Prof. Tarciana Liberal (UFPB) Aula 2 08/11 2 / 25 Para apresentar os conceitos
Operações Lógicas sobre Proposições
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Operações Lógicas sobre Proposições Lógica Computacional 1 Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com
n. 3 Construção de Tabelas-Verdade
n. 3 Construção de Tabelas-Verdade Dadas várias proposições simples: p, q, r, s,..., podemos combiná-las pelos conectivos lógicos: Negação (~) ou ( ) Conjunção ( ) Disjunção ( ) Condicional ( ) Bicondicional
Prof. Jorge Cavalcanti
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO
DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Planificação Anual da Disciplina de Matemática 10.º ano Ano Letivo de 2015/2016 Manual adotado: Máximo 10 Matemática A 10.º ano Maria Augusta Ferreira
OFICINA DA PESQUISA DISCIPLINA: LÓGICA MATEMÁTICA E COMPUTACIONAL. APOSTILA 4 Construção de Tabelas-Verdade
OFICINA DA PESQUISA DISCIPLINA: LÓGICA MATEMÁTICA E COMPUTACIONAL APOSTILA 4 Construção de Tabelas-Verdade Autor do Conteúdo: Prof. Msc. Júlio Cesar da Silva juliocesar@eloquium.com.br Alterações eventuais
Aplicações da teoria de conjuntos álgebra booleana. Pontifícia Universidade Católica de Goiás Msc. Gustavo Siqueira Vinhal 2016/1
Aplicações da teoria de conjuntos álgebra booleana Pontifícia Universidade Católica de Goiás Msc. Gustavo Siqueira Vinhal 2016/1 CONJUNTOS Conjuntos são fundamentais para formalização de qualquer teoria.
Elementos de Matemática
Elementos de Matemática Roteiro no.3 para as atividades didáticas de 2007 Versão compilada no dia 27 de Abril de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré E-mail: ulysses@matematica.uel.br
Teoria dos anéis 1 a parte 3
A U L A Teoria dos anéis 1 a parte 3 Meta da aula Descrever a estrutura algébrica de anel como uma generalização de determinadas propriedades dos números inteiros. objetivos Ao final desta aula, você deverá
PROBLEMAS DE LÓGICA. Prof. Élio Mega
PROBLEMAS DE LÓGICA Prof. Élio Mega ALGUNS CONCEITOS DA LÓGICA MATEMÁTICA Sentença é qualquer afirmação que pode ser classificada de verdadeira (V) ou falsa (F) (e exatamente uma dessas coisas, sem ambiguidade).
Demonstrações. Terminologia Métodos
Demonstrações Terminologia Métodos Técnicas de Demonstração Uma demonstração é um argumento válido que estabelece a verdade de uma sentença matemática. Técnicas de Demonstração Demonstrações servem para:
Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS
Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS O conjunto é um conceito fundamental em todos os ramos da matemática. Intuitivamente, um conjunto é uma lista, coleção ou classe de objetods bem
Planificação do 1º Período
Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro Planificação do 1º Período Disciplina: Matemática A Grupo: 500 Ano: 10º Número de blocos de 45 minutos previstos: 74 Ano
Célia Borlido 07/09/2007 Encontro Nacional dos Novos Talentos em Matemática
Sistemas de Numeração Célia Borlido 7/9/27 Encontro Nacional dos Novos Talentos em Matemática Alguma notação para começar Є representa a palavra vazia. Se é um alfabeto, isto é, um conjunto não vazio de
Matemática Discreta - 04
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 04 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
n. 25 DIAGRAMAS DE VENN
n. 25 DIAGRAMAS DE VENN Foi o matemático inglês John Venn (1834-1923) que criou os diagramas, com o intuito de facilitar a compreensão na relação de união e intersecção entre conjuntos. John Venn desenvolveu
MATEMÁTICA MÓDULO 1 TEORIA DOS NÚMEROS 1. DIVISIBILIDADE 1.1. DEFINIÇÃO 1.2. CRITÉRIOS DE DIVISIBILIDADE
TEORIA DOS NÚMEROS 1. DIVISIBILIDADE Neste momento inicial, nosso interesse será em determinar quando a divisão entre dois números inteiros é exata, ou seja, quando o resto da divisão é 0. Antes de mais
Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET
MATEMÁTICA AULA DEMONSTRATIVA GRATUITA OPERAÇÕES NOS CONJUNTOS NUMÉRICOS A matemática é uma ciência em que o conhecimento é aplicado cumulativamente, ou seja, tudo o que foi aprendido será utilizado nos
LÓGICA APLICADA A COMPUTAÇÃO
LÓGICA APLICADA A COMPUTAÇÃO 2009.3 Aquiles Burlamaqui Conteúdo Programático Unidade I Linguagens Formais Linguagens Formais Sigma Álgebras Relação entre Linguagens Formais e Sigma Álgebras Sigma Domínios
Introdução à Computação: Álgebra Booleana
Introdução à Computação: Álgebra Booleana Beatriz F. M. Souza (bfmartins@inf.ufes.br) http://inf.ufes.br/~bfmartins/ Computer Science Department Federal University of Espírito Santo (Ufes), Vitória, ES
OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA
Professora: Elisandra Figueiredo OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA DEFINIÇÃO 1 Sendo E um conjunto não vazio, toda aplicação f : E E E recebe o nome de operação sobre E (ou em E) ou lei de composição
Prof. João Giardulli. Unidade I LÓGICA
Prof. João Giardulli Unidade I LÓGICA Introdução A primeira qualidade do estilo é a clareza. Aristóteles Introdução Aristóteles é considerado o precursor da lógica. Aristóteles (384-322 a.c.) Introdução
Generalidades sobre conjuntos
Generalidades sobre conjuntos E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Conjuntos e a noção de pertinência Na teoria dos
DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500. Planificação Anual /Critérios de avaliação
Disciplina: Matemática A _ 10º ano _ CCH 2015/2016 AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500 Planificação Anual /Critérios de avaliação Início
Lógica Computacional
Aula Teórica 2: da Lógica Proposicional Departamento de Informática 17 de Fevereiro de 2011 Descrição informal Lógica proposicional Objecto Ocupa-se do estudo do comportamento dos conectivos lógicos (negação,
Abaixo descreveremos 6 portas lógicas: AND, OR, NOT, NAND, NOR e XOR.
9. Apêndice - Portas e Operações Lógicas Uma porta lógica é um circuito eletrônico (hardware) que se constitui no elemento básico de um sistema de computação. A CPU, as memórias, as interfaces de E/S são
7 Operadores e Expressões
7 Operadores e Expressões 7.1 Definição de operador, expressão e operando Um operador é um símbolo utilizado para identificar que uma determinada operação deve ser realizada sobre um ou mais parâmetros,
Aulas 10 e 11 / 18 e 20 de abril
1 Conjuntos Aulas 10 e 11 / 18 e 20 de abril Um conjunto é uma coleção de objetos. Estes objetos são chamados de elementos do conjunto. A única restrição é que em geral um mesmo elemento não pode contar
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos 02 1. Noção intuitiva de conjunto Intuitivamente, entendemos como um conjunto: toda coleção bem definida de objetos (chamados
Construção da Matemática e formalização do número natural
Construção da Matemática e formalização do número natural 1. O número Os números são um dos dois objetos principais de que se ocupa a Matemática. O outro é o espaço, junto com as figuras geométricas nele
Ou seja, A consiste nos números 1, 3, 5, 7, 9. O segundo conjunto, o qual se lê
Capítulo 1 Teoria de Conjuntos 1.1 INTRODUÇÃO O conceito de conjunto aparece em toda a matemática. Este capítulo introduz a notação e a terminologia básicas da teoria de conjuntos usadas ao longo deste
Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.
Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível
SMA Elementos de Matemática Notas de Aulas
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação SMA 341 - Elementos de Matemática Notas de Aulas Ires Dias Sandra Maria Semensato de Godoy São Carlos 2009 Sumário 1 Noções
Introdução à Programação I
Introdução à Programação I Programação Estruturada Álgebra Booleana e Expressões Compostas Material da Prof. Ana Eliza Definição: Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem
Sumário. Capítulo 1 Conhecendo os Vários Tipos de Problema... 1
Sumário Capítulo 1 Conhecendo os Vários Tipos de Problema... 1 Capítulo 2 Problemas sobre Correlacionamento... 5 2.1. Problemas Envolvendo Correlação entre Elementos...5 2.2. Considerações Finais Sobre
Sistemas de Numeração
Sistemas de Numeração Módulo 1.1 1 Sistemas de Numeração O sistema de numeração com o qual estamos mais familiarizados é o decimal, cujo alfabeto (coleção de símbolos) é formado por 10 dígitos acima mostrados.
Curso Científico- Humanístico de Ciências e Tecnologias. Curso Científico- Humanístico de Ciências Socioeconómicas
Curso Científico- Humanístico de Ciências e Tecnologias Curso Científico- Humanístico de Ciências Socioeconómicas Planificação Anual -------2016-2017 Matemática A 10º ano A Planificação Anual, apresentada,
3 AULA. Valorações e Tabelas de Verdade LIVRO. META: Apresentar tabelas de verdade para classificar proposições lógicas.
1 LIVRO Valorações e Tabelas de Verdade META: Apresentar tabelas de verdade para classificar proposições lógicas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Aplicar valorações de um conjunto
Tópicos de Matemática. Teoria elementar de conjuntos
Tópicos de Matemática Lic. em Ciências da Computação Teoria elementar de conjuntos Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Tóp. de Matemática - LCC - 2010/2011 Dep. Matemática
Planificação Anual Matemática 10º Ano
ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL 402643 ESTREMOZ Planificação Anual Matemática 10º Ano Ano letivo 2016/2017 PERÍODO Nº de AULAS PREVISTAS (45 min) 1º 72 2º 72 3º 42 Total: 186 Total de aulas previstas
Sumário. Capítulo 1 - Conhecendo os Vários Tipos de Problema... 1
Sumário Capítulo 1 - Conhecendo os Vários Tipos de Problema... 1 Capítulo 2 - Problemas sobre Correlacionamento... 7 2.1. Problemas Envolvendo Correlação entre Elementos...7 2.2. Considerações Finais sobre
Programação de Computadores I Dados, Operadores e Expressões PROFESSORA CINTIA CAETANO
Programação de Computadores I Dados, Operadores e Expressões PROFESSORA CINTIA CAETANO Dados em Algoritmos Quando escrevemos nossos programas, trabalhamos com: Dados que nós fornecemos ao programa Dados
Curso de Matemática Aplicada.
Aula 1 p.1/25 Curso de Matemática Aplicada. Margarete Oliveira Domingues PGMET/INPE Sistema de números reais e complexos Aula 1 p.2/25 Aula 1 p.3/25 Conjuntos Conjunto, classe e coleção de objetos possuindo
DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO
DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO (Aprovados em Conselho Pedagógico de 27 de outubro de 2015) AGRUPAMENTO DE CLARA DE RESENDE CÓD. 152 870 No caso específico