EMISSÕES ESPECTRAIS E O MODELO ATÔMICO DE NIELS BOHR: Interpretação de Niels Henrick David Bohr sobre a emissão de radiações eletromagnéticas:

Tamanho: px
Começar a partir da página:

Download "EMISSÕES ESPECTRAIS E O MODELO ATÔMICO DE NIELS BOHR: Interpretação de Niels Henrick David Bohr sobre a emissão de radiações eletromagnéticas:"

Transcrição

1 EMISSÕES ESPECTRAIS E O MODELO ATÔMICO DE NIELS BOHR: Interpretação de Niels Henrick David Bohr sobre a emissão de radiações eletromagnéticas: No fim do século XIX, foram realizados os primeiros experimentos envolvendo o espectro de radiação atômica, emitido quando descargas elétricas atravessavam gases compostos pelo elemento hidrogênio. Buscava-se, com esses experimentos, responder qual era a estrutura interna de um átomo. Para responder a esta questão os cientistas buscavam examinar a natureza da luz que os átomos emitiam. O átomo de hidrogênio é o mais simples átomo da natureza, constituído por um elétron orbital e um próton localizado em seu centro de forças. Com uma estrutura tão simples, não foi surpreendente para os cientistas que o átomo de hidrogênio apresentasse, como resultado de experiências espectroscópicas, os mais simples dos espectros de emissão dentre todos os elementos conhecidos. O espectro do hidrogênio sendo então bem conhecido representava um elemento essencial na compreensão da estrutura atômica. Classicamente, se esperava que o espectro da radiação atômica emitida fosse contínuo, isto é, que o átomo irradiasse energia de maneira contínua. Assim, A previsão da física clássica, no átomo de hidrogênio, em órbita em torno do próton em uma trajetória circular de raio (r), sob a ação de uma força (centrípeta) de natureza eletrostática e que sob a ação de uma força centrípeta o elétron estaria acelerado, possuindo um movimento orbital de uma carga elétrica em movimento acelerado. Esta predição da física clássica (leis da eletrodinâmica), o elétron deveria irradiar toda a sua energia emitindo um espectro contínuo de radiação ao espiralar para o centro do átomo. Isto porque, de acordo com as previsões clássicas, toda carga elétrica acelerada irradia uma onda eletromagnética cuja frequência é igual ao de um movimento periódico e esse elétron perderia, em seu movimento orbital, energia por radiação, gerando um espectro contínuo, pois a energia dependeria, de apenas uma variável contínua, (r). A perda de energia por radiação implicaria em que o raio orbital se tornasse cada vez menor e a frequência da radiação cada vez maior, um processo que somente terminaria quando o elétron se chocasse com o núcleo atômico. As predições da mecânica clássica indicavam ainda que o elétron levaria menos de um micro segundo para atingir o núcleo! Os resultados experimentais não corroboravam com esta hipótese de radiação espectral contínua. Os resultados experimentais obtidos com o hidrogênio indicavam um espectro discreto de emissão atômico: as várias linhas de emissão nas regiões do espectro ótico e não ótico eram sistematicamente espaçadas em várias séries. Assim, quando excitados por um agente externo, átomos irradiam apenas em certas frequências bem definidas. Em caso contrário, átomos não irradiam. Johann Balmer propôs uma equação empírica que matematicamente conseguia chegar aos valores das ondas das emissões na faixa visível (série de Balmer). Johannes Rydberg propôs uma equação empírica relacionada às linhas espectrais, também para as

2 séries não visíveis, onde tentava explicar matematicamente estas radiações, mas sua fórmula só é válida para o hidrogênio. A Teoria de Niels Bohr: Niels Henrick David Bohr introduziu três postulados fundamentais: 1. Postulado das Ondas ou Estados Estacionárias: os elétrons se movem em um átomo somente em certas órbitas, sem irradiar energia;. Postulado da Frequência: os átomos irradiam somente quando um elétron sofre uma transição de um estado estacionário para outro, sendo a frequência ( f ) da radiação emitida, relacionada às energias das órbitas; 3. Princípio da Correspondência: no limite de grandes órbitas e altas energias, os resultados quânticos devem coincidir com os resultados clássicos. O primeiro postulado estabelece que o átomo de hidrogênio, pode existir, sem irradiar energia, em qualquer estado de um conjunto discreto de estados estacionários, com energias bem determinadas, isto é, energias quantizadas. O segundo postulado estabelece que, o átomo de hidrogênio absorve ou emite energia, somente, quando passa de um estado estacionário para outro estado igualmente estacionário. Neste caso, o elétron orbital absorve ou emite um quantum de radiação, ou seja, um fóton. Os elétrons podem girar em órbita somente a determinadas distâncias permitidas do núcleo. Os cálculos de Bohr mostraram quais as órbitas possíveis. A primeira órbita situa-se um pouco aquém de um Angstrom do núcleo ( 0,59A º ). A segunda órbita permitida situa-se em um pouco mais de que 0 Angstroms do núcleo (,116A º ), ou seja, a segunda órbita permitida seria, portanto, a quarta órbita (n=4). Para Bohr não existe limite para o número de órbitas teoricamente possíveis. Por exemplo, a centésima órbita de Bohr para o átomo de hidrogênio estaria dez mil vezes, mais afastada do núcleo, do que a primeira órbita, a uma distância de Angstroms. Assim, a lei de Bohr afirma que os elétrons agem como se o espaço ao redor do núcleo atômico possuísse trajetos invisíveis, porém, Bohr não deu justificativa para esta estranha situação. Neste ponto chegou à sua segunda lei. Segundo Niels Bohr, um átomo irradia energia quando um elétron salta de uma órbita de maior energia para uma de menor energia. Além disso, um átomo absorve energia quando um elétron é deslocado de uma órbita de menor energia para uma órbita de maior energia. Em outras palavras, os elétrons saltam de uma órbita permitida para outra à medida que os átomos irradiam ou absorve energia. As órbitas externas do átomo possuem mais energia do que as órbitas internas. As ideias de Bohr pareciam funcionar muito bem, mas, nem Bohr nem ninguém poderiam compreender exatamente como funcionava. Modelo de Bohr e a Teoria de Louis de Broglie:

3 Louis de Broglie observou que suas equações, ( F = E / h) e ( λ = h / p), levam a uma interpretação física da quantização do momento angular do elétron orbital no átomo de hidrogênio, como postulado por Bohr. O que ele percebeu é que para uma onda estacionária ao longo de uma circunferência, o comprimento da circunferência da órbita corresponde a um número inteiro de comprimentos de onda (. π. r = n. λ). Desta expressão e das relações de Louis de Broglie resulta, classicamente, (. π. r = n. λ = n. h / p= nh / m. v) ou então ( m. v. r = L= nh / π ). Assim, considera-se que Louis de Broglie tornou possível explicar os estados discretos de energia postulados por Bohr em termos de ondas estacionárias. Emissões eletromagnéticas produzidas pelos impactos dos elétrons acelerados com posítrons nucleares do próton de hidrogênio: Descargas elétricas em gases compostos pelo hidrogênio fazem com que elétrons se choquem com prótons dos hidrogênios e atinjam posítrons externos desses núcleos, ocorrendo processos de aniquilação. Nesses processos de aniquilação são liberadas radiações eletromagnéticas que não tem relação com emissão de radiação do elétron orbital. A energia cinética das emissões depende da energia cinética de impacto dos elétrons acelerados com o posítrons externos dos núcleos dos átomos do gás. A afirmação que os elétrons ao ganharem energia pulem para outras camadas e quando regressam para camadas mais internas emitam radiação eletromagnética decorre de uma interpretação incorreta sobre a origem dessas emissões de radiações eletromagnéticas, pois, não se relacionam com elétrons e sim com processos de aniquilações desses elétrons com posítrons externos componentes dos núcleos atômicos dos gases, por onde é incidida corrente elétrica com graus diferentes de velocidades de aceleração desses elétrons. O elétron que gira ao redor do próton está contido pela força de contenção que este elétron sofre devido ao equilíbrio da força de atração magnética entre este elétron e o posítron a mais do próton deste hidrogênio e a força de resistência da energia escura que envolve este próton, pois a energia escura exerce uma compressão concêntrica na matéria, numa espécie de competição com a matéria, para o preenchimento do volume ocupado pelos elétrons e posítrons constituintes deste próton. Esta compressão produz um aglutinamento desta energia escura e este aglutinamento produz uma barreira de resistência para que o elétron da eletrosfera seja atraído, mas, não consiga vencer essa barreira de resistência dessa energia escura aglutinada. A força de contenção é o resultado do equilíbrio entre a força de resistência da energia escura aglutinada e a força de atração magnética. Existe para cada camada eletrônica uma força de contenção do elétron que é maior na camada K, e para cada camada mais distante do núcleo esta força de contenção seja menor, mas, isto não representa dizer que o elétron em si possua uma quantização específica de energia, que se relacione com o raio (distância do elétron em relação ao centro do átomo) ou com a camada eletrônica, pois esta relação representa uma interpretação incorreta das reais forças envolvidas. Esta força de contenção é a resultante entre a atração entre o próton e o elétron e a força de resistência da energia

4 escura aglutinada ao redor deste núcleo atômico, criando tal força de contenção na camada eletrônica possível para este elétron. A força de contenção não tem relação com a força centrípeta de natureza eletrostática. Esta força de atração entre este elétron e o posítron a mais do próton é de natureza magnética (força de atração magnética) e o movimento orbital é consequência das interações do campo magnético existente e do campo elétrico que se forma no movimento do elétron. Este movimento é um movimento uniforme, somente deixando de ser uniforme se receber energia cinética externa, como por exemplo, de uma radiação eletromagnética que se choca com este elétron e transfere energia cinética a este elétron, que pode ser uma radiação que chega ou que é emitida pelo núcleo atômico, que pode ser causada por diversos fatores. As raias espectrais do hidrogênio foram interpretadas sem haver inclusão, em qualquer teoria, do núcleo atômico, como participante das emissões das radiações eletromagnéticas. Gases submetidos à corrente elétrica: Quando elementos químicos são submetidos a descargas elétricas ocorrem emissões eletromagnéticas. Os elétrons não emitem radiações quando retornam ao nível atômico como a teoria atual preconiza. As diferenças espectrais que ocorrem quando é submetida corrente elétrica em gases são resultantes de processos de aniquilações entre os elétrons da corrente elétrica e posítrons externos dos prótons do elemento químico. Quando um elétron é acelerado e choca-se com algum posítron localizado na linha equatorial do próton do hidrogênio, toda a força de impacto será transmitida à radiação produzida na aniquilação entre o elétron e este posítron externo deste próton, sendo que a radiação produto desta aniquilação receberá energia cinética deste impacto, determinante de sua frequência. Elétrons que se chocam nesta faixa, produzirão radiações com maiores frequências de emissão. Relações entre as fórmulas de Balmer e Rydberg nas emissões espectrais do hidrogênio: Sem saber, Balmer e Rydberg utilizam relações físicas de um choque de um elétron com uma esfera com dimensões do próton de hidrogênio, deixando nas suas fórmulas, evidências de que as emissões nas descargas elétricas em gases, são produzidas por interações de elétrons acelerados com posítrons externos, constituintes dos núcleos atômicos. Esses eventos são completamente descritos pela Mecânica Clássica. Determinação Matemática da Fórmula de Balmer:

5 Análise das emissões nucleares para a série de Balmer: Na análise das frequências das raias espectrais, Balmer contou com uma aceleração de elétrons específica, diferente das utilizadas para as outras séries. A maior frequência para cada série é dependente da velocidade do elétron que irá se chocar com o posítron externo do próton. Como as radiações são consideradas emissões de elétrons que retornam a camadas mais internas, a maior energia cinética do elétron para a série de Balmer ( 3,4.. ev.) seria a energia necessária para que o elétron retornasse da terceira camada para a segunda e emitisse a quantidade limite para esta série em forma de radiação, ou seja, uma radiação de frequência de , hertz / s., mas, as emissões são de origem nuclear, pelo impacto de um elétron acelerado com um posítron externo constituinte do próton do hidrogênio. Em cada impacto do elétron acelerado com um posítron nuclear, será produzida uma radiação com a frequência produzida pela energia cinética do impacto. As emissões explicadas pela Mecânica Clássica: Produção de radiação com energia máxima para a série: Quando o choque do elétron acelerado ocorre no posítron localizado na linha equatorial do próton, a energia cinética do impacto produzirá emissões com frequências máximas para esta série (a velocidade dos elétrons acelerados determina a série). A maior frequência das emissões produzidas por aceleração de elétrons nessa série é aquela resultante do choque de um elétron nesta linha equatorial do próton.

6 Correspondência da fórmula da energia cinética do impacto do elétron no posítron nuclear e a fórmula de Max Planck para energia das radiações eletromagnéticas: A energia cinética do impacto do elétron no posítron nuclear, na faixa equatorial do próton do hidrogênio e a respectiva energia da radiação eletromagnética emitida neste evento são equivalentes: Comprimento de onda da radiação limite da Série de Balmer: λ = 3.645, m Frequência da radiação limite da Série de Balmer: F = , hertz / s. A energia cinética do elétron acelerado é igual à energia cinética da radiação, produto da aniquilação entre este elétron e um posítron do próton do hidrogênio: E. c. = E. c. = ( f ) ( h).

7 E. c. = = ( F).( h) ( F).( h) = , , (9) 10 A energia cinética do impacto é a mesma energia cinética da radiação emitida, ou seja, a energia cinética da radiação limite da Série de Balmer E. c. = ( f ) ( h). E = ( f ) ( h) , , (9) = 19 5, J.s. ( 3, e. V.) Da expressão anterior, conclui-se que: E =, então : Ve= E Me = 1, , (40) Kg Ve Ve = , m / s Velocidade acurada do elétron acelerado da série de Balmer, considerando a massa do elétron indicada pelo Comitê para Ciência e Tecnologia em 010 (CODATA): 31 ( 9, (40) 10 kg ). J. s

8 Energia Cinética do impacto do elétron com incidência angular: A energia cinética de impacto é determinante para a energia do produto do processo de aniquilação (essa energia determina a frequência da radiação emitida). A energia cinética ( E. c.) é o produto da massa do elétron (Me) pela velocidade do elétron incidente ao quadrado ( Ve ) dividido por dois ( ), e para incidências anguladas multiplica-se este valor pelo cosseno do ângulo ( Cos. A) entre a componente vertical e a direção do vetor de incidência do elétron no núcleo. Ocorrência do choque do elétron acelerado em um plano inclinado com o núcleo do hidrogênio: O elétron orbital da primeira camada apresenta movimento de rotação no seu eixo (spin) que determina o movimento de translação. Estes movimentos determinam para o próximo elétron da primeira camada eletrônica o seu spin e o seu movimento orbital, que será obrigatoriamente de spin contrário ao primeiro elétron e em relação ao movimento orbital, será uma órbita perpendicular a do primeiro elétron (Princípio de exclusão de Pauli). No átomo de hidrogênio, como somente possui um elétron, os elétrons acelerados somente terão penetração quando o elétron do hidrogênio estiver orbitando pelo lado oposto ao da incidência da corrente elétrica e somente poderá se chocar em local permitido pelo campo eletromagnético do elétron orbital. Portanto, perpendicular à

9 órbita do elétron orbital e variando conforme ele orbita (a possibilidade eletromagnética para o impacto vai se alterando durante a órbita do elétron do hidrogênio). Outro fator determinante do local do choque é a distância (d), pois, o elétron acelerado, após ser possível sua penetração em direção ao próton, terá que percorrer, cada vez mais, um espaço um pouco maior para ocorrer o choque. Estas distâncias progressivamente maiores do centro para a periferia e a possibilidade eletromagnética para o impacto provocada pela velocidade do elétron orbital (que é acompanhado pelo seu campo eletromagnético) determinam impactos cada vez mais afastados, da linha equatorial para os estremos do próton. Esta penetração possível e a distância maior que terá que ser percorrida é determinante, para que somente em alguns ângulos sejam possíveis os processos de aniquilação, resultando, assim, as raias específicas do hidrogênio. A inclinação não é do elétron da corrente elétrica e sim determinada pela inclinação da esfera do próton, pois a incidência é perpendicular à órbita do elétron e, somente, será permitido choque, com incidência perpendicular com variações de 0º a 90º em relação à faixa equatorial coincidente com o plano da órbita do elétron. Sendo assim, a cada choque mais afastado do centro, mais inclinado estará o núcleo em relação à corrente elétrica. A força de impacto é dependente desse ângulo em que o elétron atinge o posítron externo e em resposta as frequências serão determinadas pela energia cinética do impacto. Um choque com um plano inclinado, produzido por um elétron, obedece a seguinte equação: E. c. =. Cos.. A Onde: Me = Massa do elétron; Ve = Velocidade do elétron incidente (elétron acelerado da Série); Cos..Α= Cosseno do ângulo de incidência do elétron no próton de hidrogênio. Foi determinado que: Ec= = ( f ).( h) ( f ).( h) = , , (9) ( f ).( h) = 5, J. s Representa a energia cinética do impacto, que é igual à energia cinética da radiação emitida, produto da aniquilação do elétron incidente com um posítron constituinte do próton do hidrogênio. 34

10 Pode-se determinar a energia cinética de cada frequência emitida da série de Balmer que não atinja a linha equatorial do próton do hidrogênio pela seguinte relação: ( f ) ( h) = ( F) ( h) Cos.. A Simplificando a equação tem-se: ( f ) = ( F) Cos. A Cos. A= f F Onde: (F) = Frequência limite da Série de Balmer: ( F ) = , hertz / s. ( f ) = Frequências das demais radiações emitidas na Série de Balmer: Assim, determina-se o ângulo de incidência do elétron e, também, da emissão da radiação, pois, são conhecidas as frequências emitidas (raias espectrais do hidrogênio). Série de Balmer (no vácuo) e seus ângulos correspondentes: Estão sendo utilizados os valores das ondas no vácuo, e a velocidade da luz em ( c ) = m / s que produziriam a maior frequência da série de Balmer ( , hertz / s.), bem como, o menor 10 comprimento de onda da série: ( λ ) = 3.645, metros : Ondas no vácuo Aº Frequências 14. x...10 hertz / s Radiações Cossenos dos ângulos  6564,700 4, Vermelha 0, ' 19" 486,740 6, Verde 0, '50"

11 4341,730 6, Azul 0, '81" 410,77 7, Violeta 0, '87" 3971,195 7, , '3" 3890,151 7, , '64" 3836,47 7, , '47" 3798,976 7, , '48" 3771,701 7, , '89" 3751,17 7, , '7" 3735,430 8, , Ultravioletas 1 68'81" 37,997 8, , '36" 3713,07 8, , '89" 3704,906 8, , ' 15" * , , '58" * 369 8, , '53" * , '09" * , , '70" * , , '07" * , , '80" Até chegar à radiação eletromagnética resultante do impacto na linha equatorial do próton. 3645,068 8, Ultravioleta 1, '00" Estas ondas não estão com seus valores para o vácuo Linhas específicas de impacto dos elétrons acelerados na Série de Balmer, bem como os ângulos de impacto em relação ao Próton do Hidrogênio: Estas linhas determinadas acabam produzindo impactos do elétron com um plano inclinado e a partir da zona equatorial, em cada ângulo possível de ocorrer tal impacto a radiação terá sua energia cinética e, consequentemente, sua frequência ( f ) determinada pela multiplicação da frequência máxima da série (F) pelo cosseno do ângulo de incidência ( Cos. A). Isto significa dizer que, a quantização da energia espectral, é uma interpretação incorreta dos acontecimentos físicos. Isto não é quantização da energia espectral, é apenas uma singularidade, que ocorre devido às influências eletromagnéticas do átomo.

12 A interpretação da quantização da energia das emissões espectrais: A ideia de quantização de Max Planck tem relação com a energia cinética de giro da radiação (h), que é determinada pela sua massa (mf ) e sua velocidade de giro mf c (c) ( h = = Constante de Planck), sendo que a energia cinética da radiação ( h) ( E. c= ) é a razão entre esta Constante (h) e o tempo deste giro em segundos (τ ') τ ' (alterável para cada radiação específica) e como o inverso do tempo de giro é a 1 frequência ( = f ), então, a energia da radiação é essa energia por giro (h) τ ' multiplicada pela frequência ( f ) ( E. c= ( h) ( f )). Esta quantização não tem o mesmo sentido que as energias discretas que ocorrem nas emissões espectrais específicas dos elementos químicos. A energia das emissões espectrais não é quantizada. A possibilidade eletromagnética de impacto determinada pelo campo eletromagnético do elétron orbital do hidrogênio, por exemplo, e a determinação dos ângulos de impacto após a linha equatorial do próton desse hidrogênio determinam as emissões específicas (discretas). Mas, isto não quer dizer que a energia espectral seja quantizada como princípio, apenas, significa que as emissões produzidas por choques de elétrons no núcleo, produzem emissões com quantidades específicas de energia por possuírem linhas determinadas de impacto nesse núcleo, em ângulos, diferentes e específicos, como demonstrado neste estudo. Outra questão muito importante, a considerar, é que as camadas eletrônicas não têm participação alguma nesta quantização, como determina a teoria atualmente

13 aceita. O que leva à conclusão atual, que o momento angular orbital do elétron seja quantizado, é a interpretação incorreta da origem das emissões eletromagnéticas e, consequentemente, toda a formulação matemática baseada nessa interpretação. Relações entre o espectro do hidrogênio e a fórmula empírica de Johann Balmer: Na resolução matemática dos espaçamentos das raias espectrais das emissões do hidrogênio, Johann Balmer utilizou como constante o valor de uma onda ( λ ) = 3644Αº, que é a menor onda da série (frequência limite - mais alta frequência da série), que produzia ótimos resultados se multiplicada por uma fórmula empírica na determinação dos comprimentos em Angstroms de todas outras ondas do espectro do hidrogênio emitidas em sua série. Esta onda representa a radiação ultravioleta limite de sua série que é resultante do impacto do elétron na faixa equatorial do próton do hidrogênio (0º - zero grau). Determinação física e matemática da fórmula de Balmer, a partir da fórmula da Energia cinética das radiações do espectro do hidrogênio: Pela Energia cinética das radiações: ( f ) ( h) = ( F) ( h) Cos.. A, tem-se ( f ) = ( F) Cos.. A Substituindo as frequências pelas ondas tem-se: ( f ) = ( F) Cos.. A c ( f ) = ( λ) c ( F ) = ( λ ) Então: c c = Cos.. A ( λ) ( λ ) 1 1 = Cos..A. ( λ ) ( λ ) Logo:

14 ( λ ) = ( λ ) 1 Cos..A c 1 ( λ ) = F Cos.. A ( λ ) = c /.( h) 1.. Cos A. h. c 1 ( λ ) = Cos.. A (Expressões matemáticas da Fórmula de Balmer e seu significado físico) Onde: (Me) = Massa do elétron; (Ve) = Velocidade do elétron acelerado; (F) = Maior frequência da radiação emitida na Série; ( f ) = Frequência emitida; (c) = Velocidade da luz; (λ) = Comprimento de onda da radiação emitida; ( λ ) = 3.645, m. = Menor Comprimento de onda da Série de Balmer. As emissões decorrentes de aniquilações entre os elétrons acelerados e os posítrons externos constituintes do próton do hidrogênio: No choque, do elétron acelerado com um posítron nuclear, ocorrerão processos de aniquilação com formação de uma radiação eletromagnética com energia cinética determinada pela energia cinética do impacto. As emissões dependem dos ângulos do impacto e estes ângulos são específicos, conforme comentado anteriormente.

15 A figura acima mostra que todas as ondas de emissão do hidrogênio, da série de Balmer, são encontradas multiplicando-se, a menor onda das emissões ( λ ) = 3645,068Αº, pelo inverso do Cosseno dos ângulos entre a componente vertical e a direção do vetor de incidência do elétron no núcleo do hidrogênio. Determinação da Fórmula de Balmer pela utilização dos ângulos de incidência do elétron acelerado: Como foram encontrados os ângulos entre a componente vertical e a direção do vetor de incidência, foi possível, também, determinar qual relação entre os números empíricos descobertos por Balmer e a formulação Física em que as radiações são provenientes de choques dos elétrons com os núcleos de hidrogênio. Determinação da velocidade dos elétrons acelerados da Série de Lyman: Será utilizada a fórmula da energia cinética newtoniana para determinação da velocidade dos elétrons acelerados na Série de Lyman, assim como, na série de Balmer. A velocidade dos elétrons acelerados da série de Lyman é exatamente o dobro da velocidade dos elétrons acelerados da Série de Balmer: E. c. = = ( F ) ( h) ( F ) ( h) = , , (9) 10 A energia cinética do impacto é a mesma energia cinética da radiação emitida: ( F ) ( h) = 34

16 18, J.s. ( 13, e. V.) Da expressão anterior, conclui-se que: E =, então : Ve= E Me, , (40) 10 Kg Ve= 31 Ve = , m / s Velocidade acurada do elétron acelerado da Série de Lyman, considerando a massa do elétron indicada pelo Comitê para Ciência e Tecnologia em 010 (CODATA): 31 ( 9, (40) 10 kg ). 18 J. s Ângulos de impacto na Série de Lyman: Para as frequências da série de Lyman, como a maior frequência é F = , hertz / s., foram encontrados os seguintes resultados angulares: Cos.. A= f ( frequência. emitida) F( frequência. máxima. da. Série) Ondas Frequências Radiações Cossenos dos ângulos  x...10 hertz / s 1.15,685 4, , '50" 1.05,735 9, , '87" 97,538 30, , '64"

17 949,744 31, , '6" 937, , , '7" Ultravioletas 930,7490 3, , '36" 96,650 3, , ' 15" * 93 3, , '53" * 91 3, , '70" * 919 3, , '80" Até chegar à radiação eletromagnética resultante do impacto na linha equatorial do próton. 911,67 3, Ultravioleta 1, '00" Estas ondas não estão com seus valores para o vácuo. Linhas específicas de impacto dos elétrons acelerados na Série de Lyman, bem como os ângulos de impacto em relação ao Próton do Hidrogênio: Na série de Lyman a Energia Cinética ( Me. Ve / ) é quatro vezes maior que na série de Balmer. Isso representa que os elétrons acelerados apresentam, na determinação das emissões da Série de Lyman, velocidade ( Ve.. Série.. de.. Lyman.188. km / s) duas vezes maior que a velocidade da Série de Balmer ( Ve.. Série.. de.. Balmer km / s).

18 Determinação física e matemática da fórmula empírica de Rydberg: Relação entre o espectro do hidrogênio e a fórmula empírica de Johannes Rydberg: Johannes Rydberg utilizou uma fórmula empírica que determina as ondas emitidas em todas as séries, desde que o resultado de sua fórmula fosse divisor do número 01 (um). Rydberg utiliza uma constante que representa a frequência máxima da série de Lyman dividida pela velocidade da luz: F , Hertz / s Cons tan te. de. Rydberg = = c m / s = 1, m Esta constante, multiplicada pelos números empíricos da fórmula (que representam o cosseno do ângulo entre a componente vertical e a direção do vetor de incidência do elétron no choque com o próton do hidrogênio para a série de Lyman), resulta nas ondas da série de Lyman. Para as outras séries, Rydberg, sem perceber, multiplicou esse produto pelas relações ao quadrado das velocidades de cada série em relação a serie de Lyman (definidos na fórmula original por números empíricos). Relações da Fórmula de Rydberg com os reais fatores envolvidos na determinação dos inversos dos comprimentos das ondas de todas as Séries espectrais do hidrogênio: Na determinação dos comprimentos de ondas de todas as séries, Rydberg utilizou números empíricos que se relacionam com impactos dos elétrons acelerados com pósitrons nucleares, produzindo a energia cinética das emissões eletromagnéticas. Essas relações estão relacionadas no quadro abaixo:

19 Por acreditar que as emissões eram provocadas por transições dos elétrons, das camadas eletrônicas mais externas para as mais internas, seria possível que esses elétrons poderiam possuir localização em camadas muito afastadas (tendendo ao infinito), mas como, as raias não se relacionam com camadas eletrônicas, os resultados de varias transições são impossíveis para a dimensão nuclear do hidrogênio. O Resultado da Fórmula de Rydberg e suas correspondências: A causa para que a fórmula de Rydberg apresente resultados tão corretos está na utilização do inverso da onda limite 1, que representa a maior frequência da Série de λ Lyman (F), dividida pela velocidade da luz (c), ou seja, esse inverso da onda limite é a 1 F constante de Rydberg Ry= = e a utilização de números (empíricos) que se λ c relacionam com o cosseno do ângulo de impacto do elétron acelerado no próton do hidrogênio, bem como a utilização da relação ao quadrado da velocidade do elétron acelerado em cada série em relação à velocidade da série de Lyman.

20 O que as fórmulas de Balmer e de Rydberg representam: Tanto Balmer quanto Rydberg utilizaram empiricamente, sem perceberem, números que se relacionam com a Energia Cinética de impacto do elétron com a esfera nuclear e os números empíricos representam relações matemáticas e físicas entre o impacto e o próton do hidrogênio, descritos inteiramente pela Mecânica Clássica. Suas fórmulas não levaram em consideração as frequências envolvidas nas suas determinações. Relacionaram com as ondas (Balmer) e com o inverso das ondas (Rydberg), provavelmente, este fato dificultou a compreensão dos números empíricos empregados e a visualização da relação de tais números empíricos com o próton nuclear. Observação: Em qualquer série é possível aplicar a fórmula de Balmer, somente é necessário multiplicar a menor onda da série pelo inverso do cosseno do ângulo. No caso da série 10 de Lyman, a constante de Balmer ( λ ) = 3645, m teria que ser substituída por 10 ( λ ) = 911,67 10 m. Os comprimentos das ondas emitidas na série de Lyman podem ser determinados pela seguinte equação: ( λ ) = 911, Cos.A A fórmula de Rydberg é a mesma de Balmer, somente que ele encontra os resultados representados pela equação abaixo de forma invertida e multiplica o resultado pelas relações ao quadrado entre as velocidades das outras séries em relação à Série de Lyman. Relação da Fórmula de Balmer com a Fórmula de Rydberg para a Série de Lyman: Onde: 1 Balmer ( λ ) = 911, Rydberg Cos.A 1 1 ( ) = Cos.A ,67 10 λ

21 911, = Ry= 1, m 1 10 F = c A expressão acima vale para a série de Lyman. Para as demais, multiplica-se essa equação pela relação de velocidade do elétron acelerado ao quadrado, de cada série em relação à série de Lyman, pois, a Constante de Rydberg já representa a frequência E. c. máxima da radiação emitida na Série de Lyman F = =, dividida pela h. h F 1 velocidade da luz (c) = c λ, portanto, a velocidade do elétron acelerado para a série de Lyman já está embutida na fórmula de Rydberg. Assim, para que a fórmula se adeque às velocidades dos elétrons acelerados das outras séries, é necessário que a mesma seja multiplicada pela relação ao quadrado dessas velocidades com a Série de Lyman: 1 λ( m) = Cons tan te. de. Rydberg.( m ) Cos.. A ( ), ( ),. ( ), ( ), ( ) Ou seja: 1 1 = Cons tan te. de. Rydberg...( m λ( m) Cos. A. de. cada. série ), ou (1),(4),(9),(16),(5), ou(36) 1 λ( m) = /.( h) Cos. A. de. cada. série c (1),(4),(9),(16),(5), ou(36) 1 λ( m) =. h. c Cos. A.. de. cada. série (1),(4),(9),(16),(5), ou(36) (Expressão matemática da Fórmula de Rydberg e seu significado físico) F Na fórmula original, a Constante de Rydberg c está sendo utilizada em metro 7 1 ( 1, m ), ao dividir a unidade ( 1) pelo resultado, encontra-se o comprimento da onda, também, em metro 1 resultado =λ.

22 Análise dos ângulos de impacto dos elétrons no próton de hidrogênio nas séries de Paschen, Balmer e Lyman: Os ângulos de impacto das séries espectrais do hidrogênio apresentam distâncias de espaçamentos diferentes devido às diferenças das velocidades dos elétrons, característica de cada série espectral. Quanto mais os elétrons estão acelerados, mais distantes se encontram, em relação aos outros elétrons da corrente elétrica. Para ocorrer esta distribuição de choques em que os elétrons com maiores velocidades chocam-se mais espaçados, além da influência da velocidade do elétron orbital e do fato de que a cada impacto, mais distante da linha equatorial do próton, será

23 percorrida uma distância maior, tem que haver outra variável nas determinações destes impactos, pois, sem essa variável, os impactos teriam que ocorrer em relação inversa ao que realmente ocorrem. O campo elétrico dos elétrons acelerados tem relação com suas velocidades (mais energia cinética resulta em comprimentos de ondas maiores para os elétrons), e isto faz com que os elétrons se mantenham, na corrente elétrica, mais próximos ou mais afastados, dependendo dessa velocidade. Os ângulos de impacto da série de Lyman se repetem nas outras séries espectrais, demonstrando que as velocidades se alteram, alterando, por isto, a distância dos elétrons ordenados na corrente elétrica. Como os elétrons acelerados da Série de Lyman estão 04 vezes mais afastados, em relação aos elétrons acelerados da Série de Balmer, deveriam se chocar 04 vezes mais distanciados no núcleo se a velocidade fosse igual, mas, como a velocidade destes elétrons é duas vezes maior, percorrem a mesma distância em metade do tempo, se chocando duas vezes mais espaçados que os elétrons da Série de Balmer. Será apresentado, no estudo da Constante de Coulomb, que as dimensões dos elétrons são proporcionais à sua energia cinética, e este fato faz com que os elétrons com maior energia cinética, possuam comprimento de ondas maiores, o que faz com que fiquem mais afastados em relação aos outros elétrons na corrente elétrica.

DETERMINAÇÃO FÍSICA E MATEMÁTICA DAS FÓRMULAS EMPÍRICAS DE JOHANN BALMER E JOHANNES RYDBERG. Max Planck e a ideia do oscilador harmônico:

DETERMINAÇÃO FÍSICA E MATEMÁTICA DAS FÓRMULAS EMPÍRICAS DE JOHANN BALMER E JOHANNES RYDBERG. Max Planck e a ideia do oscilador harmônico: DETERMINAÇÃO FÍSICA E MATEMÁTICA DAS FÓRMULAS EMPÍRICAS DE JOHANN BALMER E JOHANNES RYDBERG Luiz Carlos de Almeida Max Planck e a ideia do oscilador harmônico: Para a proposição da equação da energia média

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Lucas Barboza Sarno da Silva Espectros atômicos Toda substância a uma certa temperatura emite radiação térmica, caracterizada por uma distribuição contínua de comprimentos de onda. A forma da

Leia mais

MODELOS ATÔMICOS BIK0102: ESTRUTURA DA MATÉRIA. Professor Hugo Barbosa Suffredini Site:

MODELOS ATÔMICOS BIK0102: ESTRUTURA DA MATÉRIA. Professor Hugo Barbosa Suffredini Site: BIK0102: ESTRUTURA DA MATÉRIA Crédito: Sprace MODELOS ATÔMICOS Professor Hugo Barbosa Suffredini hugo.suffredini@ufabc.edu.br Site: www.suffredini.com.br Ondas (uma breve revisão...) Uma onda é uma perturbação

Leia mais

MODELOS ATÔMICOS BIK0102: ESTRUTURA DA MATÉRIA. Professor Hugo Barbosa Suffredini Site:

MODELOS ATÔMICOS BIK0102: ESTRUTURA DA MATÉRIA. Professor Hugo Barbosa Suffredini Site: BIK0102: ESTRUTURA DA MATÉRIA Crédito: Sprace MODELOS ATÔMICOS Professor Hugo Barbosa Suffredini hugo.suffredini@ufabc.edu.br Site: www.suffredini.com.br Ondas (uma breve revisão...) Uma onda é uma perturbação

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Lucas Barboza Sarno da Silva O Efeito Compton Einstein, em 1919, concluiu que um fóton de energia E se desloca em uma única direção (diferentemente de uma onda esférica) e é portador de um momento

Leia mais

Fundamentos de Física Capítulo 39 Mais Ondas de Matéria Questões Múltipla escolha cap. 39 Fundamentos de Física Halliday Resnick Walker 1) Qual das

Fundamentos de Física Capítulo 39 Mais Ondas de Matéria Questões Múltipla escolha cap. 39 Fundamentos de Física Halliday Resnick Walker 1) Qual das Fundamentos de Física Capítulo 39 Mais Ondas de Matéria Questões Múltipla escolha cap. 39 Fundamentos de Física Halliday Resnick Walker 1) Qual das frases abaixo descreve corretamente a menor energia possível

Leia mais

5. Modelo atômico de Bohr

5. Modelo atômico de Bohr 5. Modelo atômico de Bohr Sumário Espectros atômicos Modelo de Bohr para o átomo de hidrogênio Níveis de energia e raias espectrais Experiência de Franck-Hertz O princípio da correspondência Correção do

Leia mais

O Átomo de Bohr. O Átomo de Bohr e o Espectro do Átomo Hidrogênio.

O Átomo de Bohr. O Átomo de Bohr e o Espectro do Átomo Hidrogênio. O Átomo de Bohr UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Instituto de Física. Departamento de Física. Física do Século XXB (FIS1056). Prof. César Augusto Zen Vasconcellos. Lista 5 (Site: www.cesarzen.com)

Leia mais

QUÍMICA I. Teoria atômica Capítulo 6. Aula 2

QUÍMICA I. Teoria atômica Capítulo 6. Aula 2 QUÍMICA I Teoria atômica Capítulo 6 Aula 2 Natureza ondulatória da luz A teoria atômica moderna surgiu a partir de estudos sobre a interação da radiação com a matéria. A radiação eletromagnética se movimenta

Leia mais

INTERPRETAÇÃO DO EXPERIMENTO DE FRANCK E HERTZ EM CONTRAPOSIÇÃO À INTERPRETAÇÃO DE NEILS BOHR E ALBERT EINSTEIN

INTERPRETAÇÃO DO EXPERIMENTO DE FRANCK E HERTZ EM CONTRAPOSIÇÃO À INTERPRETAÇÃO DE NEILS BOHR E ALBERT EINSTEIN INTERPRETAÇÃO DO EXPERIMENTO DE FRANCK E HERTZ EM CONTRAPOSIÇÃO À INTERPRETAÇÃO DE NEILS BOHR E ALBERT EINSTEIN LUIZ CARLOS DE ALMEIDA O experimento e suas interpretações dentro de uma visão da quantização

Leia mais

Estrutura eletrônica da matéria - resumo

Estrutura eletrônica da matéria - resumo Estrutura eletrônica da matéria - resumo A NATUREZA ONDULATÓRIA DA LUZ COMO A RADIAÇÃO ELETROMAGNÉTICA SE MOVE À VELOCIDADE DA LUZ, O COMPRIMENTO DE ONDA E A FREQUÊNCIA ESTÃO RELACIONADOS: νλ=c ONDE ν(ni)

Leia mais

CARACTERÍSTICAS ELEMENTARES DOS ELÉTRONS Luiz Carlos de Almeida

CARACTERÍSTICAS ELEMENTARES DOS ELÉTRONS Luiz Carlos de Almeida CARACTERÍSTICAS ELEMENTARES DOS ELÉTRONS Luiz Carlos de Almeida Segundo o que se acredita, atualmente, a carga elementar do elétron seria ( q) 1,60.176.565(35) 10 19 C., e em 01 Volt esta carga elétrica

Leia mais

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 4. O modelo atômico de Bohr

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 4. O modelo atômico de Bohr UFABC - Física Quântica - Curso 2017.3 Prof. Germán Lugones Aula 4 O modelo atômico de Bohr 1 O modelo de Bohr Em 1913, Niels Bohr propôs um modelo do átomo de hidrogênio que combinava o trabalho de Planck,

Leia mais

Física Moderna I Aula 09. Marcelo G Munhoz Edifício HEPIC, sala 202, ramal

Física Moderna I Aula 09. Marcelo G Munhoz Edifício HEPIC, sala 202, ramal Física Moderna I Aula 09 Marcelo G Munhoz Edifício HEPIC, sala 202, ramal 916940 munhoz@if.usp.br 1 Estabilidade do átomo proposto por Rutherford Este modelo proposto por Rutherford tinha um sério problema

Leia mais

O átomo de Rutherford

O átomo de Rutherford O átomo de Rutherford ~10-14 m Núcleo de carga +Ze rodeado por Z elétrons (modelo planetário). Z é chamado número atômico (H: Z = 1, He: Z = 2, etc.). O número atômico determina as propriedades físicas

Leia mais

Principais modelos atômicos. Principais modelos atômicos Modelo Atômico de Rutherford (1911)

Principais modelos atômicos. Principais modelos atômicos Modelo Atômico de Rutherford (1911) Principais modelos atômicos Modelo Atômico de Thomson (898) Com a descoberta dos prótons e elétrons, Thomson propôs um modelo de átomo no qual os elétrons e os prótons, estariam uniformemente distribuídos,

Leia mais

Uma breve história do mundo dos quanta. Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso

Uma breve história do mundo dos quanta. Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso Uma breve história do mundo dos Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso Tópicos da Terceira Aula Espectros atômicos Evolução dos modelos atômicos Thomson Rutherford Bohr Princípio

Leia mais

Modelos atômicos (quânticos) Bohr Sommerfeld Professor: Hugo Cesário

Modelos atômicos (quânticos) Bohr Sommerfeld Professor: Hugo Cesário Modelos atômicos (quânticos) Bohr Sommerfeld Professor: Hugo Cesário Rutherford Niels Bohr Max Planck Sommerfeld Modelos atômicos quânticos Problemas de Rutherford: Modelo entrou em choque com os conceitos

Leia mais

Séries de Lyman, Balmer, Paschen, etc. e Modelo de Bohr

Séries de Lyman, Balmer, Paschen, etc. e Modelo de Bohr Séries de Lyman, Balmer, Paschen, etc. e Modelo de Bohr Problemas com a Física Clássica Fatos que a Física Clássica não podia explicar Observação de linhas nos espectros atômicos; A estrutura nuclear do

Leia mais

Laboratório de Física Moderna Espectroscopia do H. Marcelo Gameiro Munhoz

Laboratório de Física Moderna Espectroscopia do H. Marcelo Gameiro Munhoz Laboratório de Física Moderna Espectroscopia do H Marcelo Gameiro Munhoz munhoz@if.usp.br 1 Contextualização Para iniciar nosso experimento, vamos compreender o contexto que o cerca Qual o tipo de fenômeno

Leia mais

Aula 15 Mais sobre Ondas de Matéria

Aula 15 Mais sobre Ondas de Matéria Aula 15 Mais sobre Ondas de Matéria Física 4 Ref. Halliday Volume4 Sumário...relembrando... Relembrando... Elétrons e Ondas de Matéria Em 1924, Louis de Broglie propôs um novo raciocínio: Se um feixe luminoso

Leia mais

QUÍMICA A Ciência Central 9ª Edição Capítulo 6 Estrutura eletrônica dos átomos David P. White

QUÍMICA A Ciência Central 9ª Edição Capítulo 6 Estrutura eletrônica dos átomos David P. White QUÍMICA A Ciência Central 9ª Edição Capítulo 6 Estrutura eletrônica dos átomos David P. White Natureza ondulatória da luz Todas as ondas têm um comprimento de onda característico, λ, e uma amplitude, A.

Leia mais

ELÉTRONS EM ÁTOMOS. Depois do modelo de Rutherford: Como é o comportamento dos elétrons nos átomos? Rutherford: estrutura planetária, com o

ELÉTRONS EM ÁTOMOS. Depois do modelo de Rutherford: Como é o comportamento dos elétrons nos átomos? Rutherford: estrutura planetária, com o ELÉTRONS EM ÁTOMOS Depois do modelo de Rutherford: Como é o comportamento dos elétrons nos átomos? Rutherford: estrutura planetária, com o núcleo correspondendo ao sol no nosso sistema solar e os elétrons

Leia mais

ONDAS ELETROMAGNÉTICAS ÁTOMO DE BOHR. QFL-4010 Prof. Gianluca C. Azzellini

ONDAS ELETROMAGNÉTICAS ÁTOMO DE BOHR. QFL-4010 Prof. Gianluca C. Azzellini ONDAS ELETROMAGNÉTICAS ÁTOMO DE BOHR Ondas Eletromagnéticas ONDAS ELETROMAGNÉTICAS ASPECTOS GERAIS A= amplitude (m) λ= comprimento de onda (m) ν= frequência (Hz= s -1 ) c= velocidade da luz=,998x10 8

Leia mais

Laboratório de Física Moderna Espectrosocopia Aula 01. Marcelo Gameiro Munhoz

Laboratório de Física Moderna Espectrosocopia Aula 01. Marcelo Gameiro Munhoz Laboratório de Física Moderna Espectrosocopia Aula 01 Marcelo Gameiro Munhoz munhoz@if.usp.br 1 Contextualização Para iniciar nosso experimento, vamos compreender o contexto que o cerca Qual o tipo de

Leia mais

Cap. 39 Mais ondas de matéria

Cap. 39 Mais ondas de matéria Cap. 39 Mais ondas de matéria Ondas em cordas e ondas de matéria; Energia de um elétron confinado (1D); Mudanças de energia; Função de onda de um elétron confinado (1D); Elétron em poço finito; Outras

Leia mais

Espectros de linhas e o modelo de Bohr

Espectros de linhas e o modelo de Bohr n = 6 n = 5 n = 4 n = 3 1 R 2 1 2 n 1 2 Série de Balmer (visível) O Bohr baseou seu modelo em quatro postulados: O Somente órbitas de certos raios, correspondendo a certas energias definidas, são permitidas

Leia mais

A simetria entre o modelo de Bohr e a dualidade de de Broglie (Ensaios Numéricos)

A simetria entre o modelo de Bohr e a dualidade de de Broglie (Ensaios Numéricos) VI Congresso de Pesquisa e Inovação da Rede Norte e Nordeste de Educação Tecnológica (Aracajú-SE-20) A simetria entre o modelo de Bohr e a dualidade de de Broglie (Ensaios Numéricos) Moraes, B.T.F. e Laerte

Leia mais

Física D Extensivo V. 8

Física D Extensivo V. 8 Física D Extensivo V. 8 Exercícios 0) C f R X > f WZ 0) B 03) E 04) E raios X > luz Raios X são radiações eletromagnéticas com um comprimento de onda muito curto, aproximadamente de 0,06 até 0 Å. Formam-se

Leia mais

TEORIAS ATÔMICAS. Menor partícula possível de um elemento (Grécia antiga) John Dalton (1807)

TEORIAS ATÔMICAS. Menor partícula possível de um elemento (Grécia antiga) John Dalton (1807) TEORIAS ATÔMICAS Átomo Menor partícula possível de um elemento (Grécia antiga) John Dalton (1807) 1. Os elementos são constituídos por partículas extremamente pequenas chamadas átomos; 2. Todos os átomos

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 4 MODELOS ATÔMICOS Primeira Edição junho de 2005 CAPÍTULO 4 MODELOS ATÔMICOS ÍNDICE 4.1- Modelo de Thomson 4.2- Modelo de Rutherford 4.2.1-

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 3 MODELOS ATÔMICOS E A VELHA TEORIA QUÂNTICA Edição de junho de 2014 CAPÍTULO 3 MODELOS ATÔMICOS E A VELHA TEORIA QUÂNTICA ÍNDICE 3.1-

Leia mais

Revisão das observações experimentais, modelo de Bohr e Princípios da Mecânica Quântica by Pearson Education. Capítulo 06

Revisão das observações experimentais, modelo de Bohr e Princípios da Mecânica Quântica by Pearson Education. Capítulo 06 Revisão das observações experimentais, modelo de Bohr e Princípios da Mecânica Quântica Natureza ondulatória da luz A teoria atômica moderna surgiu a partir de estudos sobre a interação da radiação com

Leia mais

Atomística. Prof. Fernando R. Xavier

Atomística. Prof. Fernando R. Xavier Atomística Prof. Fernando R. Xavier UDESC 2013 Nem sempre foi tão fácil observar um átomo... Estrutura Atômica, Antencedentes... Modelos de Demócrito, Dalton, Thomson 400 a.c. até 1897 d.c. O Modelo de

Leia mais

A CAUSA DO ENCOLHIMENTO ACELERADO DO PLANETA MERCÚRIO: Perspectiva atual: Mudança da Constituição Atômica:

A CAUSA DO ENCOLHIMENTO ACELERADO DO PLANETA MERCÚRIO: Perspectiva atual: Mudança da Constituição Atômica: A CAUSA DO ENCOLHIMENTO ACELERADO DO PLANETA MERCÚRIO: LUIZ CARLOS DE ALMEIDA Perspectiva atual: O encolhimento observado no planeta Mercúrio está sendo explicado atualmente, como se o planeta estivesse

Leia mais

Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna

Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna Bloco 0: AS LINHAS DE BALMER Introdução A teoria quântica prevê uma estrutura de níveis de energia quantizados para os

Leia mais

Estrutura da Matéria BIK Prof. Fernando Carlos Giacomelli (Turma A)

Estrutura da Matéria BIK Prof. Fernando Carlos Giacomelli (Turma A) Estrutura da Matéria BIK0102-15 Prof. Fernando Carlos Giacomelli (Turma A) fernando.giacomelli@ufabc.edu.br Bloco A - Sala 613-3 Torre 3 - CCNH - Santo André Dualidade Onda-Partícula: Descrição Clássica

Leia mais

Capítulo 2: Postulados de Bohr

Capítulo 2: Postulados de Bohr Material laborado por Caio Guimarães Física Moderna: Análise da Aplicação da Teoria nos xercícios do ITA Capítulo : Postulados de Bor Rydberg e Balmer No final dos século XIX, início do século XX a física

Leia mais

Sumário. O átomo de H e a estrutura atómica

Sumário. O átomo de H e a estrutura atómica Sumário Das Estrelas ao átomo Unidade temática 1 O átomo de hidrogénio e a estrutura atómica. Quantização de energia. APSA 6 Espectro atómico do átomo de hidrogénio. Porque é que o espectro do átomo de

Leia mais

Principais Postulados de Dalton (1803)

Principais Postulados de Dalton (1803) Teoria Atômica da Matéria Breve Histórico Leucipo e Demócrito ( 400 a.c.) descontinuidade da matéria (átomo). Alquimia ( 300 a.c. 1500 d.c.) civilizações árabes e gregas. Paracelsus ( 1500 d.c.) Iatroquímica.

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Lucas Barboza Sarno da Silva O Efeito Compton Einstein, em 1919, concluiu que um fóton de energia E se desloca em uma única direção (diferentemente de uma onda esférica) e é portador de um momento

Leia mais

AULA 01 TEORIA ATÔMICA COMPLETA

AULA 01 TEORIA ATÔMICA COMPLETA AULA 01 TEORIA ATÔMICA COMPLETA - ESTRUTURA ATÔMICA; - MODELOS ATÔMICOS; - ESPECTROSCOPIA ATÔMICA; - PROPRIEDADES ONDULATÓRIAS DOS ELÉTRONS; - NÚMEROS QUÂNTICOS E DISTRIBUIÇÃO ELETRÔNICA. Estrutura Eletrônica

Leia mais

Átomo de hidrogênio. Átomo de de Broglie Equação de Schrödinger Átomo de hidrogênio Transições de níveis

Átomo de hidrogênio. Átomo de de Broglie Equação de Schrödinger Átomo de hidrogênio Transições de níveis Átomo de hidrogênio Átomo de de Broglie Equação de Schrödinger Átomo de hidrogênio Transições de níveis Teoria de Bohr para H Na teoria de Bohr, foi necessário postular a existência de números quânticos.

Leia mais

Instituto de Física USP. Física V - Aula 24. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 24. Professora: Mazé Bechara Instituto de Física USP Física V - Aula 24 Professora: Mazé Bechara Aula 24 Princípio de correspondênciam Experimento de Franck e Hertz, e regra de quantização de Wilson-Sommerfeld 1. O princípio de correspondência

Leia mais

Fundamentos de Química Quântica

Fundamentos de Química Quântica Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química Fundamentos de Química Quântica Aula 1 Professora: Melissa Soares Caetano Origem da teoria quântica

Leia mais

QUÍMICA. Transformações Químicas. Teoria Atômica Modelo Atômico de Dalton, Thomson, Rutherford, Rutherford-Bohr Parte 2. Prof a.

QUÍMICA. Transformações Químicas. Teoria Atômica Modelo Atômico de Dalton, Thomson, Rutherford, Rutherford-Bohr Parte 2. Prof a. QUÍMICA Transformações Químicas Teoria Atômica Modelo Atômico de Dalton, Thomson, Parte 2 Prof a. Giselle Blois Problemas com o átomo de Rutherford: Teoria Atômica: Modelo Atômico de Dalton, Thomson, -

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Física IV 2019/1 Lista de Exercícios do Capítulo 5 Origens da Teoria Quântica

Universidade Federal do Rio de Janeiro Instituto de Física Física IV 2019/1 Lista de Exercícios do Capítulo 5 Origens da Teoria Quântica Universidade Federal do Rio de Janeiro Instituto de Física Física IV 2019/1 Lista de Exercícios do Capítulo 5 Origens da Teoria Quântica 1) Calcule a energia de um quantum de luz de comprimento de onda

Leia mais

Sumário. O átomo de H e a estrutura atómica

Sumário. O átomo de H e a estrutura atómica Sumário Das Estrelas ao átomo Unidade temática 1 O átomo de hidrogénio e a estrutura atómica. Quantização de energia. : De Dalton ao modelo quântico. APSA 6 Espectro atómico do átomo de hidrogénio. Porque

Leia mais

Universidade Federal do Tocantins

Universidade Federal do Tocantins Universidade Federal do Tocantins Modelos atômicos e configurações eletrônicas dos átomos enicolau@uft.edu.br Blog: profedenilsonniculau.wordpress.com Prof. Dr. Edenilson dos Santos Niculau 2 Sumário ESTRUTURA

Leia mais

Quantização. Quantização da energia (Planck, 1900) hc h. Efeito fotoelétrico (Einstein, 1905) Espectros atômicos (linhas discretas) v 2

Quantização. Quantização da energia (Planck, 1900) hc h. Efeito fotoelétrico (Einstein, 1905) Espectros atômicos (linhas discretas) v 2 Mecânica Quântica Quantização e o modelo de Bohr (revisão) Dualidade Onda-Partícula Princípio da Incerteza Equação de Schrödinger Partícula na Caixa Átomo de Hidrogênio Orbitais Atômicos Números Quânticos

Leia mais

MODELO ATÔMICO: DO SIMPLES AO ELABORADO UMA TENTATIVA DE DESVENDAR OS MISTÉRIOS DA MATÉRIA

MODELO ATÔMICO: DO SIMPLES AO ELABORADO UMA TENTATIVA DE DESVENDAR OS MISTÉRIOS DA MATÉRIA MODELO ATÔMICO: DO SIMPLES AO ELABORADO UMA TENTATIVA DE DESVENDAR OS MISTÉRIOS DA MATÉRIA Leucipo Demócrito Epicuro (de 400-250 a.c): a matéria seria constituída de átomos e espaços vazios; Aristóteles

Leia mais

Professor Edson Cruz

Professor Edson Cruz Professor Edson Cruz A RADIOATIVIDADE E A NECESSIDADE DE NOVAS PESQUISAS Wilhelm RÖNTGEN (1845-1923) Estudava raios emitidos pela ampola de Crookes. Repentinamente, notou que raios desconhecidos saíam

Leia mais

Estrutura atômica. Modelo quântico do átomo

Estrutura atômica. Modelo quântico do átomo Estrutura atômica Modelo quântico do átomo Um bom modelo deve ser capaz de explicar propriedades atômicas, propriedades periódicas, ligação química Mecânica quântica - mecânica ondulatória Elétrons como

Leia mais

ESTRUTURA ELETRÔNICA DOS ÁTOMOS

ESTRUTURA ELETRÔNICA DOS ÁTOMOS ESTRUTURA ELETRÔNICA DOS ÁTOMOS 2 Natureza ondulatória da luz 3 Natureza ondulatória da luz 4 Natureza ondulatória da luz 5 Natureza ondulatória da luz 6 Energia quantizada e fótons Planck quantum h é

Leia mais

Estrutura Eletrônica dos átomos

Estrutura Eletrônica dos átomos Estrutura Eletrônica dos átomos 3- Os espectros de emissão dos gases Como a equação de Rydberg poderia ser explicada? Os estados de energia do átomo de hidrogênio Se n f é menor que n i, o e- move-se para

Leia mais

A experiência das Linhas de Balmer

A experiência das Linhas de Balmer A experiência das Linhas de Balmer 1 Introdução Conforme vemos nos cursos que tratam sobre física quântica, podemos excitar elétrons presos aos seus núcleos atômicos apenas quando utilizamos energias corretas,

Leia mais

ESTRUTURA ATÔMICA. Modelos Atômicos

ESTRUTURA ATÔMICA. Modelos Atômicos ESTRUTURA ATÔMICA Modelos Atômicos 1.Modelo atômico de Dalton 2.Modelo atômico de Thomson 3.Modelo atômico de Rutherford 4.Modelo atômico de Rutherford-Bohr 5.Modelo atômico atual MODELOS ATÔMICOS 1808

Leia mais

Capítulo 38 Fótons e Ondas de Matéria Questões Múltipla escolha cap. 38 Fundamentos de Física Halliday Resnick Walker

Capítulo 38 Fótons e Ondas de Matéria Questões Múltipla escolha cap. 38 Fundamentos de Física Halliday Resnick Walker Capítulo 38 Fótons e Ondas de Matéria Questões Múltipla escolha cap. 38 Fundamentos de Física Halliday Resnick Walker 1) Qual é o nome das partículas associadas ao campo eletromagnético? a) Fônons. b)

Leia mais

Introdução à Química Moderna

Introdução à Química Moderna Introdução à Química Moderna Prof. Alex Fabiano C. Campos, Dr Radiação de Corpo Negro Objeto com T 0K:emite radiação eletromagnética. T 0K Física Clássica: vibração térmica dos átomos e moléculas, provoca

Leia mais

Instituto de Física USP. Física V - Aula 15. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 15. Professora: Mazé Bechara Instituto de Física USP Física V - Aula 15 Professora: Mazé Bechara Aula 15 Espectros de absorção e emissão atômica e modelo atômico de Thomson. 1. Evidências experimentais da existência de estrutura nos

Leia mais

MODELO ATÔMICO DE BOHR 1913

MODELO ATÔMICO DE BOHR 1913 MODELO ATÔMICO DE BOHR 1913 Niels Bohr (1885-1961) +sico dinamarquês, trabalhou com Rutherford Modelo atômico de Rutherford Lembre que: havia dificuldades para explicar: u u Como um átomo poderia ser estável

Leia mais

2. A ORIGEM DA CONSTANTE DE NEGRO

2. A ORIGEM DA CONSTANTE DE NEGRO QUANTIZAÇÃO . INTRODUÇÃO O No final do século XIX acreditava-se, em geral, que todos os fenômenos naturais poderiam ser descritos mediante: Leis de Newton, Leis da Termodinâmica, e Leis do Eletromagnetismo.

Leia mais

NÚMEROS QUÂNTICOS. As teorias da MECÂNICA QUÂNTICA (Planck, De Broglie, Schrödinger e Heisenberg e outros), auxiliam na identificação dos elétrons.

NÚMEROS QUÂNTICOS. As teorias da MECÂNICA QUÂNTICA (Planck, De Broglie, Schrödinger e Heisenberg e outros), auxiliam na identificação dos elétrons. NÚMEROS QUÂNTICOS As teorias da MECÂNICA QUÂNTICA (Planck, De Broglie, Schrödinger e Heisenberg e outros), auxiliam na identificação dos elétrons. Prof. Ailey Aparecida Coelho Tanamati Mecânica = movimento

Leia mais

Tubos de Crookes e a descoberta do elétron

Tubos de Crookes e a descoberta do elétron Tubos de Crookes e a descoberta do elétron (A) Efeito de um obstáculo no caminho dos raios catódicos. Raios Catódicos High voltage source of high voltage shadow Resultados independem do gás usado para

Leia mais

AULA 01 TEORIA ATÔMICA COMPLETA

AULA 01 TEORIA ATÔMICA COMPLETA AULA 01 TEORIA ATÔMICA COMPLETA - ESTRUTURA ATÔMICA; - MODELOS ATÔMICOS; - ESPECTROSCOPIA ATÔMICA; - PROPRIEDADES ONDULATÓRIAS DOS ELÉTRONS; - NÚMEROS QUÂNTICOS E DISTRIBUIÇÃO ELETRÔNICA. QUÍMICA estudo

Leia mais

Radiação electromagnetica

Radiação electromagnetica Radiação electromagnetica A radiação eletromagnética é uma forma de energia absorvida e emitida por partículas com carga elétrica quando aceleradas por forças. Ao nível subatómico, a radiação eletromagnética

Leia mais

ESTRUTURA ATÔMICA. Prof. Dr. Cristiano Torres Miranda Disciplina: Química Geral I QM81B Turmas Q13 e Q14

ESTRUTURA ATÔMICA. Prof. Dr. Cristiano Torres Miranda Disciplina: Química Geral I QM81B Turmas Q13 e Q14 ESTRUTURA ATÔMICA Prof. Dr. Cristiano Torres Miranda Disciplina: Química Geral I QM81B Turmas Q13 e Q14 TEORIA ATÔMICA DA MATÉRIA Demócrito e Leucipo (discípulo) (460 370 a.c.) Aristóteles (384 a.c. 322

Leia mais

h mc 2 =hν mc 2 =hc/ λ

h mc 2 =hν mc 2 =hc/ λ Louis de Broglie investigou as propriedades ondulatórias da matéria na década de 30. Ele supôs que o e-, em seu movimento ao redor do núcleo, tinha associado a ele um λ. Ele igualou as duas expressões

Leia mais

CLIMATOLOGIA. Radiação solar. Professor: D. Sc. João Paulo Bestete de Oliveira

CLIMATOLOGIA. Radiação solar. Professor: D. Sc. João Paulo Bestete de Oliveira CLIMATOLOGIA Radiação solar Professor: D. Sc. João Paulo Bestete de Oliveira Sistema Solar Componente Massa (%) Sol 99,85 Júpiter 0,10 Demais planetas 0,04 Sol x Terra massa 332.900 vezes maior volume

Leia mais

3) Quais são os valores possíveis do número quântico magnético de spin? a) -1,- ½,0, ½,1 b) 0 e + ½ c) 1, 0 e +1 d) 0, 1, 2, 3,...

3) Quais são os valores possíveis do número quântico magnético de spin? a) -1,- ½,0, ½,1 b) 0 e + ½ c) 1, 0 e +1 d) 0, 1, 2, 3,... Fundamentos de Física Capítulo 40 Tudo sobre átomos. Questões Múltipla escolha cap. 40 Fundamentos de Física Halliday Resnick Walker 1) Qual das opções abaixo não é uma propriedade dos átomos? a) Os átomos

Leia mais

UNIVERSIDADE DE SÃO PAULO - Instituto de Química - Estrutura Atômica. Radiação eletromagnética, espectros de linhas, átomos de Bohr... Hermi F.

UNIVERSIDADE DE SÃO PAULO - Instituto de Química - Estrutura Atômica. Radiação eletromagnética, espectros de linhas, átomos de Bohr... Hermi F. UNIVERSIDADE DE SÃO PAULO - Instituto de Química - Estrutura Atômica Radiação eletromagnética, espectros de linhas, átomos de Bohr... Hermi F. Brito hefbrito@iq.usp.br QFL 1101 Química Geral I, 8-03-017

Leia mais

Aula-11. (quase) Tudo sobre os átomos

Aula-11. (quase) Tudo sobre os átomos Aula-11 (quase) Tudo sobre os átomos Algumas propriedades: Átomos são estáveis (quase sempre) Os átomos se combinam (como o fazem é descrito pela mecânica quântica) Os átomos podem ser agrupados em famílias

Leia mais

Distribuição da radiação* ESPECTRO

Distribuição da radiação* ESPECTRO ESPECTROSCOPIA intensidade INFORMAÇÃO Distribuição da radiação* ESPECTRO Através do espectro de um objeto astronômico pode-se conhecer informações sobre temperatura, pressão, densidade, composição química,

Leia mais

Átomos, Moléculas e Íons

Átomos, Moléculas e Íons Universidade Federal dos Vales do Jequitinhonha e Mucuri Bacharelado em Ciência e Tecnologia Diamantina - MG Átomos, Moléculas e Íons Química Tecnológica I Prof a. Dr a. Flaviana Tavares Vieira A origem

Leia mais

Max Planck Pai da Física Quantica

Max Planck Pai da Física Quantica A Mecânica Quântica é a parte da física que estuda o movimento dos corpos microscópicos em altas velocidades. As principais conclusões da Física Quântica são que, em estados ligados, a energia não se troca

Leia mais

ATOMÍSTICA PROF. ADRIANO ALVES

ATOMÍSTICA PROF. ADRIANO ALVES ATOMÍSTICA PROF. ADRIANO ALVES Demócrito Aristóteles Dalton Thomson Bohr Rutherford Sommerfeld Heisenberg Schrödinger De Broglie DALTON 1. Toda matéria é formada de partículas fundamentais, os átomos.

Leia mais

A teoria quântica antiga AULA

A teoria quântica antiga AULA 3 AULA METAS: Mostrar as dificuldades enfrentadas pela física clássica na explicação da estabilidade dos átomos e da estrutura dos espectros atômicos. Introduzir o modelo de Bohr para o átomo de um elétron.

Leia mais

Estrutura da Matéria Lista 3

Estrutura da Matéria Lista 3 Estrutura da Matéria - 2018.2 Lista 3 1. Em 1820, o filósofo Auguste Comte declarou ser possível ao ser humano saber sobre tudo, menos do que são feitas as estrelas. Ele estava correto? Como os astrofísicos

Leia mais

Universidade Federal do Tocantins

Universidade Federal do Tocantins Universidade Federal do Tocantins Modelos atômicos Prof. Dr. Edenilson dos Santos Niculau enicolau@uft.edu.br Blog: profedenilsonniculau.wordpress.com 2 Sumário MODELOS ATÔMICOS Estrutura atômica Teoria

Leia mais

Modelos atômicos. Curso de Química. Prof. Rui Medeiros. quimicadorui.com.br

Modelos atômicos. Curso de Química. Prof. Rui Medeiros. quimicadorui.com.br Modelos atômicos Curso de Química Prof. Rui Medeiros quimicadorui.com.br Módulo Extra - 2017 2 CURSO DE QUÍMICA PROFESSOR RUI MEDEIROS MÓDULO EXTRA - 2017 Modelos atômicos ü A representação esquemática

Leia mais

Biofísica Bacharelado em Biologia

Biofísica Bacharelado em Biologia Biofísica Bacharelado em Biologia Prof. Dr. Sergio Pilling PARTE B Capítulo 6 Conceitos basicos sobre radiação. Modelos atómico e niveis de energia. Radiaoatividade. Objetivos: Nesta aula veremos alguns

Leia mais

Aula anterior. Equação de Schrödinger a 3 dimensões. d x 2m - E -U. 2m - E -U x, y, z. x y z x py pz cin cin. E E ( x, y,z ) - 2m 2m x y z

Aula anterior. Equação de Schrödinger a 3 dimensões. d x 2m - E -U. 2m - E -U x, y, z. x y z x py pz cin cin. E E ( x, y,z ) - 2m 2m x y z 6/Maio/2013 Aula 21 Efeito de túnel quântico: decaimento alfa. Aplicações: nanotecnologias; microscópio por efeito de túnel. Equação de Schrödinger a 3 dimensões. Átomo de hidrogénio Modelo de Bohr 8/Maio/2013

Leia mais

O átomo de Rutherford

O átomo de Rutherford O átomo de Rutherford Elétrons orbitando o núcleo F Elétrica F Centrifúga Quando uma carga elétrica muda de velocidade ou direção, ela deve irradiar energia. Radiação Eletromagnética É o produto de campos

Leia mais

Modelos atômicos. Juliana Soares Grijó Escola Olímpica de Química - EOQ

Modelos atômicos. Juliana Soares Grijó Escola Olímpica de Química - EOQ Modelos atômicos Juliana Soares Grijó Escola Olímpica de Química - EOQ O que é um modelo? Modo simples de descrever fenômenos e predizer resultados científicos. É incompleto e incorreto Deve-se usar modelos

Leia mais

CURSO SUPERIOR DE TECNOLOGIA EM MECATRÔNICA INDUSTRIAL. Prof.: Cristiano Luiz Chostak Disciplina: Química Tecnológica (QMT12)

CURSO SUPERIOR DE TECNOLOGIA EM MECATRÔNICA INDUSTRIAL. Prof.: Cristiano Luiz Chostak Disciplina: Química Tecnológica (QMT12) CURSO SUPERIOR DE TECNOLOGIA EM MECATRÔNICA INDUSTRIAL Prof.: Cristiano Luiz Chostak Disciplina: Química Tecnológica (QMT12) Atomística: Estrutura atômica básica O modelo atômico de Dalton O modelo atômico

Leia mais

Física D Superintensivo

Física D Superintensivo Física D Superintensivo Exercícios 01) C 0) E 09) C 10) D Uma das aplicações do Teorema de Stevin são os vasos comunicantes Num líquido que está em recipientes interligados, cada um deles com formas e

Leia mais

A Estrutura Eletrônica dos Átomos. Prof. Fernando R. Xavier

A Estrutura Eletrônica dos Átomos. Prof. Fernando R. Xavier A Estrutura Eletrônica dos Átomos Prof. Fernando R. Xavier UDESC 2015 Estrutura Atômica, Antencedentes... Modelos de Demócrito, Dalton, Thomson, etc 400 a.c. até 1897 d.c. Nascimento da Mecânica Quântica

Leia mais

Valter L. Líbero EFC

Valter L. Líbero EFC Valter L. Líbero EFC - 2012 1- Teoria Atômica 2- Interação Matéria Radiação 3- Relatividade Referências: Tipler e Llewellyn J. P. McEvoy E Oscar Zarate O Conceito de Átomo Demócrito (o grego), 450 ac:

Leia mais

A distância Sol-Terra para um observador fixo na Terra é L0 com velocidade v = 0,6c, essa distância é de 10

A distância Sol-Terra para um observador fixo na Terra é L0 com velocidade v = 0,6c, essa distância é de 10 1.Com relação à teoria da relatividade especial e aos modelos atômicos podemos afirmar que: ( ) A velocidade da luz no vácuo independe da velocidade da fonte de luz. ( ) As leis da física são as mesmas

Leia mais

Qímica Estrutura At mica

Qímica Estrutura At mica Q ímica Estrutura At mica MODELOS ATÔMICOS Modelo dos Filósofos Gregos: Leucipo (500 a.c.) e Demócrito (460 a.c.) Indestrutível, indivisível e maciço. Modelo baseado apenas na intuição e na lógica. Aristóteles

Leia mais

Energia É definida como tudo aquilo capaz de realizar ou produzir trabalho. Ela existe em diversas modalidades sob várias formas:

Energia É definida como tudo aquilo capaz de realizar ou produzir trabalho. Ela existe em diversas modalidades sob várias formas: 1. Instalações Elétricas de Baixa Tensão: 1.1. Introdução A energia elétrica está presente em inúmeras atividades do ser humano. Ela é sinônimo de desenvolvimento de um país e de padrão de vida de sua

Leia mais

01. (ITA ) A tabela abaixo mostra os níveis de energia de um átomo do elemento X que se encontra no estado gasoso.

01. (ITA ) A tabela abaixo mostra os níveis de energia de um átomo do elemento X que se encontra no estado gasoso. 01. (ITA - 1999) A tabela abaixo mostra os níveis de energia de um átomo do elemento X que se encontra no estado gasoso. E 0 0 E 1 7,0 ev E 2 13,0 ev E 3 17,4 ev Ionização 21,4 ev Dentro das possibilidades

Leia mais

Elétrons como ondas? Um bom modelo deve ser capaz de explicar propriedades atômicas, propriedades periódicas, ligação química

Elétrons como ondas? Um bom modelo deve ser capaz de explicar propriedades atômicas, propriedades periódicas, ligação química OS ELÉTRONS O MODELO DA MECÂNICA QUÂNTICA E AS ENERGIAS ELETRÔNICAS Modelo atual se baseia na MECÂNICA QUÂNTICA Considera os conceitos da quantização da energia eletrônica (Bohr), fornecendo uma explicação

Leia mais

Aula 17 Tudo sobre os Átomos

Aula 17 Tudo sobre os Átomos Aula 17 Tudo sobre os Átomos Física 4 Ref. Halliday Volume4 Sumário Algumas propriedades dos átomos; O spin do elétron; Momento Angular e momento magnético; O experimento de Stern-Gerlach; O princípio

Leia mais

Estrutura dos Materiais. e Engenharia dos Materiais Prof. Douglas Gouvêa

Estrutura dos Materiais. e Engenharia dos Materiais Prof. Douglas Gouvêa Ligações Químicas e Estrutura dos Materiais PMT 5783 - Fundamentos de Ciência e Engenharia dos Materiais Prof. Douglas Gouvêa Objetivos Descrever a estrutura atômica e suas conseqüências no tipo de ligação

Leia mais

I. Paulino* Mecânica Quântica I ( ) - Capítulo 01. *UAF/CCT/UFCG - Brasil. Origens da Mecânica Quântica Teoria Quântica Exercícios

I. Paulino* Mecânica Quântica I ( ) - Capítulo 01. *UAF/CCT/UFCG - Brasil. Origens da Mecânica Quântica Teoria Quântica Exercícios AS ORIGENS DA MECÂNICA QUÂNTICA Mecânica Quântica I (1108045) - Capítulo 01 I. Paulino* *UAF/CCT/UFCG - Brasil 2014.2 1 / 63 Origens da Mecânica Quântica Partículas e ondas Radiação do corpo negro Efeito

Leia mais

Física Moderna. A quantização da energia. Dualidade onda-partícula. O efeito fotoelétrico.

Física Moderna. A quantização da energia. Dualidade onda-partícula. O efeito fotoelétrico. Física Moderna A quantização da energia. Dualidade onda-partícula. O efeito fotoelétrico. Efeito fotoelétrico Quando uma radiação eletromagnética incide sobre a superfície de um metal, elétrons podem ser

Leia mais

Uma breve história do mundo dos quanta. Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso

Uma breve história do mundo dos quanta. Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso Uma breve história do mundo dos Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso Tópicos da Segunda Aula Abordagem histórica Radiação de corpo negro Efeito fotoelétrico Espalhamento Compton

Leia mais