Teoria dos Números e suas aplicações

Tamanho: px
Começar a partir da página:

Download "Teoria dos Números e suas aplicações"

Transcrição

1 Teora dos Números e suas aplações Lus Armando dos Santos Júnor e Antôno arlos Noguera Unversdade Federal de Uberlânda Abrl- 009 :Orentando Programa de Eduação tutoral do urso de Matemáta. E-mal: anarexmg@ahoo.om.br : Orentador. E-mal: anoguera@ufu.br Resumo Este trabalho tem omo obetvo mostrar através de demonstrações, exposção de defnções e exemplos algumas aplações de Teora dos Números, em partular aplações na rptografa e alendáros. onsderações Prelmnares Para a aplação de Teora dos Números em rptografa é neessáro que se relembre algumas defnções e teoremas mportantes para entendmento do proesso. Defnção : Sea n um número ntero postvo. Dos nteros a e b são dtos ongruentes módulo n, smbolzado por a b(mod se n dvde a dferença a b ; ou sea, a b n para algum ntero. Defnção : Uma equação da forma ax b(mod, om a, b e n nteros é hamada de ongruêna lnear, e omo solução desta equação dzemos que é um ntero x 0 para o qual ax b(mod. 0 n Função ϕ de Euler: Para n, exste que denota o número de nteros postvos que são relatvamente prmos de n e que não são maores que n. Teorema : Se p é um prmo e > 0, então p p p p ( Demonstração: laro que, md( n, p se e somente se p não dvde n. Exstem nteros entre e p dvsíves por p, ou sea, p, Já que {,,..., p } ontêm exatamente p, então pela defnção da função φ, p, 3 p,..., ( p p p p p p nteros que são relatvamente prmos om p p p. r Teorema : Se o ntero n > tem uma fatoração em prmos n p p... p, então ( p n p p ( p p... p pr...( p r r p r r r

2 Demonstração: Pretende-se usar ndução em r o número de fatores prmos dstntos de n. Pelo Teorema, o resultado é verdadero para r. Suponha que é verdadero para r. Já que md ( p p... p, p Da defnção de função multplatva, temos ( p p... p p p... p p p... p p p Através da ndução têm-se então que p p... p ( p p ( p p...( p p onluu-se os passos da ndução e a demonstração do teorema. Lema : Sea n > e md ( a,. Se a, a,..., aφ ( são os nteros postvos menores que n que são relatvamente prmos om n, então aa, aa,..., aaφ ( são ongruentes módulo n om a, a,..., aφ ( em qualquer ordem. Demonstração: Observe que não há dos nteros aa, aa,..., aaφ ( que são ongruentes módulo n. Para aa aa (mod, om <, então a le do anelamento permte que a a (mod, daí a a que é um absurdo. Além dsso, omo md( a, para todo e md ( a,, o fato de φ ser uma função multplatva garante que ada aa é relatvamente prmo de n. Para um aa partular exste um úno ntero b, onde aa b(mod. omo md( b, md( aa, b deve ser um dos nteros a, a,..., aφ (. 0 b < n, para o qual Teorema 3 (Teorema de Euler: Se n e md ( a,, então a n (mod. Demonstração: Não há problema em pegar n >. Sea a, a,..., aφ ( os nteros postvos menores que n que são relatvamente prmos om n. omo md ( a,, segue do lema que aa, aa,..., aaφ ( são ongruentes, não neessaramente em ordem de aparêna, om a, a,..., aφ (. Logo onde aa aa M aa a (mod a (mod M a (mod n a, a,..., aφ ( são os nteros, a,..., a ( produto dessas φ ( ongruênas, têm-se e então ( aa ( aa a a... a a a φ em alguma ordem qualquer. Fazendo o...( aa (mod a a... a (mod ( a a a a a... a (mod...

3 omo o md( a, para ada, então pela função φ ser multplatva mpla que md a a... a φ n,. Logo, pode-se dvdr os dos lados da ongruêna pelo fator omum ( (, a a ( a,..., φ, dexando apenas a n (mod Defnção 3: Para um número real arbtráro x, nós denotamos por [ x ] o maor ntero menor ou gual a x ; ou sea, [ x ] é o úno ntero que satsfaz x < [ x] x. Aplação na rptografa rptografa: Do grego Krptos sgnfando esonddo e graphen sgnfando esrever, ou sea, é a êna de fazer as omunações nntelgíves para todos exeto órgãos autorzados. Na lnguagem de rptografa, os ódgos são as fras e a nformação neles esonddos é hamado texto plano. Após a transformação do texto plano em sua forma sereta, este passa a ser hamado texto frado. rptografa de Júlo ésar: Um dos prmeros sstemas de rptografa, usado pelo grande mperador romano Júlo ésar por volta de 50 anos A.. Este sstema usava uma substtução rudmentar de fras, o qual onssta de apenas de substtur ada letra do alfabeto pela letra 3 posções abaxo no alfabeto, om as últmas 3 letras orrespondentes as 3 prmeras respetvamente, ou sea, em lo. Representando o texto plano e o texto frado orrespondente, têm-se: Texto plano: ABDEFGHIJKLMNOPQRSTUVWXZ Texto frado: DEFGHIJKLMNOPQRSTUVWXZAB Por exemplo, a mensagem FAMAT EM REVISTA é transformada no texto frado IDPDW HP UHMVWD O método de ésar pode falmente ser desrto usando-se teora das ongruênas. Expressando o texto plano numeramente transferndo os arateres do texto em dígtos através da segunte relação A B D E F G H I J K L M N O P Q R S T U V W X Z Se P é o dígto equvalente a uma letra do texto plano e é o dígto equvalente a letra no texto frado, então P 3(mod 6 Por exemplo, onvertendo-se as letras da mensagem para seus orrespondentes numéros Usando-se a ongruêna ama, obtêm-se Para reuperar a mensagem a partr de um texto frado, basta usar a ongruêna P 3 3(mod 6 O método de ésar é muto smples e extremamente nseguro. Um sstema de rptografa no qual ada letra é substtuída por uma mesma fra é onhedo omo fra monoalfabéta. Este tpo de rptografa é extremamente vulnerável aos métodos estatístos de ataque á que o método preserva a freqüêna de letras ndvduas. Um sstema polalfabéto sera aquele

4 que uma mesma letra do texto plano orresponde a dferentes fras nlusve em uma mesma mensagem. Método da palavra have: Este método fo publado pelo rptográfo Blase de Vgenère ( em Traté de hffres de 586. O método de Blase é um sstema polalfabéto, para mplementar este sstema ambas partes omunantes ombnaram o uso de uma palavra ou frase de fál reordação. om o alfabeto transformado em dígtos onforme a tabela anteror, os dígtos equvalentes a palavra-have é repetdo quantas vezes neessáras sob os dígtos orrespondentes ao texto plano. A mensagem então sera odfada através da adção, módulo 6, de ada número do texto plano om o número medatamente abaxo dele. Para lustrar o proesso usa-se a palavra-have MAT, a qual tem versão numéra Sea a mensagem RIPTOGRAFIA uo equvalente numéro é , usando-se do método têm-se quando as olunas são adonadas módulo 6 têm-se onvertendo em fras ORBBTHSRTRIT Note que uma mesma letra do texto plano é representada por mas de uma letra dferente no texto frado (observe o I, o fato de que para o A e R repetram foram meras ondênas, tudo depende da esolha da palavra have. Em geral, qualquer seqüêna de n letras om equvalentes numéros b b,..., b ( 00 5, b servrá omo palavra-have. O texto plano da mensagem é representado omo bloos suessvos P P... P frado uos bloos são n de n nteros de dos dígtos... n por meo das ongruênas P, e então onvertdo para o texto P b (mod 6 n A deodfação é pelas relações P b (mod 6 n Por ausa da dstrbução das letras do texto frado em relação ao texto plano ser tão obsura o sstema fo pensado omo nquebrável, porém a fraqueza no métode de Vgenère é que uma vez determnado o tamanho n da palavra-have, uma mensagem rptografada pode ser reuperada omo sendo feta de n fras monoalfabétas, sendo feto a análse de freqüêna de ada uma. Método de Lester Hll: Em 99, Lester Hll, um professor de matemáta assstente no olégo Hunter rou um método de rptografa que se baseava em dvdr o texto plano em bloos de n letras (possvelmente ompletando o últmo bloo por letras determnadas, X por exemplo, e então odfar bloo por bloo usando um sstema lnear de n ongruênas om n varáves. Numa forma smples ( n o proedmento seleona duas letras suessvas e transforma seus equvalentes numéros P P em um bloo de números do texto frado através do par de ongruênas ap bp (mod 6 P dp (mod 6 Para permtr a deodfação, os oefentes a, b,, d devem ser seleonados de modo que md ( ad b,6. Para lustrar o método de Hll, onsdere as ongruênas n

5 P 3P (mod 6 5P 8P (mod 6 para odfar a mensagem BU NOW. O prmero bloo BU de duas letras é numeramente equvalente a 0 0, de aordo om o quadro anteror. Substtundo (mod 6 ( ( 5(0 8( (mod 6 ontnuando duas letras por vez, enontram-se os números do texto frado que pode ser expresso alfabetamente por KJJ QQM. Deodfação requer a resolução do sstema orgnal de ongruênas para P e P em termos de e. Logo P 8 3 (mod 6 P 5 (mod 6 Para o bloo 0 09 do ódgo, alula-se P 8(0 3( (mod 6 P 5(0 (09 3 0(mod 6 Que orrespondem as letras orgnas BU. O restante do texto plano pode ser restaurado de manera smlar. rptografa de have-públa: Nos métodos anterores o emssor e o reeptor da mensagem onheam o ódgo sereto da odfação, a have do método, e somente eles. No método de have públa exstem duas haves, uma públa lberada para qualquer um que desear envar a mensagem ao reeptor onsegur odfar e uma sereta para deodfação que apenas o reeptor onhee. Método RSA de rptografa: Em 977, R. Rvest, A. Shamr e L. Adleman propuseram um método de have públa que usa somente déas elementares de teora dos números. A segurança do método depende da orrente tenologa omputaonal, a fatoração de números ompostos om grandes números prmos é om erteza ansatva. ada usuáro do sstema RSA esolhe um par de prmos dstntos, p e q, grandes o sufente para que a fatoração de seu produto n pq, hamado de módulo odfador, va além de qualquer apadade omputaonal. Por exemplo, pode-se esolher p e q om 00 dígtos ada, deste modo n terá em torno de 00 dígtos. Seleonado n, o usuáro esolhe um ntero postvo qualquer, o expoente odfador, de modo que satsfaça md (,. O par ( n, é oloado em um arquvo públo, análogo a uma lsta telefôna, omo have de odfação para os usuáros. Isto permte que qualquer um, na rede de omunação, odfque uma mensagem e enve ao reeptor. Note que apesar de n ser aessível a todos, sto não sgnfa que os fatores p e q seam, p e q fatores prmos de n. O proesso de odfação se na om a onversão da mensagem em um ntero M por meo do alfabéto dgtal abaxo no qual ada letra, número ou símbolos do texto plano é substtuído por um ntero de dos dígtos.

6 A00 K0 U0 30 B0 L V 3 0 M W 33 D03 N3 X3 33 E0 O 53 F05 P5 Z5 635 G06 Q6,6 736 H07 R I08 S8?8 938 J09 T9 09!39 om 99 ndando espaço entre palavras. Neste esquema, a mensagem THE BROWN FIX IS QUIK é transformada para o número ntero M Assume-se que M < n, onde n é módulo odfador. Do ontráro sera mpossível dstngur M de qualquer ntero maor que sea ongruente a ele módulo n. Quando a mensagem é muto longa para ser analsada omo um úno número M < n, então M é quebrado em bloos de dígtos M, M,..., M s de tamanho aproprado. ada bloo é odfado separadamente. Usando da have públa ( n,, o emssor odfa a mensagem do número M (que representa o texto plano e transforma em número do texto frado r elevando M a -ésma potêna e reduzndo o resultado módulo n, ou sea M r(mod Uma mensagem de 00 arateres pode ser odfada em segundos em um omputador de alta velodade. Lembrando que o expoente odfador fo orgnalmente seleonado pela ondção md (,. Apesar de exstr mutas esolhas boas para, uma sugestão óbva é de esolher omo sendo um número prmo maor que p e q. Por outro lado, para determnação da have de odfação, prmero determna-se o ntero, o expoente de reuperação sereto, para o qual (mod Já que md (,, esta ongruêna lnear tem uma solução úna módulo φ (. De fato, o algortmo euldano produz omo solução da equação x O expoente de reuperação pode somente ser alulado por alguém que onhee p e q, fatores prmos de n. Logo, é desonhedo para todos om exeção do reeptor. Logo, om a have de deodfação determnada pode se reuperar o número M à partr de r smplesmente alulando r módulo n. Já que t para algum ntero t, segue-se que t t t ( M M M ( M M M (mod r de aordo om o Teorema 3 ama e sempre que md ( M,. Em outras palavras, elevando-se o número do texto frado a -ésma potêna e reduzndo módulo n reuperase o número orgnal M orrespondente ao texto plano. Teve-se que assumr que md ( M, para poder usar o Teorema 3 (Teorema de Euler. No aso em que M e n não seam relatvamente prmos, um argumento smlar estabelee

7 que r M (mod p e r M (mod q, o que nos dá a ongruêna deseada r M (mod. A maor vantagem deste método é que a odfação de uma mensagem não requer o onhemento dos dos prmos p e q, mas somente de seu produto n, ou sea, não há neessdade de nnguém além do reeptor da mensagem saber os fatores prmos essenas para a deodfação. O método dreto de ataque ao método sera a tentatva de fatoração de n, um ntero de grande magntude. Uma vez que seus fatores forem determnados, o expoente reuperador pode ser alulado a partr de n ( p ( q e. Porém essa fatoração dependerá da apadade omputaonal e do tamanho de n, quanto maor mas dfíl a fatoração. Aplação nos alendáros Nosso alendáro, o alendáro Gregorano, vem desde a segunda metade do séulo XVI. O alendáro anteror, ntroduzdo por Júlo ésar, fo baseado em um ano de 365 de das, om um ano bssexto de em anos. Esta não fo uma medda presa porque o ano solar é de aproxmadamente 365, das. Este pequeno erro faza om que o alendáro de ésar pulasse um da a ada 8 anos. Por volta do séulo XVI, o erro aumulado fez om que o º da da prmavera aísse da de março em vez do da orreto, de março. O papa Gregóro XIII orrgu essa dsrepâna em um novo alendáro, mposto nos prnpas países atólos da Europa. Fo deretado que 0 das seram omtdos no ano de 58, fazendo om que 5 de outubro vesse logo depos de de outubro daquele ano. Os anos bssextos seram os anos dvsíves por, exeto aqueles que fosse anos entenáros. Anos entenáros só seram bssextos se fossem dvsíves por 00. Obetvo: Dado uma data após o ano de 600 deve-se determnar a qual da da semana esta data orresponde usando Teora dos Números. Método: omo o da adonado no ano bssexto é 9 de feverero, vamos adotar omo º de março sendo o prmero da do ano e o últmo da de feverero omo sendo o últmo da do ano. De aordo om sso, no ano março e abrl são os prmero e segundo mês do ano, respetvamente. Janero e feverero do ano são ontados omo o º e o º mês do ano. Outra onvenêna é desgnar os das da semana por: Domngo Segunda Terça Quarta Qunta Sexta Sábado O número de das de um ano omum é 365 (mod 7, em anos bssextos exstem 366 (mod 7 das. Por 8 de feverero ser o 365º da do ano, e 365 (mod 7, 8 de feverero sempre a no mesmo da da semana que o anteror º de março do mesmo ano. Logo, o próxmo º de março é um da da semana depos do º de março do ano anteror. Mas se o próxmo º de março é depos de 9 de feverero, o da da semana orrespondente deve ser somado módulo 7. Sea D 600, o da da semana que representa o da º de março do ano de 600, então o º de março dos anos 60, 60, 603 é dado por D 600, D e D 3, respetvamente. Logo, o da prmero de março de um ano ( D é dado por: D D ( 600 (mod L

8 Onde L é o número de das de anos bssextos entre º de março de 600 e º de março do ano. O número de anos n no ntervalo de < n 600 que são dvsíves por é dado por: O número de anos entenáros é dado por: Dentre esses o número de anos bssextos são: Logo, o valor de L é dado por: onsderando-se o fato de que 600 D (º de março de 600 au numa quarta-fera: Uma fórmula alternatva para L pode ser feta esrevendo omo: : número de séulos e denota o número de anos daquele séulo. Substtundo: Logo, a ongruêna D aparee omo: Que se reduz a: Referênas Bblográfas - Burton, M. Davd- Elementar Number Theor- Ed. MGraw Hll- 5ª edção L (mod ( 3 L D < L 388(mod (00 3 D (mod 7 3 D

Rastreando Algoritmos

Rastreando Algoritmos Rastreando lgortmos José ugusto aranauskas epartamento de Físca e Matemátca FFCLRP-USP Sala loco P Fone () - Uma vez desenvolvdo um algortmo, como saber se ele faz o que se supõe que faça? esta aula veremos

Leia mais

Polos Olímpicos de Treinamento. Aula 10. Curso de Teoria dos Números - Nível 2. Divisores. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 10. Curso de Teoria dos Números - Nível 2. Divisores. Prof. Samuel Feitosa Polos Olímpcos de Trenamento Curso de Teora dos Números - Nível 2 Prof. Samuel Fetosa Aula 10 Dvsores Suponha que n = p α 1 2...pα é a fatoração em prmos do ntero n. Todos os dvsores de n são da forma

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR Matéra / Dscplna: Introdução à Informátca Sstema de Numeração Defnção Um sstema de numeração pode ser defndo como o conjunto dos dígtos utlzados para representar quantdades e as regras que defnem a forma

Leia mais

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA PROVA DE MATEMÁTICA DO VESTIBULAR 03 DA UNICAMP-FASE. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 37 A fgura abaxo exbe, em porcentagem, a prevsão da oferta de energa no Brasl em 030, segundo o Plano Naconal

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES O Danel Slvera pedu para eu resolver mas questões do concurso da CEF. Vou usar como base a numeração do caderno foxtrot Vamos lá: 9) Se, ao descontar uma promssóra com valor de face de R$ 5.000,00, seu

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

Resoluções dos testes propostos. T.255 Resposta: d O potencial elétrico de uma esfera condutora eletrizada é dado por: Q 100 9 10 Q 1,0 10 9 C

Resoluções dos testes propostos. T.255 Resposta: d O potencial elétrico de uma esfera condutora eletrizada é dado por: Q 100 9 10 Q 1,0 10 9 C apítulo da físca apactores Testes propostos ndade apítulo apactores Resoluções dos testes propostos T.55 Resposta: d O potencal elétrco de uma esfera condutora eletrzada é dado por: Vk 0 9 00 9 0,0 0 9

Leia mais

CAPÍTULO 1 Exercícios Propostos

CAPÍTULO 1 Exercícios Propostos CAPÍTULO 1 Exercícos Propostos Atenção: Na resolução dos exercícos consderar, salvo menção em contráro, ano comercal de das. 1. Qual é a taxa anual de juros smples obtda em uma aplcação de $1.0 que produz,

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Associação de resistores em série

Associação de resistores em série Assocação de resstores em sére Fg.... Na Fg.. está representada uma assocação de resstores. Chamemos de I, B, C e D. as correntes que, num mesmo nstante, passam, respectvamente pelos pontos A, B, C e D.

Leia mais

ASSOCIAÇÃO DE RESISTORES

ASSOCIAÇÃO DE RESISTORES Prof(a) Stela Mara de arvalho Fernandes SSOIÇÃO DE ESISTOES ssocação de esstores em Sére Dos ou mas resstores estão assocados em sére quando são percorrdos pela mesma corrente elétrca. omo U D Somando

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À ROBABILIDAD Conetos básos xpermento aleatóro ou fenômeno aleatóro Stuações ou aontementos ujos resultados não podem ser prevstos om erteza. Um expermento ou fenônemo que, se for observado

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

Capítulo 3-1. A 2ª Lei da Termodinâmica

Capítulo 3-1. A 2ª Lei da Termodinâmica Capítulo 3-1. A 2ª Le da ermodnâma Baseado no lvro: Atkns Pysal Cemstry Egt Edton Peter Atkns Julo de Paula 29-04-2007 Mara da Coneção Pava 1 A segunda le da termodnâma é baseada na experêna umana. odos

Leia mais

Capítulo. Associação de resistores. Resoluções dos exercícios propostos. P.135 a) R s R 1 R 2 R s 4 6 R s 10 Ω. b) U R s i U 10 2 U 20 V

Capítulo. Associação de resistores. Resoluções dos exercícios propostos. P.135 a) R s R 1 R 2 R s 4 6 R s 10 Ω. b) U R s i U 10 2 U 20 V apítulo 7 da físca Exercícos propostos Undade apítulo 7 ssocação de resstores ssocação de resstores esoluções dos exercícos propostos 1 P.15 a) s 1 s 6 s b) U s U 10 U 0 V c) U 1 1 U 1 U 1 8 V U U 6 U

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Insttuto de Físca de São Carlos Laboratóro de Eletrcdade e Magnetsmo: Transferênca de Potênca em Crcutos de Transferênca de Potênca em Crcutos de Nesse prátca, estudaremos a potênca dsspada numa resstênca

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

COEFICIENTES DE ATRITO

COEFICIENTES DE ATRITO Físia Geral I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protoolos das Aulas Prátias 003 / 004 COEFICIENTES DE ATRITO 1. Resumo Corpos de diferentes materiais são deixados, sem veloidade iniial, sobre um plano

Leia mais

Resíduos Quadráticos e Fatoração: uma aplicação à criptoanálise do RSA

Resíduos Quadráticos e Fatoração: uma aplicação à criptoanálise do RSA Resíduos Quadráticos e Fatoração: uma aplicação à criptoanálise do RSA Charles F. de Barros 20 de novembro de 2008 Resumo Faremos uma breve introdução ao conceito de resíduos quadráticos, descrevendo em

Leia mais

Dica : Para resolver esse exercício pegue o arquivo pontosm.txt, na página do professor.

Dica : Para resolver esse exercício pegue o arquivo pontosm.txt, na página do professor. Colégio Ténio Antônio Teieira Fernandes Disiplina ICG Computação Gráfia - 3º Anos (Informátia) (Lista de Eeríios I - Bimestre) Data: 10/03/2015 Eeríios 1) Elabore um proedimento em C++ que passe os pares

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

Interpolação Segmentada

Interpolação Segmentada Interpolação Segmentada Uma splne é uma função segmentada e consste na junção de váras funções defndas num ntervalo, de tal forma que as partes que estão lgadas umas às outras de uma manera contínua e

Leia mais

Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima.

Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima. Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima. 1 /2013 Para calcular Hom(G 1,G 2 ) ou Aut(G) vocês vão precisar ter em

Leia mais

Números Complexos. Conceito, formas algébrica e trigonométrica e operações. Autor: Gilmar Bornatto

Números Complexos. Conceito, formas algébrica e trigonométrica e operações. Autor: Gilmar Bornatto Números Complexos Conceto, formas algébrca e trgonométrca e operações. Autor: Glmar Bornatto Conceto (parte I) Os números complexos surgram para sanar uma das maores dúvdas que atormentavam os matemátcos:

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

¹CPTL/UFMS, Três Lagoas, MS,Brasil, oliveiralimarafael@hotmail.com. ²CPTL/UFMS, Três Lagoas, MS, Brasil.

¹CPTL/UFMS, Três Lagoas, MS,Brasil, oliveiralimarafael@hotmail.com. ²CPTL/UFMS, Três Lagoas, MS, Brasil. Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 36 INTRODUÇÃO A CRIPTOGRAFIA RSA Rafael Lima Oliveira¹, Prof. Dr. Fernando Pereira de Souza². ¹CPTL/UFMS, Três Lagoas,

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

3 Contínuo Generalizado

3 Contínuo Generalizado 3 Contínuo Generalzado Um meo ontínuo lásso é omposto por partíulas, dstrbuídas de manera unforme, sendo ada uma delas representadas por um ponto, aqu denomnado de P. Este ponto materal possu oordenadas

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

Equilíbrio Espacial de Preços

Equilíbrio Espacial de Preços Equlíbro Espaal de Preços Seam: ρ = S ( w) urva nversa da oferta assoada ao merado produtor ; π = D ( w) urva nversa da demanda assoada ao merado onsumdor ; C ( w ) usto margnal de transportes assoada

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Criptografia em Sistemas de Comunicação INTRODUÇÃO À CRIPTOGRAFIA. Aplicações em Sistemas de Comunicação. Terminologia

Criptografia em Sistemas de Comunicação INTRODUÇÃO À CRIPTOGRAFIA. Aplicações em Sistemas de Comunicação. Terminologia INTRODUÇÃO À CRIPTOGRAFIA Termnologa Crptografa em Sstemas de Comuncação Segurança e prvacdade das nformações transmtdas através dos sstemas de comuncação de dados. Proteção de nformações (confdencas)

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014 Aula 7: Crcutos Curso de Físca Geral III F-38 º semestre, 04 Ponto essencal Para resolver um crcuto de corrente contínua, é precso entender se as cargas estão ganhando ou perdendo energa potencal elétrca

Leia mais

Análise Econômica da Aplicação de Motores de Alto Rendimento

Análise Econômica da Aplicação de Motores de Alto Rendimento Análse Econômca da Aplcação de Motores de Alto Rendmento 1. Introdução Nesta apostla são abordados os prncpas aspectos relaconados com a análse econômca da aplcação de motores de alto rendmento. Incalmente

Leia mais

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito.

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito. Matemátca Fnancera Rendas Certas Prof. Benjamn Cesar Sére de Pagamentos Unforme e Peródca. Rendas Certas Anudades. É uma sequênca de n pagamentos de mesmo valor P, espaçados de um mesmo ntervalo de tempo

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Prof. Angelo Papa Neto 1 Máximo divisor comum Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum

Leia mais

IPC-W: Metodologia de Cálculo

IPC-W: Metodologia de Cálculo IPC-W: Metodologa de Cálulo EMAp/IBRE 2/novembro/207 O presente relatóro resume a metodologa de álulo do IPC-W, ontrastando om o álulo do IPC. Este proesso de álulo é posteror à extração e lmpeza dos dados,

Leia mais

Distribuição de Massa Molar

Distribuição de Massa Molar Químca de Polímeros Prof a. Dr a. Carla Dalmoln carla.dalmoln@udesc.br Dstrbução de Massa Molar Materas Polmércos Polímero = 1 macromolécula com undades químcas repetdas ou Materal composto por númeras

Leia mais

4 Critérios para Avaliação dos Cenários

4 Critérios para Avaliação dos Cenários Crtéros para Avalação dos Cenáros É desejável que um modelo de geração de séres sntétcas preserve as prncpas característcas da sére hstórca. Isto quer dzer que a utldade de um modelo pode ser verfcada

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M.

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M. Lsta de Exercícos de Recuperação do Bmestre Instruções geras: Resolver os exercícos à caneta e em folha de papel almaço ou monobloco (folha de fcháro). Copar os enuncados das questões. Entregar a lsta

Leia mais

2 Máquinas de Vetor Suporte 2.1. Introdução

2 Máquinas de Vetor Suporte 2.1. Introdução Máqunas de Vetor Suporte.. Introdução Os fundamentos das Máqunas de Vetor Suporte (SVM) foram desenvolvdos por Vapnk e colaboradores [], [3], [4]. A formulação por ele apresentada se basea no prncípo de

Leia mais

DOSAGEM DE TRAÇOS DE CONCRETO PARA OBRAS DE PEQUENO PORTE, PELO MÉTODO ACI/ABCP E MODELO PROPOSTO POR CAMPITELI. Junio de Matos Torres

DOSAGEM DE TRAÇOS DE CONCRETO PARA OBRAS DE PEQUENO PORTE, PELO MÉTODO ACI/ABCP E MODELO PROPOSTO POR CAMPITELI. Junio de Matos Torres 0 DOSAGE DE TRAÇOS DE ONRETO PARA OBRAS DE PEQUENO PORTE, PELO ÉTODO AI/ABP E ODELO PROPOSTO POR APITELI. Junio de atos Torres Garanhuns setembro de 2015 1 ONRETO DEFINIÇÃO onreto é basiamente o resultado

Leia mais

Equipas Educativas Para uma nova organização da escola. João Formosinho Joaquim Machado

Equipas Educativas Para uma nova organização da escola. João Formosinho Joaquim Machado Equpas Educatvas Para uma nova organzação da escola João Formosnho Joaqum Machado TRANSFORMAÇÕES NA ESCOLA BÁSICA TRANSFORMAÇÕES NA ESCOLA BÁSICA A expansão escolar e a mplementação das polítcas de nclusão

Leia mais

Fast Multiresolution Image Querying

Fast Multiresolution Image Querying Fast Multresoluton Image Queryng Baseado no artgo proposto por: Charles E. Jacobs Adan Fnkelsten Davd H. Salesn Propõe um método para busca em um banco de dados de magem utlzando uma magem de consulta

Leia mais

Capítulo 2. APROXIMAÇÕES NUMÉRICAS 1D EM MALHAS UNIFORMES

Capítulo 2. APROXIMAÇÕES NUMÉRICAS 1D EM MALHAS UNIFORMES Capítulo. Aproxmações numércas 1D em malhas unformes 9 Capítulo. AROXIMAÇÕS NUMÉRICAS 1D M MALHAS UNIFORMS O prncípo fundamental do método das dferenças fntas (MDF é aproxmar através de expressões algébrcas

Leia mais

Qual é Mesmo a Definição de Polígono Convexo?

Qual é Mesmo a Definição de Polígono Convexo? Qual é Mesmo a Definição de Polígono Convexo? Elon Lages Lima IMPA, Rio de Janeiro Quando pensamos num polígono convexo, imaginamos seus vértices todos apontando para fora, ou seja, que ele não possui

Leia mais

TE210 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS

TE210 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS TE0 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS Números Complexos Introdução hstórca. Os números naturas, nteros, raconas, rraconas e reas. A necessdade dos números complexos. Sua relação com o mundo

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO Alne de Paula Sanches 1 ; Adrana Betâna de Paula Molgora 1 Estudante do Curso de Cênca da Computação da UEMS, Undade Unverstára de Dourados;

Leia mais

Análise de Projectos ESAPL / IPVC. Taxas Equivalentes Rendas

Análise de Projectos ESAPL / IPVC. Taxas Equivalentes Rendas Análse de Projectos ESAPL / IPVC Taxas Equvalentes Rendas Taxas Equvalentes Duas taxas e, referentes a períodos dferentes, dzem-se equvalentes se, aplcadas a um mesmo captal, produzrem durante o mesmo

Leia mais

GUSTAVO TERRA BASTOS COMPARAÇÃO DE TÉCNICAS PARA O CÁLCULO DE IDEMPOTENTES GERADORES DE CÓDIGOS ABELIANOS

GUSTAVO TERRA BASTOS COMPARAÇÃO DE TÉCNICAS PARA O CÁLCULO DE IDEMPOTENTES GERADORES DE CÓDIGOS ABELIANOS GUSTAVO TERRA BASTOS COMPARAÇÃO DE TÉCNICAS PARA O CÁLCULO DE IDEMPOTENTES GERADORES DE CÓDIGOS ABELIANOS Dssertação apresentada à Unversdade Federal de Vçosa, como parte das exgêncas do Programa de Pós-Graduação

Leia mais

MECANISMOS DE CORROSÃO DE MATERIAIS METÁLICOS. APOSTILA PARA A DISCIPLINA PMT ª. Parte

MECANISMOS DE CORROSÃO DE MATERIAIS METÁLICOS. APOSTILA PARA A DISCIPLINA PMT ª. Parte MECANISMOS DE CORROSÃO DE MATERIAIS METÁLICOS APOSTILA PARA A DISCIPLINA PMT 2507 4ª. Parte Neusa Alonso-Falleros Abr/2008 2 CAPÍTULO 4 CINÉTICA DAS REAÇÕES DE ELETRODO QUE ENVOLVEM TRANSPORTE DE MASSA

Leia mais

3 Método Fast Multipole

3 Método Fast Multipole 22 3 Método Fast Multpole Nesse apítulo, apresenta-se o Método Fast Multpole (FMM), omo proposto por Greengard e Rokhln (1987). O algortmo fo eleto um dos 1 melhores do séulo XX (DONGARRA e SULLIVAN, 2).

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos T.446 Resposta: E f E Sendo amarela voleta, vem: E amarela E voleta A velodade dos fótons é a mesma e gual a. T.447 Resposta: b Max Plank onsderou que a energa radante não é emtda (ou absorvda) de modo

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

ESPELHOS E LENTES ESPELHOS PLANOS

ESPELHOS E LENTES ESPELHOS PLANOS ESPELHOS E LENTES 1 Embora para os povos prmtvos os espelhos tvessem propredades mágcas, orgem de lendas e crendces que estão presentes até hoje, para a físca são apenas superfíces poldas que produzem

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

Programa do Curso. Sistemas Inteligentes Aplicados. Análise e Seleção de Variáveis. Análise e Seleção de Variáveis. Carlos Hall

Programa do Curso. Sistemas Inteligentes Aplicados. Análise e Seleção de Variáveis. Análise e Seleção de Variáveis. Carlos Hall Sstemas Intelgentes Aplcados Carlos Hall Programa do Curso Lmpeza/Integração de Dados Transformação de Dados Dscretzação de Varáves Contínuas Transformação de Varáves Dscretas em Contínuas Transformação

Leia mais

Medidas de Tendência Central. Prof.: Ademilson Teixeira

Medidas de Tendência Central. Prof.: Ademilson Teixeira Meddas de Tendênca Central Prof.: Ademlson Texera ademlson.texera@fsc.edu.br 1 Servem para descrever característcas báscas de um estudo com dados quanttatvos e comparar resultados. Meddas de Tendênca Central

Leia mais

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2013-7-31 1/15 Como o Conhecimento Matemático é Organizado Definições Definição: um enunciado que descreve o significado de um termo.

Leia mais

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como:

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como: REGRESSÃO LOGÍSTCA. ntrodução Defnmos varáves categórcas como aquelas varáves que podem ser mensurados usando apenas um número lmtado de valores ou categoras. Esta defnção dstngue varáves categórcas de

Leia mais

Energia de deformação na flexão

Energia de deformação na flexão - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Energa de deformação na

Leia mais

Curso de Data Mining

Curso de Data Mining Aula 7 - Os algoritmos SPIRIT Curso de Data Mining Sandra de Amo O esquema geral dos algoritmos SPIRIT é o seguinte: ETAPA 1 : Etapa do relaxamento R Calula-se o onjunto L das sequênias frequentes que

Leia mais

PROBLEMAS SOBRE PONTOS Davi Máximo (UFC) e Samuel Feitosa (UFC)

PROBLEMAS SOBRE PONTOS Davi Máximo (UFC) e Samuel Feitosa (UFC) PROBLEMS SOBRE PONTOS Dav Máxmo (UFC) e Samuel Fetosa (UFC) Nível vançado Dstrbur pontos num plano ou num espaço é uma tarefa que pode ser realzada de forma muto arbtrára Por sso, problemas sobre pontos

Leia mais

Lista de Exercícios 4: Soluções Sequências e Indução Matemática

Lista de Exercícios 4: Soluções Sequências e Indução Matemática UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios : Soluções Sequências e Indução Matemática Ciências Exatas & Engenharias o Semestre de 05 O conjunto dos números racionais Q é enumerável, ou seja,

Leia mais

Resumos Numéricos de Distribuições

Resumos Numéricos de Distribuições Estatístca Aplcada à Educação Antono Roque Aula Resumos umércos de Dstrbuções As representações tabulares e grácas de dados são muto útes, mas mutas vezes é desejável termos meddas numércas quanttatvas

Leia mais

Probabilidade e Estatística I Antonio Roque Aula 4. Resumos Numéricos de Distribuições

Probabilidade e Estatística I Antonio Roque Aula 4. Resumos Numéricos de Distribuições Probabldade e Estatístca I Antono Roque Aula Resumos umércos de Dstrbuções As representações tabulares e grácas de dados são muto útes, mas mutas vezes é desejável termos meddas numércas quanttatvas para

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula.

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula. Probabldade e Etatítca I Antono Roque Aula Medda de Dperão A medda de tendênca central não ão ufcente para e caracterzar um conjunto de dado. O motvo é que ete varação na natureza, to é, dado que venham

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Sérgio Carvalho Matemática Financeira Simulado 02 Questões FGV

Sérgio Carvalho Matemática Financeira Simulado 02 Questões FGV Sérgio Carvalho Matemática Financeira Simulado 02 Questões FGV Simulado 02 de Matemática Financeira Questões FGV 01. Determine o valor atual de um título descontado (desconto simples por fora) dois meses

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE Preliminares No estudo de sistemas de controle, e comum usar-se diagramas de blocos, como o da figura 1. Diagramas de blocos podem ser utilizados

Leia mais

Eletrotécnica AULA Nº 1 Introdução

Eletrotécnica AULA Nº 1 Introdução Eletrotécnca UL Nº Introdução INTRODUÇÃO PRODUÇÃO DE ENERGI ELÉTRIC GERDOR ESTÇÃO ELEVDOR Lnha de Transmssão ESTÇÃO IXDOR Equpamentos Elétrcos Crcuto Elétrco: camnho percorrdo por uma corrente elétrca

Leia mais

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Defnções RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Problemas de Valor Incal PVI) Métodos de passo smples Método de Euler Métodos de sére de Talor Métodos de Runge-Kutta Equações de ordem superor Métodos

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA CAPÍTULO 1 AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA Talvez o conceito físico mais intuitivo que carregamos conosco, seja a noção do que é uma força. Muito embora, formalmente, seja algo bastante complicado

Leia mais

As leis de Kirchhoff. Capítulo

As leis de Kirchhoff. Capítulo UNI apítulo 11 s les de Krchhoff s les de Krchhoff são utlzadas para determnar as ntensdades de corrente elétrca em crcutos que não podem ser convertdos em crcutos smples. S empre que um crcuto não pode

Leia mais

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU 1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,

Leia mais

Perguntas Freqüentes - Bandeiras

Perguntas Freqüentes - Bandeiras Pergutas Freqüetes - Baderas Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte por lqudar a obrgação de forma parcelada

Leia mais

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Medida de Probabilidade

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Medida de Probabilidade Departaento de Inforátca Dscplna: do Desepenho de Ssteas de Coputação Medda de Probabldade Prof. Sérgo Colcher colcher@nf.puc-ro.br Teora da Probabldade Modelo ateátco que perte estudar, de fora abstrata,

Leia mais