Gliconeogénese. glicose-6-p + H 2 O glicose + Pi (1)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Gliconeogénese. glicose-6-p + H 2 O glicose + Pi (1)"

Transcrição

1 Gliconeogénese 1- A palavra gliconeogénese é, num sentido mais estrito, usada para designar colectivamente o conjunto de processos pelos quais o organismo pode converter substâncias não glicídicas (como aminoácidos, lactato, piruvato, glicerol e propionato) em glicose ou glicogénio. Num sentido mais amplo pode, porque tem alguns passos reactivos comuns, ser usado para incluir a conversão da frutose da dieta em glicose ou glicogénio. Num sentido ainda mais amplo pode incluir-se também a conversão da galactose em glicose sendo que, neste caso, o único passo comum é o que é catalisado pela glicose-6-fosfátase (ver equação 1). glicose-6-p + H 2 O glicose + Pi (1) 2- Durante o jejum aumenta a actividade lipolítica (hidrólise dos triacilgliceróis em glicerol e ácidos gordos) no tecido adiposo e a maioria dos órgãos (nomeadamente os músculos e o fígado) usa os ácidos gordos como combustível preferencial. Contudo, os eritrócitos e, em grande medida, os neurónios dependem do catabolismo da glicose para a síntese de ATP. Embora a glicogenólise hepática (formação de glicose a partir do glicogénio armazenado no fígado) seja, durante as primeiras horas de jejum, pelo menos tão importante como a gliconeogénese no processo de produção da glicose que é vertido no sangue [1], à medida que o tempo de jejum aumenta a gliconeogénese vai sendo cada vez mais importante. Após horas de jejum cerca de metade da glicose produzida pelo fígado provém da gliconeogénese e a outra metade da glicogenólise. 3- Quer na glicogenólise quer na gliconeogénese forma-se glicose-6-fosfato e a formação de glicose só pode ocorrer por hidrólise deste composto. Porque a enzima responsável por este processo (glicose-6-fosfátase 1 ; ver equação 1) existe no fígado, no rim e no intestino delgado (enterócitos) são estes os órgãos responsáveis pela manutenção de níveis de glicemia compatíveis com a actividade dos neurónios e dos eritrócitos durante o jejum. O fígado tem, neste contexto, um papel mais importante que o rim e muito mais importante que o intestino. O GLUT 2 é o transportador (uniporter) para a glicose que está presente na membrana citoplasmática destes órgãos: quando a concentração de glicose é maior no citoplasma que no plasma sanguíneo a glicose sai das células e o contrário acontece na condição inversa. 4- Três das enzimas da glicólise catalisam reacções fisiologicamente irreversíveis. A cínase da glicose (ou hexocínase IV) e a cínase da frutose-6-fosfato catalisam a fosforilação da glicose e da frutose-6-fosfato (ver equações 2 e 3). Na acção da cínase do piruvato, o fosfoenolpiruvato converte-se em piruvato e, simultaneamente, forma-se ATP (ver equação 4). ATP + glicose glicose-6-p + ADP (2) ATP + frutose-6-p ADP + frutose-1,6-bisfosfato (3) ADP + fosfoenolpiruvato ATP + piruvato (4) Na gliconeogénese, também são fisiologicamente irreversíveis as reacções catalisadas pelas enzimas que permitem a conversão de piruvato em fosfoenolpiruvato (carboxílase do piruvato, ver equação 5; e a carboxicínase do fosfoenolpiruvato, ver equação 6), a conversão de frutose-1,6-bisfosfato em frutose-6- P (frutose-1,6-bisfosfátase, ver equação 7) e a conversão de glicose-6-p em glicose (glicose-6-fosfátase, ver equação 1). ATP + H 2 O + piruvato + CO 2 ADP + Pi + oxalacetato (5) GTP + oxalacetato GDP + fosfoenolpiruvato + CO 2 (6) frutose-1,6-bisfosfato + H 2 O frutose-6-p + Pi (7) Assim, as conversões de glicose em glicose-6-p e de frutose-6-p em frutose-1,6-bisfosfato que são catalisadas por cínases na glicólise são revertidas pela acção de fosfátases na gliconeogénese. A conversão de fosfoenolpiruvato em piruvato na glicólise é revertida pela acção sequenciada de duas enzimas: a 1 A glicose-6-fosfátase é um enzima que está presente na face luminal do retículo endoplasmático do hepatócitos, das células tubulares renais e dos enterócitos. É frequentemente designada como o sistema glicose-6-fosfátase já que o acesso da glicose-6-fosfato ao centro activo da enzima assim como a saída do Pi formado dependem da acção de um transportador (um antiporter) que troca glicose-6-fosfato que entra por Pi que sai [Chen e al. (2008) Faseb J. 22, ]. Página 1 de 7

2 carboxílase de piruvato 2 que catalisa a formação de oxalacetato a partir de piruvato (processo anaplerótico) e a carboxicínase do fosfoenolpiruvato que catalisa a formação de fosfoenolpiruvato a partir de oxalacetato (processo cataplerótico). Nos órgãos capazes de gliconeogénese, a actividade relativa das enzimas envolvidas nas transformações referidas determina não apenas a velocidade mas também o sentido (anabólico ou catabólico) no metabolismo da glicose. 5- Muitas das enzimas envolvidas na gliconeogénese também participam na glicólise: catalisam reacções fisiologicamente reversíveis e o sentido em que estas reacções evoluem (anabólico ou catabólico) depende das concentrações citoplasmáticas dos compostos (reagentes e produtos) envolvidos nessas reacções. Essas enzimas são a enólase, a mútase do fosfoglicerato, a cínase do 3-fosfoglicerato (ver equação 8), a desidrogénase do gliceraldeído-3-fosfato (ver equação 9), a isomérase das trioses-fosfato (ver equação 10), a aldólase (ver equação 11) e a isomérase das hexoses-fosfato (ver equação 12). É de notar que, durante a gliconeogénese, a reacção catalisada pela cínase do 3-fosfoglicerato (ver equação 8) funciona no sentido em que se consome ATP e que é a oxidação hepática dos ácidos gordos quem fornece a energia necessária para a síntese deste ATP. É também de notar que, no decurso da gliconeogénese, na reacção catalisada pela desidrogénase do gliceraldeído-3-fosfato (ver equação 9), o NADH se oxida a NAD +, o contrário do que ocorre na glicólise. A oxi-redútase directamente responsável pela formação do NADH citoplasmático indispensável à gliconeogénese pode ser a desidrogénase do malato citoplasmática (ver equação 13), a desidrogénase do lactato (ver equação 14) e a desidrogénase do glicerol-3-fosfato citoplasmática (ver equação 15). ATP + 3-fosfoglicerato 1,3-bisfosfoglicerato + ADP (8) NADH + 1,3-bisfosfoglicerato NAD + + Pi + gliceraldeído-3-p (9) dihidroxiacetona-p gliceraldeído-3-p (10) dihidroxiacetona-p + gliceraldeído-3-p frutose-1,6-bisfosfato (11) frutose-6-p glicose-6-p (12) malato + NAD + oxalacetato + NADH (13) lactato + NAD + piruvato + NADH (14) glicerol-3-p + NAD + dihidroxicetona-p + NADH (15) 6- Os eritrócitos e os músculos produzem continuamente lactato. No caso dos músculos esta produção aumenta marcadamente aquando do exercício físico: os músculos dependem da glicólise anaeróbia para realizarem esforços que consomem ATP a uma velocidade maior que a velocidade de formação de ATP na fosforilação oxidativa. O lactato vertido no sangue pode, no fígado e no rim, ser convertido em glicose e por isso se diz que o lactato é um composto glicogénico. As enzimas e os transportadores envolvidas na conversão do lactato em glicose são o transportador de ácidos monocarboxílicos da membrana citoplasmática (simporte com um protão), a desidrogénase do lactato (ver equação 14), o simporter piruvato/h + da membrana interna da mitocôndria, a carboxílase do piruvato (ver equação 5), a carboxicínase do fosfoenolpiruvato da matriz da mitocôndria (ver equação 6), o transportador do fosfoenolpiruvato da membrana interna da mitocôndria, a enólase, a mútase do fosfoglicerato, a cínase do 3-fosfoglicerato (ver equação 8), a desidrogénase do gliceraldeído-3-fosfato (ver equação 9), a isomérase das trioses-fosfato (ver equação 10), a aldólase (ver equação 11), a frutose-1,6-bisfosfátase (ver equação 7), a isomérase das hexoses-fosfato (ver equação 12), a glicose-6-fosfátase (ver equação 1) e o GLUT2. É de notar que, quando o lactato é, isoladamente, encarado como o único substrato a ser consumido na gliconeogénese, o NADH necessário para acção catalítica da desidrogénase do gliceraldeído-3-p (ver equação 9) é formado aquando da acção da desidrogénase do lactato (ver equação 14). Ambas as desidrogénases são enzimas citoplasmáticas, de forma que, quer a redução do NAD + a NADH pelo lactato (ver equação 14), quer a oxidação do NADH a NAD + pelo 1,3- bisfosfoglicerato (ver equação 9) ocorrem no citoplasma. Se se considerar que, num dado momento, o lactato está a ser usado como o único substrato da gliconeogénese, a desidrogénase do malato não intervém no processo: todo o NADH necessário para a redução do 1,3-bisfosfoglicerato a gliceraldeído-3-fosfato pode ser fornecido aquando da conversão do lactato em piruvato e o composto que sai da mitocôndria é o fosfoenolpiruvato. O conjunto de reacções envolvidas na conversão de lactato em glicose pode ser resumido na seguinte equação soma: 2 lactato (C 3 H 6 O 3 ) + 2 GTP + 4 ATP + 6 H 2 O glicose (C 6 H 12 O 6 ) + 2 GDP +4 ADP + 6 Pi (16) 2 As carboxílases do piruvato e do propionil-coa são duas sintétases que contêm como grupo prostético a biotina (também designada, às vezes, de vitamina B8). Página 2 de 7

3 A formação da glicose a partir de lactato (processo endergónico) só é possível porque está acoplada com a hidrólise de ATP e do GTP (processos exergónicos) 3. O gasto de ATP ocorre aquando da acção da carboxílase do piruvato e da cínase do 3-fosfoglicerato (ver equações 5 e 8) enquanto o gasto de GTP ocorre aquando da acção da carboxicínase do fosfoenolpiruvato (ver equação 6). 7- A esmagadora maioria dos aminoácidos (as excepções são a lisina e a leucina) também são substratos da gliconeogénese. Em jejum aumenta a hidrólise das proteínas endógenas e o esqueleto carbonado da maioria dos aminoácidos libertados no processo hidrolítico pode gerar glicose no fígado. Neste contexto a alanina é particularmente importante e, por razões didácticas, destacaremos também o papel do glutamato. A alanina pode, por acção catalítica da transamínase da alanina (ver equação 17), gerar piruvato e o piruvato pode, através da acção da carboxílase do piruvato, gerar oxalacetato (ver equação 5). Quer a transamínase da alanina, quer a carboxílase do piruvato são enzimas da mitocôndria e, portanto, a conversão de alanina em oxalacetato ocorre na matriz mitocondrial. Não existe na membrana interna da mitocôndria transportador para o oxalacetato: a passagem do oxalacetato da matriz mitocondrial para o citoplasma envolve a desidrogénase do malato mitocondrial (oxidação do NADH a NAD + pelo oxalacetato; ver equação 13), o antiporter malato/α-cetoglutarato que catalisa a saída do malato da matriz para o citoplasma e a desidrogénase do malato citoplasmática (redução do NAD + a NADH pelo malato; ver equação 13). O oxalacetato citoplasmático é substrato da carboxicínase do fosfoenolpiruvato citoplasmática (ver equação 6) e o fosfoenolpiruvato citoplasmático formado pode, por acção das mesmas enzimas já referidas no ponto 6, converter-se em glicose. De notar que, se admitíssemos que a conversão da alanina em glicose envolvia as mesmas etapas descritas para o caso do lactato (concretamente, a carboxicínase do fosfoenolpiruvato mitocondrial a actuar directamente sobre o oxalacetato mitocondrial e a saída do fosfoenolpiruvato formado) a formação de NADH citoplasmático necessário para a conversão do 1,3-bisfosfoglicerato em gliceraldeído- 3-fosfato (ver equação 9) ficaria sem explicação. Na conversão de alanina em glicose é a acção da desidrogénase do malato citoplasmática (ver equação 13) que fornece o NADH necessário para a redução do 1,3-bisfosfoglicerato em gliceraldeído-3-fosfato (ver equação 9). O processo pode globalmente ser entendido como a lançadeira do malato a actuar em sentido inverso ao que foi descrito quando a ideia era explicar que o NADH formado no citoplasma podia ser oxidado na cadeia respiratória. Aquando da gliconeogénese a partir de alanina, considerada isoladamente, uma parte do NADH formado nos processos oxidativos (ciclo de Krebs) deixa de ser oxidado na cadeia respiratória servindo, directamente, para reduzir o oxalacetato a malato e, indirectamente, para reduzir o 1,3-bisfosfoglicerato a gliceraldeído-3-fosfato. alanina + -cetoglutarato piruvato + glutamato (17) 8- Todos os aminoácidos que, no decurso do seu catabolismo, geram intermediários do ciclo de Krebs (processos anapleróticos) são substratos da gliconeogénese. O glutamato servirá como exemplo. Através da acção de várias transamínases (ver equação 18) ou da desidrogénase do glutamato (ver equação 19) o glutamato converte-se em -cetoglutarato. Por acção de enzimas do ciclo de Krebs, o -cetoglutarato pode gerar malato que, saindo da mitocôndria, pode oxidar-se a oxalacetato (desidrogénase do malato citoplasmática; ver equação 13); o oxalacetato formado pode, via fosfoenolpiruvato, gerar glicose. Tal como no caso da alanina, também aqui, a enzima directamente responsável pela redução do NAD + citoplasmático é a desidrogénase do malato citoplasmática. glutamato + -cetoácido-x -cetoglutarato + -aminoácido-x (18) glutamato + NAD + -cetoglutarato + NH NADH (19) 3 No organismo como um todo ocorre continuamente um ciclo metabólico designado de ciclo de Cori. O lactato, produzido nos eritrócitos e nos músculos a partir da glicose é vertido no sangue e, depois de captado no fígado, é de novo convertido em glicose. Nos eritrócitos (e, nos músculos, em parte) a glicose libertada pelo fígado é convertida em lactato e, neste processo, ocorre a formação de 2 ligações ricas em energia por molécula de glicose convertida. A conversão de lactato em glicose que ocorre no fígado envolve o gasto de 6 ligações ricas em energia por molécula de glicose formada. Daqui se pode concluir que, considerado na sua globalidade, o ciclo de Cori gasta 4 ligações ricas em energia por cada volta do ciclo o que parece não trazer qualquer vantagem para a sobrevivência. No entanto, o consumo de ligações ricas em energia ocorre no fígado (que pode usar ácidos gordos como combustível) enquanto a formação das ligações ricas em energia ocorre nos eritrócitos (que só podem usar glicose) e nos músculos (que usam glicose como combustível preferencial em situações de alto consumo energético). O ciclo de Cori é um processo que permite ao organismo oxidar ácidos gordos no fígado e usar a energia libertada para fornecer aos eritrócitos (e aos músculos) o seu combustível: a glicose. Página 3 de 7

4 9- A lipólise no tecido adiposo (hidrólise dos triacilgliceróis endógenos), para além de ácidos gordos, também liberta glicerol para o sangue. Ao contrário do que acontece em muitos tecidos (nomeadamente no tecido adiposo), no fígado (e rim) existe uma enzima que é capaz de catalisar a transformação do glicerol em glicerol-3-fosfato (cínase do glicerol; ver equação 20) iniciando o processo de conversão do glicerol em glicose. A transformação do glicerol-3-fosfato (3 carbonos) em glicose (6 carbonos) envolve a actividade das seguintes enzimas (todas citoplasmáticas): desidrogénase citoplasmática do glicerol-3-fosfato (ver equação 15), isomérase das trioses-fosfato (ver equação 10), aldólase (ver equação 11), frutose-1,6- bisfosfátase (ver equação 7), isomérase das hexoses-p (ver equação 12) e glicose-6-fosfátase (ver equação 1). A equação soma que descreve a conversão de glicerol em glicose no fígado (e rim) é a equação 21. glicerol + ATP glicerol-3-p + ADP (20) 2 glicerol + 2 NAD ATP + 2 H 2 O glicose + 2 NADH + 2 ADP + 2 Pi (21) Se analisarmos isoladamente o caso do glicerol-3-fosfato (ao contrário dos casos do lactato, alanina e glutamato) a sua conversão em glicose não envolve a redução do 1,3-bisfosfoglicerato em gliceraldeído-3-p (desidrogénase do gliceraldeído-3-fosfato). O NADH formado durante a conversão de glicerol-3-fosfato em glicose poderá ser oxidado pelo oxigénio via lançadeira do malato e complexos I, III e IV da cadeia respiratória ou reduzir o 1,3-bisfosfoglicerato formado a partir de outros substratos da gliconeogénese que, eventualmente, estejam simultaneamente a entrar no fígado. No homem há normalmente a utilização simultânea de vários substratos da gliconeogénese. Se um deles for o glicerol, o fornecimento de NADH citoplasmático para a reacção catalisada pela desidrogénase do gliceraldeído-3-fosfato poderá ser da responsabilidade da desidrogénase do glicerol-3-fosfato. Se admitirmos que, num dado momento, n moles de glicerol e n moles de alanina (ou glutamato) são, no fígado, convertidos em n moles de glicose podemos pensar que o processo de conversão da alanina não envolve a desidrogénase do malato (como apontado nos pontos 7 e 8) mas ocorre via conversão do oxalacetato em fosfoenolpiruvato na matriz mitocondrial e transporte deste para o citoplasma. 10- No homem, a esmagadora maioria dos ácidos gordos tem um número par de carbonos (cadeia par) e geram no seu catabolismo acetil-coa que reage com o oxalacetato por acção catalítica da síntase do citrato. Nesta reacção não há formação de intermediários do ciclo de Krebs (não é uma reacção anaplerótica). Por outro lado, a conversão de acetil-coa em piruvato também não pode ocorrer porque a reacção catalisada pela desidrogénase do piruvato (ver equação 22) é fisiologicamente irreversível. Porque o acetil-coa não pode contribuir para a síntese de compostos que sejam substratos da gliconeogénese os ácidos gordos de cadeia par não são glicogénicos. Pelo contrário, os ácidos gordos de cadeia ímpar podem dar origem (para além de acetil-coa) a propionil-coa (o grupo propionilo contém 3 carbonos). O propionil-coa pode por acção de uma sintétase (carboxílase do propionil-coa; ver equação 23) e de duas isomérases (ver equações 24 e 25) gerar succinil-coa que é um intermediário do ciclo de Krebs. Para além do glicerol, do lactato, do piruvato, da alanina, do glutamato e de muitos outros aminoácidos também os ácidos gordos de cadeia ímpar são glicogénicos. piruvato + NAD + + CoA acetil-coa + NADH + CO 2 (22) propionil-coa + CO 2 + ATP + H 2 O D-metil-malonil-CoA + ADP + Pi (23) D-metil-malonil-CoA L-metil-malonil-CoA (24) L-metil-malonil-CoA succinil-coa (25) 11- Sendo parte importante nos processos homeostáticos, as enzimas que catalisam as reacções fisiologicamente irreversíveis na glicólise e na gliconeogénese são, no fígado e rim, reguladas de tal forma que quando a glicemia está elevada as primeiras estão activadas e as segundas inibidas. O contrário acontece quando a glicemia está diminuída. Isto não significa que a actividade das enzimas próprias da glicólise se anule quando a gliconeogénese está activada ou que a actividade das enzimas próprias da gliconeogénese se anule quando a glicólise está activada. Na verdade, a cínase da glicose e a glicose-6-fosfátase funcionam simultaneamente sendo o somatório das reacções catalisadas por estas enzimas a hidrólise de ATP (ver equações 1 e 2) e o mesmo se pode dizer do par cínase frutose-6-fosfato/fosfátase da frutose-1,6-bisfosfátase (ver equações 3 e 7). Uma situação semelhante acontece no caso da cínase do piruvato/carboxílase do piruvato e carboxicínase do fosfoenolpiruvato (ver equações 4, 5 e 6). Quando existe acção simultânea de enzimas com papéis metabólicos biológicos opostos tendo como único resultado a hidrólise de ligações ricas em energia do ATP ou do GTP diz-se que estamos em presença de um ciclo de substrato (ou fútil ). Página 4 de 7

5 O que se passa é que, nas condições metabólicas em que as enzimas próprias da glicólise estão mais activas, as enzimas próprias da gliconeogénese estão inibidas e o fluxo soma, em todos os ciclos de substrato acima referidos, tem o sentido da oxidação de glicose (catabólico); na condição inversa o fluxo soma tem o sentido da formação da glicose (anabólico) A regulação da actividade das enzimas marca-passo da glicólise e da gliconeogénese pode envolver a (i) indução ou a repressão dos genes codificadores dessas enzimas, (ii) variação na concentração intracelular de reguladores alostéricos ou (iii) de substratos assim como (iv) activação ou inibição por fosforilação reversível. Os mecanismos que condicionam a regulação da actividade das enzimas que catalisam os passos irreversíveis da glicólise e da gliconeogénese hepáticas e renais são complexos envolvendo também a acção de hormonas que se libertam noutros tecidos. Assim, são parte importante nestes processos homeostáticos a insulina (que aumenta no sangue em resposta a aumentos na glicemia e tem acção hipoglicemiante) e a glicagina (que aumenta no caso inverso e tem acção hiperglicemiante). Estas hormonas pancreáticas exercem os seus efeitos regulando a actividade de enzimas e de transportadores. 13- A hipoglicemia estimula as células dos ilhéus pancreáticos a produzir glicagina. A glicagina liga-se ao seu receptor, presente na face externa da membrana dos hepatócitos, estimulando a cíclase do adenilato (ver equação 26) e a consequente acumulação de AMP cíclico (AMPc) que é activador alostérico da cínase de proteínas dependente do AMPc (PKA). A PKA é uma cínase que tem como substrato aceitador de fosfato múltiplas enzimas e proteínas reguladoras da expressão genética (ver equação 27). A glicagina induz os processos que levam à formação de glicose estimulando a síntese de AMPc que leva à activação da PKA que catalisa a fosforilação de proteínas. Quando as proteínas fosforiladas pela PKA são enzimas cuja actividade promove a formação de glicose a forma fosforilada é a forma activa; pelo contrário, quando são enzimas cuja actividade promove o consumo de glicose a sua fosforilação pela PKA induz a sua inactivação. ATP AMPc + PPi (26) ATP + proteína ADP + proteína-fosforilada (27) 14- Dois dos substratos da PKA são a cínase do piruvato hepática e uma enzima bifuncional envolvida na regulação do par fosfátase da frutose-1,6-bisfosfato/cínase 1 da frutose-6-fosfato. Em concordância com o papel da cínase do piruvato hepática na glicólise, a forma fosforilada desta enzima é menos activa; ou seja, a glicagina, via PKA, inibe a cínase do piruvato hepática e, consequentemente, a glicólise. Também em concordância com o papel da fosfátase da frutose-1,6-bisfosfato na gliconeogénese e da cínase 1 da frutose- 6-P na glicólise a fosforilação da enzima bifuncional induzida pela glicagina, via PKA, vai implicar a activação da fosfátase da frutose-1,6-bisfosfato (activação da gliconeogénese) e a inibição da cínase 1 da frutose-6-p (inibição da glicólise). A enzima bifuncional regula a concentração intracelular de um composto (frutose-2,6-bisfosfato) que, não sendo intermediário da glicólise nem da gliconeogénese tem um papel fulcral na regulação destas vias metabólicas: a frutose-2,6-bisfosfato é, simultaneamente, activador alostérico da cínase 1 da frutose-6-p e inibidor alostérico da fosfátase da frutose-1,6-bisfosfato. A enzima bifuncional tem duas actividades: cínase 2 da frutose-6-p (ver equação 28) que leva à formação de frutose-2,6-bisfosfato e fosfátase da frutose-2,6-bisfosfato (ver equação 29) que leva à sua hidrólise. Via frutose-2,6-bisfosfato a activação da cínase 2 da frutose-6-fosfato implica activação da cínase 1 da frutose- 6-P; pelo contrário, a activação da fosfátase da frutose-2,6-bisfosfato implica a activação da fosfátase da frutose-1,6-bisfosfato. Em concordância com isto a fosforilação pela PKA da enzima bifuncional tem como consequência a diminuição da concentração intracelular da frutose-2,6-bisfosfato porque, na sua forma fosforilada, a enzima bifuncional tem predominantemente uma actividade hidrolítica: ou seja, na forma fosforilada diminui a actividade de cínase 2 da frutose-6-p e fica estimulada a actividade de fosfátase da frutose-2,6-bisfosfato. Embora se desconheça a fosfátase que é activada, a insulina provoca rápida desfosforilação da enzima bifuncional provocando aumento da concentração de frutose-2,6- bisfosfato com activação da glicólise e inibição da gliconeogénese [2]. 4 De facto, crê-se que os hepatócitos peri-portais (os que ficam mais perto do sangue que chega da veia porta e das artérias hepáticas) e os hepatócitos peri-venulares (os que ficam mais perto do sangue que está a sair para as veias supra-hepáticas) podem ter diferentes papeis no metabolismo da glicose. Nos primeiros predominaria a gliconeogénese enquanto nos segundos predominaria a glicólise. No entanto, as diferenças atenuar-se-iam durante o jejum onde o metabolismo seria sempre gliconeogénico em ambos os tipos de hepatócitos. [Jungerman et al. (1982) Eur. J. Biochem. 123, ]. Página 5 de 7

6 ATP + frutose-6-p ADP + frutose-2,6-bisfosfato (28) frutose-2,6-bisfosfato + H 2 O frutose-6-p + Pi (29) 15- Resumindo os pontos 13 e 14 no que se refere à regulação da cínase 1 da frutose-6-p (glicólise) e da fosfátase da frutose-1,6-bisfosfátase (gliconeogénese): a) glicemia glicagina AMPc PKA enzima bifuncional fosforilada frutose-2,6- bisfosfátase frutose-2,6-bisfosfato frutose-1,6-bisfosfátase gliconeogénese A activação de uma cínase (PKA) pela glicagina vai activar duas fosfátases (frutose-2,6 e frutose-1,6- bisfosfátase). A correcção homeostática da hipoglicemia envolve a activação da gliconeogénese. b) glicemia insulina fosfátase da enzima bifuncional enzima bifuncional desfosforilada cínase 2 da frutose-6-p frutose-2,6-bisfosfato cínase 1 da frutose-6-p glicólise A activação de uma fosfátase (fosfátase que desfosforila a enzima bifuncional) pela insulina vai activar duas cínases (as cínases 2 e 1 da frutose-6-p). A correcção homeostática da hiperglicemia envolve a activação da glicólise. 16- A hidrólise dos triacilgliceróis endógenos está aumentada no jejum e gera glicerol e ácidos gordos. O glicerol é, como primeiro passo da sua transformação em glicose, fosforilado no fígado. Os ácidos gordos de cadeia par (os mais abundantes) não são substratos da gliconeogénese mas tem um importante papel no processo. A sua oxidação leva à formação de acetil-coa e ATP. (i) A acetil-coa, cuja concentração aumenta no fígado em situações de jejum [3], é, simultaneamente, um activador alostérico da carboxílase do piruvato (gliconeogénese; ver equação 5) e, via activação da cínase da desidrogénase do piruvato, um inibidor da oxidação do piruvato e, consequentemente, da oxidação da glicose. Embora a fosforilação da desidrogénase do piruvato (ver equação 30) não esteja dependente da acção da PKA também aqui a hipoglicemia tem como consequência a fosforilação de uma enzima. (ii) O ATP gerado no catabolismo dos ácidos gordos fornece a energia necessária para a gliconeogénese e para as outras actividades do hepatócito. ATP + desidrogénase do piruvato desfosforilada (activa) ADP + desidrogénase do piruvato-fosforilada (inactiva) (30) piruvato + CoA + NAD+ acetil-coa + CO 2 + NADH (31) 17- Para além dos mecanismos alostéricos e de fosforilação reversível já apontados, também têm importância na regulação da glicólise e na gliconeogénese, a regulação da síntese das enzimas próprias da glicólise e gliconeogénese ao nível da transcrição. No fígado, a insulina estimula a síntese da cínase da glicose (enzima da glicólise) e reprime a síntese da cínase da desidrogénase do piruvato, cujo papel é o de catalisar a fosforilação (e consequente inibição) da desidrogénase do piruvato: a insulina promove a oxidação da glicose aumentando a concentração intracelular da cínase de glicose e a percentagem de desidrogénase do piruvato que está na forma desfosforilada (a activa). A insulina também inibe a síntese de enzimas próprias da gliconeogénese como a carboxicínase do fosfoenolpiruvato e a glicose-6-fosfátase. A própria glicose (ou mais precisamente um seu metabolito, a xilulose-5-fosfato), independentemente da acção da insulina, tem acção activadora na síntese da cínase do piruvato: quando a glicose entra para os hepatócitos, um factor de transcrição denominado carbohydrate responsive element-binding protein (proteína de ligação ao elemento de resposta aos carbohidratos; ChREBP) fica activado e estimula, entre outros, a transcrição do gene que codifica a cínase do piruvato. 18- A glicagina e os glicocorticoides têm efeitos opostos aos da insulina e da glicose estimulando a transcrição de genes envolvidos na gliconeogénese. Está melhor estudada a acção da glicagina como estimuladora da síntese da carboxicínase do fosfoenolpiruvato e de glicose-6-fosfátase. Estes efeitos também são mediados pelo AMPc e pela PKA. A PKA, estimulada pelo AMPc, fosforila uma proteína nuclear denominada CREB (camp response element binding protein; proteína ligante do elemento de resposta ao camp) que é um factor de transcrição; o CREB fosforilado liga-se a uma região específica que existe nos promotores dos genes da carboxicínase do fosfoenolpiruvato e da glicose-6-fosfátase denominada CRE (camp response element) e esta ligação induz a transcrição dos genes referidos e o consequente aumento de concentração das enzimas codificadas. Por mecanismos em grande parte desconhecidos a insulina inibe a transcrição dos Página 6 de 7

7 mesmos genes; a consequente diminuição da concentração de carboxicínase do fosfoenolpiruvato e da glicose-6-fosfátase diminui a velocidade da gliconeogénese e a produção de glicose pelo fígado. 19- Por si só, o valor da glicemia tem importância na regulação da velocidade de entrada de glicose para o fígado via GLUT2 e na actividade da cínase da glicose/hexocínase IV (ver equação 2). Quer no GLUT2, quer nesta enzima hepática, o Km da glicose é próximo ou superior às concentrações de glicose no sangue da veia porta e, por isso, as suas actividades são sensíveis às variações fisiológicas da glicemia 5. Além disto, quando a concentração de glicose é baixa no hepatócito a cínase da glicose está ligada a uma proteína inibidora; quando a concentração de glicose aumenta quebra-se a ligação entre a cínase da glicose e a proteína inibidora e a cínase fica activa. 20- A regulação da glicólise versus gliconeogénese pode ser resumida atentando na regulação recíproca das enzimas envolvidas em cada um dos 3 ciclos de substrato pertinentes. (i) No ciclo glicose/glicose-6-fosfato a glicocínase (hexocínase IV) é directamente activada pela glicose que entra para o fígado e a sua síntese é estimulada pela insulina; por sua vez, a síntese da glicose-6-fosfátase é reprimida pela insulina e estimulada pela glicagina. (ii) No ciclo frutose-6-p/frutose-1,6-bisfosfato é relevante o efeito alostérico da frutose-2,6- bisfosfato: a cínase-1 da frutose-6-p é activada enquanto a frutose-1,6-bisfosfátase é inibida. Por sua vez a concentração intracelular da frutose-2,6-bisfosfato depende da regulação recíproca das duas actividades da enzima bifuncional onde é relevante o seu estado de fosforilação, por sua vez dependente da razão entre as concentrações plasmáticas de insulina (que activa uma fosfátase da enzima bifuncional fazendo com que esta funcione como cínase-2 da frutose-6-p) e glicagina (que activa a PKA que fosforila a enzima bifuncional fazendo com que esta funcione como fosfátase da frutose-2,6-bisfosfato). (iii) No ciclo fosfoenolpiruvato/piruvato/oxalacetato têm especial relevância a inibição da cínase do piruvato via fosforilação (dependente da PKA) induzida pela glicagina, a estimulação da sua síntese pela glicose (via ChREBP) e a síntese da carboxicínase do fosfoenolpiruvato estimulada pela glicagina e reprimida pela insulina. 1. Roden, M. (2001) Non-invasive studies of glycogen metabolism in human skeletal muscle using nuclear magnetic resonance spectroscopy, Curr Opin Clin Nutr Metab Care. 4, Wu, C., Khan, S. A. & Lange, A. J. (2005) Regulation of glycolysis-role of insulin, Exp Gerontol. 40, Pearson, D. J. & Tubbs, P. K. (1967) Carnitine and derivatives in rat tissues, Biochem J. 105, É cerca de 20 mm no caso do GLUT 2 e cerca de 8-10 mm no caso da hexocínase IV. Ambos os valores são maiores ou da mesma ordem de grandeza dos valores da glicemia normal no sangue periférico (4 a 9 mm) e na veia porta (4 a 12 mm; jejum e após as refeições, respectivamente). Página 7 de 7

Gliconeogénese e Metabolismo do Glicogénio

Gliconeogénese e Metabolismo do Glicogénio Página 1 de 5 Aulas de grupo 2001-02; Rui Fontes Gliconeogénese e Metabolismo do Glicogénio 1- Gliconeogénese 1- A gliconeogénese é um termo usado para incluir o conjunto de processos pelos quais o organismo

Leia mais

Gliconeogénese. glicose-6-fosfato + H 2 O glicose + Pi

Gliconeogénese. glicose-6-fosfato + H 2 O glicose + Pi Gliconeogénese 1- A palavra gliconeogénese é, num sentido mais estrito, usada para designar coletivamente o conjunto de processos pelos quais o organismo pode converter substâncias não glicídicas (como

Leia mais

Gliconeogénese. glicose-6-fosfato + H 2 O glicose + Pi

Gliconeogénese. glicose-6-fosfato + H 2 O glicose + Pi Gliconeogénese 1- A palavra gliconeogénese é, num sentido mais estrito, usada para designar coletivamente o conjunto de processos pelos quais o organismo pode converter substâncias não glicídicas (como

Leia mais

O 2 CO 2 + H 2 O. Absorção da glicose, glicólise e desidrogénase do piruvato. ADP + Pi. nutrientes ATP

O 2 CO 2 + H 2 O. Absorção da glicose, glicólise e desidrogénase do piruvato. ADP + Pi. nutrientes ATP Absorção da glicose, glicólise e desidrogénase do piruvato Em todas as células ocorre continuamente a hidrólise do ATP (formando ADP + a uma velocidade tal que, mesmo em repouso, todo o stock de ATP se

Leia mais

Acetil CoA e Ciclo de Krebs. Prof. Henning Ulrich

Acetil CoA e Ciclo de Krebs. Prof. Henning Ulrich Acetil CoA e Ciclo de Krebs Prof. Henning Ulrich Glicose + Consumo de 2 ATP 2 Ácidos Pirúvicos + 4H + + Produção de 4 ATP (2C 3 H 4 O 3 ) 2H + são Transportados pelo NAD passando Para o estado reduzido

Leia mais

Introdução e apresentação geral do metabolismo da glicose

Introdução e apresentação geral do metabolismo da glicose Introdução e apresentação geral do metabolismo da glicose Índice 1- O transporte transmembranar e a fosforilação da glicose...1 2- A glicólise e a oxidação da glicose a CO 2...1 3- A oxidação da glicose-6-fosfato

Leia mais

Gliconeogênese. Gliconeogênese. Órgãos e gliconeogênese. Fontes de Glicose. Gliconeogênese. Gliconeogênese Metabolismo dos aminoácidos Ciclo da Uréia

Gliconeogênese. Gliconeogênese. Órgãos e gliconeogênese. Fontes de Glicose. Gliconeogênese. Gliconeogênese Metabolismo dos aminoácidos Ciclo da Uréia Gliconeogênese Metabolismo dos aminoácidos Ciclo da Uréia Gliconeogênese Alexandre Havt Gliconeogênese Fontes de Energia para as Células Definição Via anabólica que ocorre no fígado e, excepcionalmente

Leia mais

Resumo esquemático da glicólise

Resumo esquemático da glicólise Resumo esquemático da glicólise Destino do piruvato em condições aeróbicas e anaeróbicas Glicólise Fermentação Oxidação completa Em condições aeróbicas o piruvato é oxidado a acetato que entra no ciclo

Leia mais

Revisão do Metabolismo da Glicose

Revisão do Metabolismo da Glicose Gliconeogênese Revisão do Metabolismo da Glicose Esquema Geral da Glicólise lise 1 açúcar de 6 C 2 açúcares de 3 C A partir deste ponto as reações são duplicadas 2 moléculas de Piruvato (3C) Saldo 2 moléculas

Leia mais

Universidade Federal do Pampa Campus Itaqui Bioquímica GLICONEOGÊNESE. Profa. Dra. Marina Prigol

Universidade Federal do Pampa Campus Itaqui Bioquímica GLICONEOGÊNESE. Profa. Dra. Marina Prigol Universidade Federal do Pampa Campus Itaqui Bioquímica GLICONEOGÊNESE Profa. Dra. Marina Prigol GLICONEOGÊNESE PROCESSO DE SÍNTESE DE GLICOSE A PARTIR DE COMPOSTOS NÃO GLICÍDICOS OCORRÊNCIA: Citosol do

Leia mais

PRINCIPAIS VIAS METABÓLICAS

PRINCIPAIS VIAS METABÓLICAS PRINCIPAIS VIAS METABÓLICAS DEGRADAÇÃO DO GLIGOGÊNIO GLICÓLISE VIA DAS PENTOSES FOSFATO GLICONEOGÊNESE SÍNTESE DE CORPOS CETÔNICOS DEGRADAÇÃO DE AMINOÁCIDOS E CICLO DA URÉIA CICLO DE KREBS Β-OXIDAÇÃO DE

Leia mais

Glicólise. Professora Liza Felicori

Glicólise. Professora Liza Felicori Glicólise Professora Liza Felicori Glicose Glicose (combustível metabólico) Fígado: Serve como tampão para manter o nível de glicose no sangue (liberação controlada de glicose) Glicose GLICOGÊNIO Estoque

Leia mais

Metabolismo e Regulação

Metabolismo e Regulação Metabolismo e Regulação PRBLEMAS - Série 1 Soluções 2009/2010 idratos de Carbono (Revisão) e Metabolismo Central 1 R: (α 1 4) (lineares) Ο (α1 6) (pontos de ramificação) 2. R: Locais de glicosilação são

Leia mais

Metabolismo do azoto dos aminoácidos e ciclo da ureia

Metabolismo do azoto dos aminoácidos e ciclo da ureia Metabolismo do azoto dos aminoácidos e ciclo da ureia 1- Os aminoácidos existentes no sangue e nas células resultam da hidrólise das proteínas endógenas ou das proteínas da dieta. A maior parte dos aminoácidos

Leia mais

30/05/2017. Metabolismo: soma de todas as transformações químicas que ocorrem em uma célula ou organismo por meio de reações catalisadas por enzimas

30/05/2017. Metabolismo: soma de todas as transformações químicas que ocorrem em uma célula ou organismo por meio de reações catalisadas por enzimas Metabolismo: soma de todas as transformações químicas que ocorrem em uma célula ou organismo por meio de reações catalisadas por enzimas Metabolismo energético: vias metabólicas de fornecimento de energia

Leia mais

5/4/2011. Metabolismo. Vias Metabólicas. Séries de reações consecutivas catalisadas enzimaticamente, que produzem produtos específicos (metabólitos).

5/4/2011. Metabolismo. Vias Metabólicas. Séries de reações consecutivas catalisadas enzimaticamente, que produzem produtos específicos (metabólitos). Metabolismo Vias Metabólicas Séries de reações consecutivas catalisadas enzimaticamente, que produzem produtos específicos (metabólitos). 1 Endergônico Exergônico Catabolismo Durante o catabolismo de carboidratos,

Leia mais

Glória Braz GLICÓLISE

Glória Braz GLICÓLISE Glória Braz GLICÓLISE Utilização de glicose pelas células A glicólise é a via metabólica mais conservada nos sistemas biológicos A glicose é o combustível preferencial e mais versátil disponível nas células

Leia mais

METABOLISMO DOS CARBOIDRATOS - GLICÓLISE

METABOLISMO DOS CARBOIDRATOS - GLICÓLISE Após a absorção dos carboidratos no intestino, a veia porta hepática fornece glicose ao fígado, que vai para o sangue para suprir as necessidades energéticas das células do organismo. GLICÓLISE principal

Leia mais

Profª Eleonora Slide de aula. Metabolismo de Carboidratos

Profª Eleonora Slide de aula. Metabolismo de Carboidratos Metabolismo de Carboidratos Metabolismo de Carboidratos Profª Eleonora Slide de aula Condições de anaerobiose Glicose 2 Piruvato Ciclo do ácido cítrico Condições de anaerobiose 2 Etanol + 2 CO 2 Condições

Leia mais

Glicogênese, Glicogenólise e Gliconeogênese. Profa. Alessandra Barone

Glicogênese, Glicogenólise e Gliconeogênese. Profa. Alessandra Barone Glicogênese, Glicogenólise e Gliconeogênese Profa. Alessandra Barone www.profbio.com.br Polissacarídeo de reserva animal Constituído por moléculas de α-d-glicose ligadas entre si por ligações glicosídicas

Leia mais

Metabolismo de Carboidratos

Metabolismo de Carboidratos Metabolismo de Carboidratos Curso de Bioqímica para Saúde Coletiva- UFRJ Profa. Dra. Mônica Santos de Freitas 1 Gliconeogênese - Ocorre principalmente no fígado; - Algumas das enzimas utilizadas na síntese

Leia mais

Metabolismo do azoto dos aminoácidos e ciclo da ureia

Metabolismo do azoto dos aminoácidos e ciclo da ureia Metabolismo do azoto dos aminoácidos e ciclo da ureia 1- Os aminoácidos existentes no sangue e nas células resultam da hidrólise das proteínas endógenas ou das proteínas da dieta. A maior parte dos aminoácidos

Leia mais

Utilização de glicose pelas células. A glicólise é a via metabólica mais conservada nos sistemas biológicos

Utilização de glicose pelas células. A glicólise é a via metabólica mais conservada nos sistemas biológicos Utilização de glicose pelas células A glicólise é a via metabólica mais conservada nos sistemas biológicos A glicose é o combustível preferencial e mais versátil disponível nas células vivas. Principais

Leia mais

MAPA II POLISSACARÍDIOS PROTEÍNAS LIPÍDIOS GLICOSE AMINOÁCIDOS ÁCIDOS GRAXOS. Leu Ile Lys Phe. Gly Ala Ser Cys. Fosfoenolpiruvato (3) Piruvato (3)

MAPA II POLISSACARÍDIOS PROTEÍNAS LIPÍDIOS GLICOSE AMINOÁCIDOS ÁCIDOS GRAXOS. Leu Ile Lys Phe. Gly Ala Ser Cys. Fosfoenolpiruvato (3) Piruvato (3) Ciclo de Krebs MAPA II POLISSACARÍDIOS PROTEÍNAS LIPÍDIOS GLICOSE AMINOÁCIDOS ÁCIDOS GRAXOS Fosfoenolpiruvato (3) Asp Gly Ala Ser Cys Leu Ile Lys Phe Glu Piruvato (3) CO 2 Acetil-CoA (2) CO 2 Oxaloacetato

Leia mais

Obtenção de Energia. Obtenção de Energia. Obtenção de Energia. Oxidação de Carboidratos. Obtenção de energia por oxidação 19/08/2014

Obtenção de Energia. Obtenção de Energia. Obtenção de Energia. Oxidação de Carboidratos. Obtenção de energia por oxidação 19/08/2014 , Cadeia de Transporte de Elétrons e Fosforilação Oxidativa Prof. Dr. Bruno Lazzari de Lima Para que um organismo possa realizar suas funções básicas: Obtenção de nutrientes. Crescimento. Multiplicação.

Leia mais

2- No dia estavam classificadas 4046 enzimas que podem ser consultadas em

2- No dia estavam classificadas 4046 enzimas que podem ser consultadas em A maioria das enzimas são de natureza proteica e, relativamente aos outros catalisadores, têm uma grande especificidade em relação aos substratos e produtos da reacção. 1- A palavra enzima (do Grego: en,

Leia mais

Integração do metabolismo - sugestões de respostas 1

Integração do metabolismo - sugestões de respostas 1 Integração do metabolismo - sugestões de respostas 1 Generalidades sobre oxidação de nutrientes 1. A equação que descreve a oxidação completa da glicose é: Glicose (C 6 H 12 O 6 ) + 6 O 2 6 CO 2 + 6 H

Leia mais

FISIOLOGIA VEGETAL 24/10/2012. Respiração. Respiração. Respiração. Substratos para a respiração. Mas o que é respiração?

FISIOLOGIA VEGETAL 24/10/2012. Respiração. Respiração. Respiração. Substratos para a respiração. Mas o que é respiração? Respiração Mas o que é respiração? FISIOLOGIA VEGETAL Respiração É o processo pelo qual compostos orgânicos reduzidos são mobilizados e subsequentemente oxidados de maneira controlada É um processo de

Leia mais

Integração dos metabolismos dos carbohidratos, gorduras e proteínas ao longo do dia e no jejum prolongado

Integração dos metabolismos dos carbohidratos, gorduras e proteínas ao longo do dia e no jejum prolongado Integração dos metabolismos dos carbohidratos, gorduras e proteínas ao longo do dia e no jejum prolongado Índice 1 Introdução... 3 2 Metabolismo no período pós-prandial... 3 2.1 A digestão e absorção dos

Leia mais

Cinética e regulação enzímicas (a velocidade das reações enzímicas in vivo e in vitro)

Cinética e regulação enzímicas (a velocidade das reações enzímicas in vivo e in vitro) Conceitos de substrato de via metabólica, coenzima, grupo prostético e cofator. Cinética e regulação enzímicas (a velocidade das reações enzímicas in vivo e in vitro) ruifonte@med.up.pt Departamento de

Leia mais

Metabolismo de Glicídios

Metabolismo de Glicídios Universidade Federal de Pelotas Núcleo de Pesquisa, Ensino e Extensão em Pecuária Doenças Metabólicas Metabolismo de Glicídios Lucas Balinhas Mozer Ávila Patrícia Mattei Uriel Londero Pelotas, abril 2015

Leia mais

METABOLISMO DE CARBOIDRATOS METABOLISMO DOS LIPÍDIOS METABOLISMO DE PROTEÍNAS

METABOLISMO DE CARBOIDRATOS METABOLISMO DOS LIPÍDIOS METABOLISMO DE PROTEÍNAS METABOLISMO DE CARBOIDRATOS METABOLISMO DOS LIPÍDIOS METABOLISMO DE PROTEÍNAS METABOLISMO DE CARBOIDRATOS GLICÓLISE Transporte da Glicose para dentro das Células: Glicose não difunde diretamente para

Leia mais

Funções do Metabolismo

Funções do Metabolismo Universidade Federal de Mato Grosso Disciplina de Bioquímica Conceito de Metabolismo METABOLISMO DOS CARBOIDRATOS Prof. Msc. Reginaldo Vicente Ribeiro Atividade celular altamente dirigida e coordenada,

Leia mais

Objectivos. 3. Analisar o destino do piruvato em aerobiose e anaerobiose

Objectivos. 3. Analisar o destino do piruvato em aerobiose e anaerobiose BIOQUÍMICA 1º ano de Medicina Ensino teórico 2007/2008 12ª aula teórica Metabolismo dos glúcidos: Importância metabólica dos glúcidos (glucose, frutose, galactose). Análise comparativa da glicólise e da

Leia mais

METABOLISMO ENERGÉTICO integração e regulação alimentado jejum catabólitos urinários. Bioquímica. Profa. Dra. Celene Fernandes Bernardes

METABOLISMO ENERGÉTICO integração e regulação alimentado jejum catabólitos urinários. Bioquímica. Profa. Dra. Celene Fernandes Bernardes METABOLISMO ENERGÉTICO integração e regulação alimentado jejum catabólitos urinários Bioquímica Profa. Dra. Celene Fernandes Bernardes REFERÊNCIA: Bioquímica Ilustrada - Champe ESTÁGIOS DO CATABOLISMO

Leia mais

Integração do Metabolismo

Integração do Metabolismo BLOCO IV Integração do Metabolismo Wagner Seixas da Silva Professor Adjunto do Instituto de Bioquímica Médica Bloco E- Sala 038 Calendário do Bloco IV 25/05-8:30h Gliconeogênese - Roteiro de discussão

Leia mais

Metabolismo e Regulação

Metabolismo e Regulação Metabolismo e Regulação PROBLEMAS - Série 1 Licenciatura em Bioquímica Licenciatura em Biologia Celular e Molecular Licenciatura em Química Aplicada Hidratos de Carbono e Metabolismo Central (Revisão)

Leia mais

Cinética e regulação enzímicas (a velocidade das reacções enzímicas in vivo e in vitro)

Cinética e regulação enzímicas (a velocidade das reacções enzímicas in vivo e in vitro) Conceitos de substrato de via metabólica, coenzima, grupo prostético e cofactor. Cinética e regulação enzímicas (a velocidade das reacções enzímicas in vivo e in vitro) rui.fontes@mail.telepac.pt Laboratório

Leia mais

Bibliografia. BIOQUÍMICA I 2010/2011 Ensino teórico - 1º ano Mestrado Integrado em Medicina. Stryer, Biochemistry, 5ª Ed, 2006, Capítulo 17

Bibliografia. BIOQUÍMICA I 2010/2011 Ensino teórico - 1º ano Mestrado Integrado em Medicina. Stryer, Biochemistry, 5ª Ed, 2006, Capítulo 17 BIOQUÍMICA I 2010/2011 Ensino teórico - 1º ano Mestrado Integrado em Medicina 14ª aula teórica Complexo da piruvato desidrogenase (PDH) e ciclo de Krebs. 15/11/2010 Bibliografia Stryer, Biochemistry, 5ª

Leia mais

Oxidação dos ácidos gordos

Oxidação dos ácidos gordos Oxidação dos ácidos gordos 1- Durante o jejum a velocidade de hidrólise dos triacilgliceróis do tecido adiposo excede a velocidade de síntese sendo o glicerol e os ácidos gordos libertados para o plasma

Leia mais

Pontifícia Universidade Católica de Goiás Departamento de Biologia Bioquímica Metabólica. Rotas Metabólicas. Prof. Raimundo Júnior M.Sc.

Pontifícia Universidade Católica de Goiás Departamento de Biologia Bioquímica Metabólica. Rotas Metabólicas. Prof. Raimundo Júnior M.Sc. Pontifícia Universidade Católica de Goiás Departamento de Biologia Bioquímica Metabólica Rotas Metabólicas Prof. Raimundo Júnior M.Sc. Metabolismo Transformação da matéria e da energia. A sequência das

Leia mais

Glicólise e desidrogénase do piruvato

Glicólise e desidrogénase do piruvato Glicólise e desidrogénase do piruvato Glicólise e desidrogénase do piruvato; Rui Fontes 1- O metabolismo energético dos seres vivos pode ser interpretado como um processo no qual os nutrientes são oxidados

Leia mais

Metabolismo de Carboidratos. Profa.Dra. Leticia Labriola Abril 2011

Metabolismo de Carboidratos. Profa.Dra. Leticia Labriola Abril 2011 Metabolismo de Carboidratos. Profa.Dra. Leticia Labriola Abril 2011 Funções da Via Glicolítica Gerar ATP (rápido); Gerar intermediários para síntese; Regenerar NADH; 2 ATP em anaerobiose Rendimento

Leia mais

QBQ 0204 Bioquímica. Carlos Hotta. Glicólise 13/05/17

QBQ 0204 Bioquímica. Carlos Hotta. Glicólise 13/05/17 QBQ 0204 Bioquímica Carlos Hotta Glicólise 13/05/17 Uma visão geral do metabolismo Ribose 5P (5) NUCLEOTÍDEOS Algumas reações são irreversíveis Vias de síntese e degradação precisam ser separadas Uma visão

Leia mais

Metabolismo CO 2 + H 2 O O 2 + CH 2 O

Metabolismo CO 2 + H 2 O O 2 + CH 2 O Metabolismo CO 2 + H 2 O O 2 + CH 2 O Glicólise Glicólise A via de Embden-Meyerhof (Warburg) Essencialmente todas as células executam a glicólise Consiste em dez reacções iguais em todas as células

Leia mais

CADEIA DE TRANSPORTE DE ELÉTRONS E FOSFORILAÇÃO OXIDATIVA COMO AS CÉLULAS SINTETIZAM ATP

CADEIA DE TRANSPORTE DE ELÉTRONS E FOSFORILAÇÃO OXIDATIVA COMO AS CÉLULAS SINTETIZAM ATP CADEIA DE TRANSPORTE DE ELÉTRONS E FOSFORILAÇÃO OXIDATIVA OU COMO AS CÉLULAS SINTETIZAM ATP SINTETIZAM ATP ÀS CUSTAS DA OXIDAÇÃO DAS COENZIMAS NADH E FADH 2 PELO OXIGÊNIO AS COENZIMAS REDUZIDAS SÃO PRODUZIDAS

Leia mais

Oxidação parcial o que acontece com o piruvato?

Oxidação parcial o que acontece com o piruvato? A glicólise ocorre no citosol das células transforma a glicose em duas moléculas de piruvato e é constituída por uma sequência de 10 reações (10 enzimas) divididas em duas fases. Fase preparatória (cinco

Leia mais

MANUAL DA DISCIPLINA DE BIOQUÍMICA CURSO DE FISIOTERAPIA

MANUAL DA DISCIPLINA DE BIOQUÍMICA CURSO DE FISIOTERAPIA MANUAL DA DISCIPLINA DE BIOQUÍMICA CURSO DE FISIOTERAPIA 2017 MÓDULO 2 METABOLISMO 1 Introdução ao Metabolismo METABOLISMO Tópicos para estudo (em casa): 1- Dê as principais características do ser vivo.

Leia mais

CICLO DE KREBS. Em condições aeróbias: mitocôndria. citosol. Glicólise. ciclo de Krebs. 2 piruvato. 2 Acetil CoA. Fosforilação oxidativa

CICLO DE KREBS. Em condições aeróbias: mitocôndria. citosol. Glicólise. ciclo de Krebs. 2 piruvato. 2 Acetil CoA. Fosforilação oxidativa CICLO DE KREBS Em condições aeróbias: citosol mitocôndria Glicólise Acetil CoA ciclo de Krebs Fosforilação oxidativa CICLO DE KREBS OU CICLO DOS ÁCIDOS TRICARBOXÍLICOS Ligação entre a glicólise e o ciclo

Leia mais

Estratégias de regulação do metabolismo. Epinefrina, glucagon e insulina

Estratégias de regulação do metabolismo. Epinefrina, glucagon e insulina Estratégias de regulação do metabolismo Epinefrina, glucagon e insulina Estratégias de regulação do metabolismo Com a participação de enzimas Aula sobre enzimas... Com a participação de hormônios como

Leia mais

Glicólise. Monica Montero Lomeli Sylvia Alquéres

Glicólise. Monica Montero Lomeli Sylvia Alquéres Glicólise Monica Montero Lomeli Sylvia Alquéres Fontes de energia Como esses alimentos viram energia? Fontes de energia HOJE O Que é um carboidrato? Carbono Hidrato Poli hidroxi cetonas ou Poli hidroxi

Leia mais

Membrana interna. Cristas. Matriz Membrana externa. P i P i P i. 7,3 kcal/mol 7,3 kcal/mol 3,4 kcal/mol

Membrana interna. Cristas. Matriz Membrana externa. P i P i P i. 7,3 kcal/mol 7,3 kcal/mol 3,4 kcal/mol BIEERGÉTIA a célula milhares de compostos estão a ser sintetizados e degradados em simultâneo. Metabolismo: é o conjunto de todas as reacções envolvidas na manutenção deste estado dinâmico. o geral as

Leia mais

12/11/2015. Disciplina: Bioquímica Prof. Dr. Vagne Oliveira

12/11/2015. Disciplina: Bioquímica Prof. Dr. Vagne Oliveira Disciplina: Bioquímica Prof. Dr. Vagne Oliveira 2 1 ATP ADP Glicose (6C) C 6 H 12 O 6 ATP ADP P ~ 6 C ~ P 3 C ~ P 3 C ~ P Pi NAD NADH P ~ 3 C ~ P ADP P ~ 3 C ATP ADP ATP NAD Pi NADH P ~ 3 C ~ P ADP ATP

Leia mais

Corpos cetônicos. Quais são? A partir de qual composto se formam? Como se formam? Quando se formam? Efeitos de corpos cetônicos elevados?

Corpos cetônicos. Quais são? A partir de qual composto se formam? Como se formam? Quando se formam? Efeitos de corpos cetônicos elevados? Corpos cetônicos Quais são? A partir de qual composto se formam? Como se formam? Quando se formam? Efeitos de corpos cetônicos elevados? Importante saber!!!!!!!!!!!! A partir de qual composto se formam?

Leia mais

O ciclo de Krebs ou do ácido cítrico

O ciclo de Krebs ou do ácido cítrico O ciclo de Krebs ou do ácido cítrico O ciclo de Krebs ou do ácido cítrico; Rui Fontes Índice 1- O ciclo de Krebs é uma via metabólica central no metabolismo oxidativo de todos os nutrientes...1 2- As enzimas

Leia mais

O ciclo de Krebs ou do ácido cítrico

O ciclo de Krebs ou do ácido cítrico O ciclo de Krebs ou do ácido cítrico O ciclo de Krebs ou do ácido cítrico; Rui Fontes Índice 1- O ciclo de Krebs é uma via metabólica central no metabolismo oxidativo de todos os nutrientes...1 2- As enzimas

Leia mais

ONDE TENS AS NOÇÕES BÁSICAS DOS METABOLISMOS QUE PRECISAS DE SABER:

ONDE TENS AS NOÇÕES BÁSICAS DOS METABOLISMOS QUE PRECISAS DE SABER: 1 ONDE TENS AS NOÇÕES BÁSICAS DOS METABOLISMOS QUE PRECISAS DE SABER: PRINCIPAIS REACÇÕES E ENZIMAS, LOCAL ONDE OCORREM, PRINCIPAIS SUBSTÂNCIAS REGULADORAS Será que a nossa vida não passa de um metabolismo?

Leia mais

Profa. Alessandra Barone.

Profa. Alessandra Barone. Profa. Alessandra Barone www.profbio.com.br Quando é acionada a lipólise no organismo? ATP? Glicose? Glicólise? Glicogênese? Gliconeogênese? Via das pentoses? Lipídeo: reserva energética em forma de triacilglicerol

Leia mais

Metabolismo energético das células

Metabolismo energético das células Metabolismo energético das células Medicina Veterinária Bioquímica I 2º período Professora: Ms. Fernanda Cristina Ferrari Como a célula produz energia? Fotossíntese Quimiossíntese Respiração Adenosina

Leia mais

Ciclo de Krebs ou Ciclo do ácido cítrico. Prof. Liza Felicori

Ciclo de Krebs ou Ciclo do ácido cítrico. Prof. Liza Felicori Ciclo de Krebs ou Ciclo do ácido cítrico Prof. Liza Felicori VISÃO GERAL Em circunstâncias aeróbicas piruvato é descarboxilado CO 2 C4 + C2 C6 C6 C6 C6 C5 CO 2 CO 2 C5 C4 C4 C4 C4 NAD+ & FAD 3 Íons H-

Leia mais

Hormônios do pâncreas. Insulina. Glucagon. Somatostatina. Peptídeos pancreáticos

Hormônios do pâncreas. Insulina. Glucagon. Somatostatina. Peptídeos pancreáticos Endocrinologia do Pâncreas! O pâncreas como um órgão endócrino Importante papel na absorção, distribuição e armazenamento de vários substratos energéticos Hormônios do pâncreas Insulina Glucagon Somatostatina

Leia mais

BIOSSÍNTESE DE ÁCIDOS GRAXOS E REGULAÇÃO DO METABOLISMO DE GORDURAS

BIOSSÍNTESE DE ÁCIDOS GRAXOS E REGULAÇÃO DO METABOLISMO DE GORDURAS BIOSSÍNTESE DE ÁCIDOS GRAXOS E REGULAÇÃO DO METABOLISMO DE GORDURAS Se carboidratos, gorduras e proteínas são consumidas em quantidades que excedam as necessidades energéticas, o excesso será armazenado

Leia mais

Pâncreas Endócrino. Prof. Dr. Luiz Carlos C. Navegantes. Ramal: 4635

Pâncreas Endócrino. Prof. Dr. Luiz Carlos C. Navegantes. Ramal: 4635 Pâncreas Endócrino Prof. Dr. Luiz Carlos C. Navegantes navegantes@fmrp.usp.br Ramal: 4635 O diabetes mellitus É uma síndrome decorrente da falta de insulina ou da incapacidade de a insulina de exercer

Leia mais

Formação e mobilização da glicose por tecidos hepáticos e extra-hepáticos

Formação e mobilização da glicose por tecidos hepáticos e extra-hepáticos Formação e mobilização da glicose por tecidos hepáticos e extra-hepáticos O funcionamento celular depende da sua capacidade de disponibilizar glicose para várias das suas vias metabólicas. A glicose para

Leia mais

Ciclo do Ácido Cítrico ou Ciclo de Krebs ou Ciclo dos Ácidos Tricarboxílicos

Ciclo do Ácido Cítrico ou Ciclo de Krebs ou Ciclo dos Ácidos Tricarboxílicos Ciclo do Ácido Cítrico ou Ciclo de Krebs ou Ciclo dos Ácidos Tricarboxílicos Vias da Respiração Celular NADH Glicólise NADH 2 Ciclo de Krebs Mitocôndria Cadeia transp. elétrons Glicose Piruvato Citosol

Leia mais

UNIVERSIDADE COMUNITÁRIA DA REGIÃO DE CHAPECÓ ÁREA DE CIÊNCIAS DA SAÚDE CURSO DE FISIOTERAPIA CIÊNCIAS MORFOLÓGICAS II

UNIVERSIDADE COMUNITÁRIA DA REGIÃO DE CHAPECÓ ÁREA DE CIÊNCIAS DA SAÚDE CURSO DE FISIOTERAPIA CIÊNCIAS MORFOLÓGICAS II UNIVERSIDADE COMUNITÁRIA DA REGIÃO DE CHAPECÓ ÁREA DE CIÊNCIAS DA SAÚDE CURSO DE FISIOTERAPIA CIÊNCIAS MORFOLÓGICAS II Respiração Celular 1º estágio: GLICÓLISE 2º estágio: CK Ciclo de Krebs 3º estágio:

Leia mais

Metabolismo de Lipídeos

Metabolismo de Lipídeos Universidade de São Paulo Escola de Engenharia de Lorena Departamento de Biotecnologia Curso Engenharia Química Disciplina Bioquimica Metabolismo Energético de Lipídeos Oxidação Completa: Combustível +

Leia mais

O passo limitante de uma via metabólica (que determina a velocidade de toda a via) pode ser determinado por:

O passo limitante de uma via metabólica (que determina a velocidade de toda a via) pode ser determinado por: O passo limitante de uma via metabólica (que determina a velocidade de toda a via) pode ser determinado por: Limite por quantidade/velocidade de enzima Limite por quantidade de substrato Bioquímica 15

Leia mais

O ciclo de Krebs ou do ácido cítrico

O ciclo de Krebs ou do ácido cítrico O ciclo de Krebs ou do ácido cítrico Ciclo de Krebs ou do ácido cítrico; Rui Fontes 1- Por acção das enzimas da glicólise a glicose é, no citoplasma das células, parcialmente oxidada a piruvato. O piruvato

Leia mais

Aula de Bioquímica Avançada. Gliconeogênese Glicogênio: Glicogenólise, Síntese e Regulação

Aula de Bioquímica Avançada. Gliconeogênese Glicogênio: Glicogenólise, Síntese e Regulação Aula de Bioquímica Avançada Temas: Gliconeogênese Glicogênio: Glicogenólise, Síntese e Regulação Prof. Dr. Júlio César Borges Depto. de Química e Física Molecular DQFM Instituto de Química de São Carlos

Leia mais

OXIDAÇÃO DOS AMINOÁCIDOS E PRODUÇÃO DE URÉIA

OXIDAÇÃO DOS AMINOÁCIDOS E PRODUÇÃO DE URÉIA Universidade Federal de Pelotas Programa de Pós-Graduação em Veterinária Disciplina de Doenças metabólicas OXIDAÇÃO DOS AMINOÁCIDOS E PRODUÇÃO DE URÉIA Doutoranda Lourdes Caruccio Hirschmann Orientador:

Leia mais

Universidade Federal do Pampa Campus Itaqui Bioquímica GLICÓLISE AERÓBICA. Ciclo de Krebs e Fosforilação Oxidativa. Profa.

Universidade Federal do Pampa Campus Itaqui Bioquímica GLICÓLISE AERÓBICA. Ciclo de Krebs e Fosforilação Oxidativa. Profa. Universidade Federal do Pampa Campus Itaqui Bioquímica GLICÓLISE AERÓBICA Ciclo de Krebs e Fosforilação Oxidativa Profa. Marina Prigol 1 Glicólise Anaeróbica RESPIRAÇÃO CELULAR ou GLICÓLISE AERÓBICA:

Leia mais

REGULAÇÃO HORMONAL DO METABOLISMO DO GLICOGÊNIO E DE LIPÍDIOS

REGULAÇÃO HORMONAL DO METABOLISMO DO GLICOGÊNIO E DE LIPÍDIOS REGULAÇÃO HORMONAL DO METABOLISMO DO GLICOGÊNIO E DE LIPÍDIOS Tiroxina Epinefrina (adrenalina) Glucagon Insulina Hormônios esteroides: Cortisol (Suprarenal) Progesterona Testosterona Estradiol Aldosterona

Leia mais

Aula de Bioquímica II SQM Ciclo do Ácido Cítrico

Aula de Bioquímica II SQM Ciclo do Ácido Cítrico Aula de Bioquímica II SQM04242015201 Bacharelado em Ciências Físicas e Biomoleculares Tema: Ciclo do Ácido Cítrico Prof. Dr. Júlio César Borges Depto. de Química e Física Molecular DQFM Instituto de Química

Leia mais

Síntese de ácidos gordos e triacilgliceróis

Síntese de ácidos gordos e triacilgliceróis Síntese de ácidos gordos e triacilgliceróis Página 1 de 6 Síntese de ácidos e triacilgliceróis; Rui Fontes 1- O termo lipogénese pode utilizar-se para referir genericamente todos os processos que levam

Leia mais

Biossíntese e degradação de glicogênio. Integração entre o controle da glicólise e da glicogenólise em diferentes tipos celulares

Biossíntese e degradação de glicogênio. Integração entre o controle da glicólise e da glicogenólise em diferentes tipos celulares Biossíntese e degradação de glicogênio Regulação da via glicolítica Integração entre o controle da glicólise e da glicogenólise em diferentes tipos celulares O glicogênio é o polissacarídio de reserva

Leia mais

Faculdade de Tecnologia de Araçatuba. Curso Superior de Tecnologia em Bioenergia Sucroalcooleira

Faculdade de Tecnologia de Araçatuba. Curso Superior de Tecnologia em Bioenergia Sucroalcooleira Faculdade de Tecnologia de Araçatuba Curso Superior de Tecnologia em Bioenergia Sucroalcooleira SÍNTESE DE CARBOIDRATOS Gliconeogênese Biossíntese de glicogênio, amido e sacarose Glicose sanguínea glicogênio

Leia mais

Síntese de ácidos gordos e triacilgliceróis

Síntese de ácidos gordos e triacilgliceróis Síntese de ácidos gordos e triacilgliceróis Síntese de ácidos gordos e triacilgliceróis; Rui Fontes Índice 1- Definições de lipogénese... 1 2- Tecidos e órgãos onde a lipogénese de novo pode ter relevância...

Leia mais

QBQ-0230 Bioquímica do Metabolismo Biologia Noturno

QBQ-0230 Bioquímica do Metabolismo Biologia Noturno QBQ-0230 Bioquímica do Metabolismo Biologia Noturno O que é, e para que serve a vias das pentoses fosfato. A via das pentoses fosfato é uma via alternativa de oxidação da glicose. A via das pentoses fosfato

Leia mais

Metabolismo de Carboidratos

Metabolismo de Carboidratos Metabolismo de Carboidratos Curso de Bioqímica para Saúde Coletiva- UFRJ Profa. Dra. Mônica Santos de Freitas 1 Carboidratos Três maiores classes de carboidratos Monossacarídeos- são carboidratos não polimerizados;

Leia mais

CADEIA DE TRANSPORTE DE ELÉTRONS E FOSFORILAÇÃO OXIDATIVA COMO AS CÉLULAS SINTETIZAM ATP

CADEIA DE TRANSPORTE DE ELÉTRONS E FOSFORILAÇÃO OXIDATIVA COMO AS CÉLULAS SINTETIZAM ATP CADEIA DE TRANSPORTE DE ELÉTRONS E FOSFORILAÇÃO OXIDATIVA OU COMO AS CÉLULAS SINTETIZAM ATP SINTETIZAM ATP ÀS CUSTAS DA OXIDAÇÃO DAS COENZIMAS NADH E FADH 2 PELO OXIGÊNIO AS COENZIMAS REDUZIDAS SÃO PRODUZIDAS

Leia mais

Lipogénese e síntese dos triacilgliceróis

Lipogénese e síntese dos triacilgliceróis Lipogénese e síntese dos triacilgliceróis Página 1 de 6 Lipogénese e síntese dos triacilgliceróis; Rui Fontes 1- Embora os ácidos gordos com número par de carbonos (a maioria) não sejam substratos para

Leia mais

BIOSSINTESE E OXIDAÇÃO DE ÁCIDOS GRAXOS BREVE EXPLICAÇÃO

BIOSSINTESE E OXIDAÇÃO DE ÁCIDOS GRAXOS BREVE EXPLICAÇÃO BIOSSINTESE E OXIDAÇÃO DE ÁCIDOS GRAXOS BREVE EXPLICAÇÃO Onde ocorre? Biossíntese de Ácidos graxos Ácidos graxos saturados de cadeia longa são sintetizados a partir do acetil-coa por um complexo citosólico

Leia mais

Respiração Celular. Ciclo de Krebs Ciclo do ácido Tricarboxílico Ciclo do ácido Cítrico. Prof. Ana Paula Jacobus

Respiração Celular. Ciclo de Krebs Ciclo do ácido Tricarboxílico Ciclo do ácido Cítrico. Prof. Ana Paula Jacobus Respiração Celular Ciclo de Krebs Ciclo do ácido Tricarboxílico Ciclo do ácido Cítrico Prof. Ana Paula Jacobus GLICOSE VIAS LINEARES (glicólise e gliconeogênese) PIRUVATO Ciclo do ácido cítrico ou

Leia mais

Profª Eleonora Slide de aula. Metabolismo de Carboidratos

Profª Eleonora Slide de aula. Metabolismo de Carboidratos Metabolismo de Carboidratos Metabolismo de Carboidratos Profª Eleonora Slide de aula Condições de anaerobiose Fermentação alcoólica Glicose 2 Piruvato Ciclo do ácido cítrico Condições de anaerobiose Condições

Leia mais

Faculdade de Medicina da Universidade de Coimbra Ano Lectivo 2010/2011. Unidade Curricular de BIOQUÍMICA II Mestrado Integrado em MEDICINA 1º Ano

Faculdade de Medicina da Universidade de Coimbra Ano Lectivo 2010/2011. Unidade Curricular de BIOQUÍMICA II Mestrado Integrado em MEDICINA 1º Ano Faculdade de Medicina da Universidade de Coimbra Ano Lectivo 2010/2011 Unidade Curricular de BIOQUÍMICA II Mestrado Integrado em MEDICINA 1º Ano ENSINO PRÁTICO E TEORICO-PRÁTICO 7ª AULA TEÓRICO-PRÁTICA

Leia mais

Metabolismo do Glicogénio

Metabolismo do Glicogénio Metabolismo do Glicogénio Metabolismo do glicogénio; Rui Fontes 1- O glicogénio é um polímero que contém resíduos de glicose ligados por ligações glicosídicas (1 4) e, nos locais de ramificação, glicosídicas

Leia mais

METABOLISMO DOS AMINOÁCIDOS. Prof. Henning Ulrich

METABOLISMO DOS AMINOÁCIDOS. Prof. Henning Ulrich METABOLISMO DOS AMINOÁCIDOS Prof. Henning Ulrich CATABOLISMO DOS AMINOÁCIDOS EM MAMÍFEROS CATABOLISMO DOS GRUPOS AMINO CATABOLISMO DOS GRUPOS AMINO PORÇÃO DO TRATO DIGESTIVO HUMANO TRANSAMINAÇÕES CATALISADAS

Leia mais

Mobilização e Oxidação de Lipídeos

Mobilização e Oxidação de Lipídeos Fontes de ácidos Graxos: Mobilização e xidação de Lipídeos 1. Gorduras da alimentação; 2. Gorduras armazenadas; Fernanda Malagutti Tomé 3. Gorduras recém-sintetizadas. s vertebrados utilizam as três fontes.

Leia mais

1. Produção de Acetil-CoA. 2. Oxidação de Acetil-CoA. 3. Transferência de elétrons e fosforilação oxidativa

1. Produção de Acetil-CoA. 2. Oxidação de Acetil-CoA. 3. Transferência de elétrons e fosforilação oxidativa CICLO DE KREBS OU DO ÁCIDO CÍTRICO 1. Produção de Acetil-CoA 2. Oxidação de Acetil-CoA 3. Transferência de elétrons e fosforilação oxidativa CICLO DE KREBS OU DO ÁCIDO CÍTRICO 1. Produção de Acetil-CoA

Leia mais

Aula de Bioquímica II. Ciclo do Ácido Cítrico

Aula de Bioquímica II. Ciclo do Ácido Cítrico Aula de Bioquímica II Tema: Ciclo do Ácido Cítrico Prof. Dr. Júlio César Borges Depto. de Química e Física Molecular DQFM Instituto de Química de São Carlos IQSC Universidade de São Paulo USP E-mail: borgesjc@iqsc.usp.br

Leia mais

Glicólise e desidrogénase do piruvato

Glicólise e desidrogénase do piruvato Glicólise e desidrogénase do piruvato Glicólise e desidrogénase do piruvato; Rui Fontes Índice 1- O catabolismo dos nutrientes fornece energia para a síntese de ATP... 1 2- A glicólise, sua localização

Leia mais

Via das pentoses-fosfato

Via das pentoses-fosfato Via das pentoses-fosfato A U L A 24 objetivos Nesta aula, você vai conhecer a via das pentoses-fosfato, um desvio da via glicolítica necessário às células que realizam reações de biossíntese redutoras.

Leia mais

objetivo Ciclo da uréia Pré-requisito Ao final desta aula, você deverá ser capaz de: Entender as etapas de formação da uréia.

objetivo Ciclo da uréia Pré-requisito Ao final desta aula, você deverá ser capaz de: Entender as etapas de formação da uréia. Ciclo da uréia A U L A 18 objetivo Ao final desta aula, você deverá ser capaz de: Entender as etapas de formação da uréia. Pré-requisito Conhecimentos adquiridos na Aula 17. BIOQUÍMICA II Ciclo da uréia

Leia mais

- Hidrólise das ligações glicosídicas mediada por glicosidades

- Hidrólise das ligações glicosídicas mediada por glicosidades 1 V Processos Metabólicos 1 Metabolismo dos carboidratos a) Digestão dos carboidratos - idrólise das ligações glicosídicas mediada por glicosidades Inicia-se na boca - Ação da alfa-amilase salivar (ptialina)

Leia mais

MAPA II Vias metabólicas degradativas

MAPA II Vias metabólicas degradativas GLIÓLISE MAPA II Vias metabólicas degradativas PLISSAARÍDIS PRTEÍNAS LIPÍDIS GLISE AMINÁIDS ÁIDS GRAXS Glicólise Fosfoenolpiruvato (3) Asp Gly Ala Ser ys Leu Ile Lys Phe Glu Piruvato (3) 2 Acetil-oA (2)

Leia mais

Pontifícia Universidade Católica de Goiás Departamento de Biologia Bioquímica Metabólica ENZIMAS

Pontifícia Universidade Católica de Goiás Departamento de Biologia Bioquímica Metabólica ENZIMAS Pontifícia Universidade Católica de Goiás Departamento de Biologia Bioquímica Metabólica ENZIMAS Origem das proteínas e de suas estruturas Níveis de Estrutura Protéica Estrutura das proteínas Conformação

Leia mais

Lipídeos e ácidos graxos

Lipídeos e ácidos graxos Lipídeos e ácidos graxos Tópicos de Estudo Lipídeos Lipoproteínas Passos da -oxidação Regulação em estados absortivos, fome e exercício Lipídeos que contem ácidos graxos Ácidos graxos e triacilgliceróis

Leia mais