DINÂMICA DO SISTEMA CARRO-PÊNDULO

Tamanho: px
Começar a partir da página:

Download "DINÂMICA DO SISTEMA CARRO-PÊNDULO"

Transcrição

1 DINÂMICA DO SISTEMA CARRO-PÊNDULO Rafael Alves Figueiredo 1 Universidade Federal de Uberlândia Av. João Naves de Ávila, 2121, Santa Mônica, Uberlândia, MG, Brasil. Márcio José Horta Dantas 2 Resumo: O objetivo principal desse trabalho é estudar e investigar a estabilidade de um sistema dinâmico não linear, precisamente o sistema carro-pêndulo. O modelo do sistema é obtido através da formulação de Lagrange. Tendo o modelo do sistema, utilizam-se dois métodos para analisar e classificar a estabilidade do mesmo, sendo o Teorema de Linearização de Lyapunov-Poincaré e a Função de Lyapunov. Utilizando o Teorema de Linearização de Lyapunov, os estudos são desenvolvidos seguindo o procedimento usual, isto é, determinação dos pontos de equilíbrio, linearização do sistema de equações em uma vizinhança dos pontos de equilíbrio e o estudo da estabilidade desses pontos. Por outro lado, a Função de Lyapunov classifica os pontos de equilíbrio do sistema sem linearizá-lo. Palavras-chave: sistemas dinâmicos, pontos críticos, estabilidade, teoria de Lyapunov, função de Lyapunov. 1. INTRODUÇÃO Em diversos problemas práticos de mecânica, as equações matemáticas que descrevem o seu comportamento são equações diferenciais ordinárias não lineares. Naturalmente, quando se consideram pequenas amplitudes das oscilações envolvidas, estas equações podem ser aproximadas por outras que são lineares. No entanto, como a prática tem demonstrado, cada vez mais é necessário ter modelos mais realistas. Com isto a consideração das equações não lineares originais é inevitável. 2. ESTUDO DA DINÂMICA DO SISTEMA CARRO-PÊNDULO O modelo do sistema carro-pêndulo analisado nesse trabalho, é constituído por um carro de massa que desliza sobre uma superfície horizontal sem atrito conforme mostra na Figura 1. O carro está submetido a uma mola de constante de Hooke e um amortecedor cujo coeficiente de atrito viscoso é dado por. O carro de massa serve como eixo de rotação de um pêndulo simples de massa e comprimento. 1 Acadêmico do curso Bacharelado em Matemática 2 Orientador

2 Figura 1: Sistema Carro-Pêndulo O primeiro passo para analisar a estabilidade desse sistema, é deduzir o modelo matemático e o mesmo será obtido utilizando as equações de Lagrange. Energia potencial do sistema é dada por: 1 1 Energia cinética do sistema é dada por: 2 2 Lagrangiano do sistema: 2 cos 1 cos 3 Assim, as Equações de Lagrange são: 4 5 cos sin 6 Logo, obtemos: cos sin 0 7 2

3 0 8 sin cos sin 9 10 Logo, cos sin 0 11 Tomando a mudança de variáveis e, segue que e 12 logo, e. Assim, teremos o seguinte sistema: sin cos cos sin cos sin cos 13 Os pontos de equilíbrio são obtidos do sistema 0 sin cos cos 0 0 sin cos sin cos 0 14 Logo, segue que sin cos 0 sin cos 0 15 ou seja, 3

4 sin cos sin cos 16 de onde obtemos 0, 0 ou cos 0. Como, cos, o único ponto de equilíbrio deste sistema é a origem 0, 0, 0, Método da Linearização Na vizinhança da origem, o sistema inicial pode ser aproximado pelo sistema linear Forma matricial: 18 onde, , 0, 0 0, Temos que o polinômio característico é da forma Desde que 0, podemos prosseguir utilizando o critério de Hurwitz (Meirovitch, 2003) verificando o sinal dos determinantes das matrizes de Hurwitz com 1, 2, 3, 4. Os determinantes têm os valores

5 De acordo com o critério de Hurwitz, todas as raízes do polinômio característico têm parte real negativa. Segue do Teorema da Linearização de Lyapunov-Poincaré (Bassanezi, 1988), que o ponto de equilíbrio 0, 0, 0, 0 é assintoticamente estável Função Lyapunov Outra maneira de analisar a estabilidade no ponto de equilíbrio, é utilizando a função Lyapunov (Monteiro, 2002), que de certa forma, são motivadas pelo próprio conceito de energia em osciladores não conservativos, onde a energia não é preservada pela trajetória, mas assume um comportamento monótono, decrescente, se o processo for dissipativo, e crescente, se houver absorção de energia. Tomando a função energia,,,, onde é dado pela Equação (1) e é dado pela Equação (2), concluímos que,,, é uma função de Lyapunov. De fato, 0, 0, 0, 0 0,,, 0 se,,, 0, 0, 0, 0, pois a função T é uma substituição de soma de quadrados e o valor mínimo que a função V assume é. iii),,,,,, Como,,, é da forma, cos, sin, cos 21 e o campo,,, é sin cos cos sin cos sin cos 22 temos que,,,. 23 Como o campo,,, é continuamente diferenciável com o ponto crítico na origem, e a função,,, é uma função de Lyapunov satisfazendo,,, 0 para todo,,, 0, 0, 0, 0. Então, o ponto crítico será assintoticamente estável. 3. AGRADECIMENTOS Agradeço ao meu orientador professor Dr. Márcio José Horta Dantas pelos seus valiosos conselhos, ensinamentos e pela atenção durante todo desenvolvimento do projeto. Agradeço também ao CNPq pelo incentivo e por possibilitar a realização desse trabalho. 5

6 4. REFERÊNCIAS Bassanezi, C.B. e Ferreira Jr, W.C., 1988, Equações Diferenciais com Aplicações, Editora Harbra, São Paulo. Meirovitch, L., 2003, Methods of Analytical Dynamics, Dover, New York. Monteiro, L.H.A., 2002, Sistemas Dinâmicos, Editora Livraria da Física, São Paulo. DYNAMICS OF THE MASS-PENDULUM SYSTEM Rafael Alves Figueiredo Universidade Federal de Uberlândia Av. João Naves de Ávila, 2121, Santa Mônica, Uberlândia, MG, Brasil. Márcio José Horta Dantas Universidade Federal de Uberlândia Av. João Naves de Ávila, 2121, Santa Mônica, Uberlândia, MG, Brasil. Abstract: The main aim of this paper is to study stability of a non linear dynamical system, which models a spring-car-pendulum system. The motion equations are obtained from a Lagrangian approach. Two methods are used in order to study the stability of the mechanical system. They are the following ones: the Poincaré-Lyapunov Linearisation Theorem and the method of Lyapunov functions. In the first approach it is necessary to make the linearisation of the system in a equilibrium point of it. From this is possible to get information about the stability of this equilibrium point. When one uses the Lyapunov approach, it is not necessary to do that, but in order to find the Lyapunov function it is necessary to take into account some guessing from the physics of the system. Keywords: dynamical system, equilibrium point, stability, theorem of Lyapunov, method of Lyapunov. 6

DINÂMICA DO SISTEMA CARRO-PÊNDULO

DINÂMICA DO SISTEMA CARRO-PÊNDULO DINÂMICA DO SISTEMA CARRO-PÊNDULO Rafael Alves Figueiredo 1, Márcio José Horta Dantas 2 Faculdade de Matemática FAMAT Universidade Federal de Uberlândia UFU Resumo O objetivo principal desse trabalho é

Leia mais

PLANO DE ATIVIDADE ACADÊMICA NOME

PLANO DE ATIVIDADE ACADÊMICA NOME ANO LETIVO Centro: CENTRO DE CIÊNCIAS EXATAS - CCE Departamento: FÍSICA 2016 CÓDIGO 2FIS068 PLANO DE ATIVIDADE ACADÊMICA NOME MECÂNICA GERAL CURSO FÍSICA 3ª SÉRIE CARGA HORÁRIA SEM. DE OFERTA HABILITAÇÃO(ÕES)

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

MODELAGEM MATEMÁTICA DAS OSCILAÇÕES DE UM PÊNDULO

MODELAGEM MATEMÁTICA DAS OSCILAÇÕES DE UM PÊNDULO MODELAGEM MATEMÁTICA DAS OSCILAÇÕES DE UM PÊNDULO ROSSATO, Jéssica Helisa Hautrive; BISOGNIN, Eleni. Trabalho de Iniciação Científica, BIC- FAPERGS Curso de Engenharia de Materiais do Centro Universitário

Leia mais

Física I 2010/2011. Aula 10. Movimento Oscilatório II

Física I 2010/2011. Aula 10. Movimento Oscilatório II Física I 2010/2011 Aula 10 Movimento Oscilatório II Sumário Capítulo 15: Oscilações 15-3 A Energia no Movimento Harmónico Simples 15-4 Um Oscilador Harmónico Simples Angular 15-5 O Pêndulo simples 15-7

Leia mais

CAPÍTULO. Oliveira, Leandro 1 *; Borges, Romes 2

CAPÍTULO. Oliveira, Leandro 1 *; Borges, Romes 2 9 CAPÍTULO INTRODUÇÃO ÀS TÉCNICAS DE PERTUR- BAÇÃO APLICADAS À RESOLUÇÃO DE SISTEMAS DINÂMICOS NÃO-LINEARES Oliveira, Leandro 1 *; Borges, Romes 2 1Departamento de Engenharia Civil. Universidade Federal

Leia mais

O Movimento Harmônico Simples

O Movimento Harmônico Simples O Movimento Harmônico Simples Bibliografia e Figuras: Halliday, Resnick e Walker, vol 2 8 a ed, Cap 15. Todo o movimento que se repete em intervalos regulares é chamado de movimento periódico ou movimento

Leia mais

Robson Alexandrino Trevizan Santos. Bifurcações em Sistemas Dinâmicos Suaves por Partes

Robson Alexandrino Trevizan Santos. Bifurcações em Sistemas Dinâmicos Suaves por Partes Robson Alexandrino Trevizan Santos Bifurcações em Sistemas Dinâmicos Suaves por Partes São José do Rio Preto 2013 Abstract This work is a study of bifurcations of equilibrium points in piecewise-smooth

Leia mais

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões

Leia mais

AUTOVALORES E AUTOVETORES: CONCEITOS E UMA APLICAÇÃO A UM SISTEMA DINÂMICO

AUTOVALORES E AUTOVETORES: CONCEITOS E UMA APLICAÇÃO A UM SISTEMA DINÂMICO AUTOVALORES E AUTOVETORES: CONCEITOS E UMA APLICAÇÃO A UM SISTEMA DINÂMICO Patrícia Eduarda de Lima 1, Luciane de Fátima Rodrigues de Souza 2* 1 Departamento de Exatas, Faculdades Integradas Regionais

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II 1 Objetivos Gerais: Movimento Harmônico Amortecido Determinar o período de oscilação do pêndulo T ; Determinar a constante de amortecimento. *Anote a incerteza dos instrumentos de medida utilizados: ap

Leia mais

Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa à posição inicial depois de um intervalo de tempo.

Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa à posição inicial depois de um intervalo de tempo. Física 12.º Ano MOVIMENTOS OSCILATÓRIOS ADAPTADO DE SERWAY & JEWETT POR MARÍLIA PERES 2013 Movimento Periódico 2 Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa

Leia mais

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Movimento Periódico O movimento é um dos fenômenos mais fundamentais

Leia mais

DINÂMICA DE CONTATO: O PÊNDULO COM RESTRIÇÕES AO MOVIMENTO

DINÂMICA DE CONTATO: O PÊNDULO COM RESTRIÇÕES AO MOVIMENTO INPE-37-PRE/894 DINÂMICA DE CONTATO: O PÊNDUO COM RESTRIÇÕES AO MOVIMENTO Michelle Bararuá Dias* *Bolsista EEI Relatório Final de Projeto de Iniciação Científica (PIBIC/CNPq/INPE), orientado pelo Dr. André

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

SEM5874: Mecânica de Corpos Rígidos

SEM5874: Mecânica de Corpos Rígidos SEM5874: Mecânica de Corpos Rígidos Introdução e Revisão de Álgebra Linear Prof. Dr. Marcelo A. Trindade Departamento de Engenharia Mecânica Escola de Engenharia de São Carlos - USP Prédio da Mecatrônica

Leia mais

Pêndulo Duplo ou Lição 0 de Mecânica Lagrangiana, Análise Numérica e Teoria do Caos

Pêndulo Duplo ou Lição 0 de Mecânica Lagrangiana, Análise Numérica e Teoria do Caos Pêndulo Duplo ou Lição 0 de Mecânica Lagrangiana, Análise Numérica e Teoria do Caos Pedro Queiroz Departamento de Física Instituto Superior Técnico Novembro de 005 1 Introdução O Problema 3 da Série 8

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 20 de março de 2013 Roteiro 1 Amortecidas forçadas Roteiro Amortecidas forçadas 1 Amortecidas

Leia mais

Física Geral e Experimental III

Física Geral e Experimental III Física Geral e Experimental III Oscilações Nosso mundo está repleto de oscilações, nas quais os objetos se movem repetidamente de um lado para outro. Eis alguns exemplos: - quando um taco rebate uma bola

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

Estudo de Campos Vetoriais Descontínuos dados na forma de Jordan com autovalores complexos

Estudo de Campos Vetoriais Descontínuos dados na forma de Jordan com autovalores complexos Estudo de Campos Vetoriais Descontínuos dados na forma de Jordan com autovalores complexos Lucyjane de Almeida Silva 1, João Carlos da Rocha Medrado 2 2 Instituto de Matemática e Estatística, Universidade

Leia mais

MHS Movimento Harmônico Simples

MHS Movimento Harmônico Simples 2010 ESCOLA ALUNO MHS Movimento Harmônico Simples 1. (Mackenzie) Uma partícula descreve um movimento harmônico simples segundo a equação X = 0,3. cos (π /3 + 2.t), no S.I.. O módulo da máxima velocidade

Leia mais

Equações não lineares

Equações não lineares DMPA IME UFRGS Cálculo Numérico Índice Raizes de polinômios 1 Raizes de polinômios 2 raizes de polinômios As equações não lineares constituídas por polinômios de grau n N com coeficientes complexos a n,a

Leia mais

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto

Leia mais

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é:

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é: AULA 41 ENERGIA NO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: - Estudar a conservação da energia no movimento harmônico simples 41.1 Introdução: A força restauradora que atua sobre uma partícula que possui

Leia mais

DISPOSITIVO DIDÁTICO MOVIMENTO HARMÔNICO SIMPLES VERSUS MOVIMENTO CIRCULAR UNIFORME

DISPOSITIVO DIDÁTICO MOVIMENTO HARMÔNICO SIMPLES VERSUS MOVIMENTO CIRCULAR UNIFORME DISPOSITIVO DIDÁTICO MOVIMENTO HARMÔNICO SIMPLES VERSUS MOVIMENTO CIRCULAR UNIFORME Sandra Maria Couto Moreira Ronaldo Luiz Neves Pinheiro Luiz Carlos de Alvarenga Depto. de Física UFV Viçosa MG I. Introdução

Leia mais

Problemas sobre osciladores simples

Problemas sobre osciladores simples Universidade de Coimbra mecânica Clássica II 2009.2010 Problemas sobre osciladores simples 1. Um objecto com 1 kg de massa está suspenso por uma mola e é posto a oscilar. Quando a aceleração do objecto

Leia mais

Aula do cap. 16 MHS e Oscilações

Aula do cap. 16 MHS e Oscilações Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento

Leia mais

Na posição de equilíbrio, temos como forças que actuam sobre o corpo: Fora da posição de equilíbrio, as forças que podem actuar são:

Na posição de equilíbrio, temos como forças que actuam sobre o corpo: Fora da posição de equilíbrio, as forças que podem actuar são: APLICAÇÕES DAS EQUAÇÕES DIFERENCIAIS DE SEGUNDA ORDEM Como aplicação das equações diferenciais de segunda ordem, vamos considerar o movimento oscilatório de uma mola de comprimento l e constante de elasticidade

Leia mais

Análise de um Pêndulo Mecânico Não Ideal nas Principais Ressonâncias

Análise de um Pêndulo Mecânico Não Ideal nas Principais Ressonâncias Análise de um Pêndulo Mecânico Não Ideal nas Principais Ressonâncias Adriana O. Dias, Masayoshi Tsuchida, Depto de Ciências de Computação e Estatística, IBILCE, UNESP, 15054-000, São José do Rio Preto,

Leia mais

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2)

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) A CINEMÁTICA NO MHS 1.1.- (HALLIDAY, 4ª EDIÇÃO, CAP. 14, 1E) Um objeto sujeito a um movimento harmônico simples leva 0,25 s para

Leia mais

Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção.

Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. Lista 14: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

Física I para a Escola Politécnica ( ) - SUB (03/07/2015) [0000]

Física I para a Escola Politécnica ( ) - SUB (03/07/2015) [0000] Física I para a Escola Politécnica (330) - SUB (03/0/0) [0000] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preencha completamente os círculos com os dígitos do seu número

Leia mais

Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo

Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo Sistemas Dinâmicos e Caos - 2016.2 - Lista de Problemas 2.1 1 Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo Questão 01: Oscilador harmônico Considere o oscilador harmônico ẋ = y, ẏ

Leia mais

Palavras-chave: Momento de inércia, momento de inércia de área, momento de inércia de massa.

Palavras-chave: Momento de inércia, momento de inércia de área, momento de inércia de massa. MOMENTO DE INÉRCIA, DE MASSA OU DE ÁREA? SILVA; Adriano de Aquino Paiva Adriano.aquino@hotmail.com Faculdade de Tecnologia de Mogi-Mirim Resumo - Este artigo apresenta e explica o Momento de Inércia utilizado

Leia mais

Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância. Prof. Ettore Baldini-Neto

Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância. Prof. Ettore Baldini-Neto Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância Prof. Ettore Baldini-Neto 1610: Galileu, usando um telescópio recém construído, descobre

Leia mais

Licenciatura em Física

Licenciatura em Física - CCT EMENTA: Evolução das ideias da mecânica. Dinâmica da partícula. Oscilações. Gravitação. Movimento sob forças centrais. Referenciais não-inerciais. Sistemas de partículas. OBJETIVO GERAL: Estudo da

Leia mais

Mecânica Lagrangeana

Mecânica Lagrangeana Mecânica agrangeana Apontamentos para a disciplina Introdução à Mecânica Clássica 00/0 Maria Inês Barbosa de Carvalho Aníbal Castilho Coimbra de Matos icenciatura em Engenharia Electrotécnica e de Computadores

Leia mais

Capítulo 3 O Oscilador Hamônico

Capítulo 3 O Oscilador Hamônico Capítulo 3 O Oscilador Hamônico Uma força unidimensional, que depende somente da posição x, tem uma expansão de Taylor em torno da sua posição de equilíbrio x=0 (onde F=0) Quando somente o termo linear

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

Capí tulo 6 Movimento Oscilato rio Harmo nico

Capí tulo 6 Movimento Oscilato rio Harmo nico Capí tulo 6 Movimento Oscilato rio Harmo nico 1. O Movimento Harmónico Simples Vamos estudar o movimento de um corpo sujeito a uma força elástica. Consideramos o sistema como constituído por um corpo de

Leia mais

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO MATEMÁTICA 1ª QUESTÃO O valor do número real que satisfaz a equação =5 é A) ln5 B) 3 ln5 C) 3+ln5 D) ln5 3 E) ln5 ª QUESTÃO O domínio da função real = 64 é o intervalo A) [,] B) [, C), D), E), 3ª QUESTÃO

Leia mais

Fluxo geodésico em variedades sem pontos conjugados

Fluxo geodésico em variedades sem pontos conjugados Rodrigo Pereira Pacheco Fluxo geodésico em variedades sem pontos conjugados Dissertação de Mestrado Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós graduação

Leia mais

Questão Valor Grau Revisão 1 a Questão 2,0 2 a Questão 2,0 3 a Questão 3,0 4 a Questão 3,0 Total 10,0

Questão Valor Grau Revisão 1 a Questão 2,0 2 a Questão 2,0 3 a Questão 3,0 4 a Questão 3,0 Total 10,0 PUC-RIO CB-CTC G DE MECÂNICA NEWTONIANA B 8.5. Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas deste caderno de

Leia mais

Ressonador de Helmholtz.

Ressonador de Helmholtz. Ressonador de Helmholtz. Modelo mecânico do ressonador de Helmholtz O ressonador é composto por um volume V, esférico no caso mostrado na figura, e um gargalo de seção reta S e comprimento l. A primeira

Leia mais

11 Cinemática de partículas 605

11 Cinemática de partículas 605 SUMÁRIO 11 Cinemática de partículas 605 11.1 Introdução à dinâmica 606 Movimento retilíneo de partículas 607 11.2 Posição, velocidade e aceleração 607 11.3 Determinação do movimento de uma partícula 611

Leia mais

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrer turbulência

Leia mais

8. Estabilidade e bifurcação

8. Estabilidade e bifurcação 8. Estabilidade e bifurcação Os sistemas dinâmicos podem apresentar pontos fixos, isto é, pontos no espaço de fase onde o sistema permanece sempre no mesmo estado. Para identificar os pontos fixos e estudar

Leia mais

FÍSICA. A resultante das forças que atuam num corpo em equilíbrio é igual a zero.

FÍSICA. A resultante das forças que atuam num corpo em equilíbrio é igual a zero. FÍSICA Leis de Newton 1ª Lei de Newton (lei da inércia) A resultante das forças que atuam num corpo em equilíbrio é igual a zero. R=0 2ª Lei de Newton (lei fundamental da dinâmica) A aceleração adquirida

Leia mais

Quando a altura coincide com a idade?

Quando a altura coincide com a idade? Quando a altura Wescley Well Vicente Bezerra Professor da Faculdade UnB - Planaltina wescley.well@gmail.com Rogério César dos Santos Professor da Faculdade UnB - Planaltina professorrogeriocesar@gmail.com

Leia mais

SUMÁRIO. 1 Preparando o Cenário para o Estudo da Dinâmica Cinemática da Partícula... 29

SUMÁRIO. 1 Preparando o Cenário para o Estudo da Dinâmica Cinemática da Partícula... 29 SUMÁRIO 1 Preparando o Cenário para o Estudo da Dinâmica... 1 1.1 Uma Breve História da Dinâmica...1 Isaac Newton (1643-1727)... 3 Leonhard Euler (1707-1783)... 6 1.2 Conceitos Fundamentais...8 Espaço

Leia mais

Exercícios desafiadores de Física I

Exercícios desafiadores de Física I Exercícios desafiadores de Física I Sears & Zemansy (in memoriam) setembro 2009 5.3 rampa rugosa com gelo - Y & F cap.6-00 Uma rampa está inclinada de um ãngulo α com o plano horizontal. Ela está parcialmente

Leia mais

Lista 14: Oscilações. Questões

Lista 14: Oscilações. Questões Lista 14: Oscilações NOME: Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para resolução

Leia mais

Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA

Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA RESUMO DE MECÂNICA Ano 2014 1 1. DINÂMICA DE UMA PARTÍCULA 1.1. O referencial inercial. O referencial inercial é um sistema de referência que está em repouso ou movimento retilíneo uniforme ao espaço absoluto.

Leia mais

Estabilidade assintótica

Estabilidade assintótica Controle da pressão de uma máquina a vapor via estabilidade assintótica Rodrigo Mendes Alves Orientador: Jean Venato Santos 6 de dezembro de 2012 Resumo O trabalho proposto trata-se de uma manipulação

Leia mais

Oscilador Harmônico. 8 - Oscilador Harmônico. Oscilador Harmônico. Oscilador Harmônico Simples. Oscilador harmônico simples

Oscilador Harmônico. 8 - Oscilador Harmônico. Oscilador Harmônico. Oscilador Harmônico Simples. Oscilador harmônico simples Oscilador Harmônico 8 - Oscilador Harmônico Mecânica Quântica Em Física, o oscilador harmônico é qualquer sistema que apresenta movimento oscilatório, de forma harmônica, em torno de um ponto de equilíbrio.

Leia mais

Prova 1/3. Nome: Assinatura: Matrícula UFES: Semestre: 2013/2 Curso: Física (B e L) Turmas: 01 e 02 Data: 11/11/2013 GABARITO

Prova 1/3. Nome: Assinatura: Matrícula UFES: Semestre: 2013/2 Curso: Física (B e L) Turmas: 01 e 02 Data: 11/11/2013 GABARITO Universidade Federal do Espírito Santo Centro de Ciências Eatas Departamento de Física FIS09066 Física Prof. Anderson Coser Gaudio Prova /3 Nome: Assinatura: Matrícula UFES: Semestre: 03/ Curso: Física

Leia mais

Lista 12: Oscilações NOME:

Lista 12: Oscilações NOME: Lista 12: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

Modelagem Matemática de Elementos Empregados em Suspensões Veiculares

Modelagem Matemática de Elementos Empregados em Suspensões Veiculares Trabalho apresentado no CMAC-Sul, Curitiba-PR, 214. Modelagem Matemática de Elementos Empregados em Suspensões Veiculares Ana P. Brezolin, Márcia F. Brondani, Marnei D. Zorzella, Mauri J. Klein, Rodrigo

Leia mais

Campus de Botucatu PLANO DE ENSINO. DOCENTE RESPONSÁVEL: Prof. Dr. Marcos Antonio de Rezende

Campus de Botucatu PLANO DE ENSINO. DOCENTE RESPONSÁVEL: Prof. Dr. Marcos Antonio de Rezende PLANO DE ENSINO I IDENTIFICAÇÃO CURSO: Física Médica MODALIDADE: Bacharelado DISCIPLINA: Física I (X) OBRIGATÓRIA ( ) OPTATIVA DEPARTAMENTO: Física e Biofísica DOCENTE RESPONSÁVEL: Prof. Dr. Marcos Antonio

Leia mais

Exercício 1. Exercício 2.

Exercício 1. Exercício 2. Exercício 1. Em um barbeador elétrico, a lâmina se move para frente e para trás ao longo de uma distância de 2,0 mm em movimento harmônico simples, com frequência de 120 Hz. Encontre: (a) a amplitude,

Leia mais

Oscilações. Uma partícula material executa um MHS quando oscila periodicamente em torno de uma posição de equilíbrio, sobre uma trajetória reta.

Oscilações. Uma partícula material executa um MHS quando oscila periodicamente em torno de uma posição de equilíbrio, sobre uma trajetória reta. Oscilações Movimento Harmônico Simples Uma partícula material executa um MHS quando oscila periodicamente em torno de uma posição de equilíbrio, sobre uma trajetória reta. Dinâmica do MCU As oscilações

Leia mais

ii) Determine a função de Lagrange do sistema (massa pontual ) em função da variável.

ii) Determine a função de Lagrange do sistema (massa pontual ) em função da variável. Mestrado Integrado em Engenharia Aeroespacial Mecânica e Ondas 1º Ano -º Semestre º Exame 03/07/014 15:00h Duração do Exame: :30h Leia o enunciado com atenção. Justifique todas as respostas. Identifique

Leia mais

Modelagem Matemática das Vibrações de uma Corda Elástica

Modelagem Matemática das Vibrações de uma Corda Elástica Modelagem Matemática das Vibrações de uma Corda Elástica Rossato, Jéssica Helisa Hautrive 1 ; Bisognin, Eleni 2 Trabalho de Iniciação Científica, Probic - CNPq 1 Curso de Engenharia de Materiais do Centro

Leia mais

étodos uméricos RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS (Continuação) Prof. Erivelton Geraldo Nepomuceno

étodos uméricos RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS (Continuação) Prof. Erivelton Geraldo Nepomuceno étodos uméricos RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE

Leia mais

Física 2. Guia de Estudos P1

Física 2. Guia de Estudos P1 Física 2 Guia de Estudos P1 1. Movimento Harmônico Simples (MHS) Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em

Leia mais

UNIVERSIDADE FEDERAL DO ACRE

UNIVERSIDADE FEDERAL DO ACRE UNIVERSIDADE FEDERAL DO ACRE PRÓ-REITORIA DE GRADUAÇÃO EDITAL Nº 04/2016-PROGRAD PROVA ESCRITA ÁREA: FÍSICA GERAL Questão 1. (Valor 2,0) Um foguete modelo de 4,00 kg é lançado verticalmente para cima com

Leia mais

F = m d 2 x d t 2. F R = bv = b d x

F = m d 2 x d t 2. F R = bv = b d x Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 0,5 N/m e a um amortecedor de constante de amortecimento b = 0,5 N.s/m. O bloco é deslocado de sua posição de equilíbrio O até

Leia mais

Mestrado e Doutorado em Física

Mestrado e Doutorado em Física UNIVERSIDADE FEDERAL DO MARANHÃO FUNDAÇÃO Instituída nos termos da Lei nº 5.152, de 21/10/1996 São Luís Maranhão CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA Exame de Seleção

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

Oscilações Exercícios

Oscilações Exercícios Fuja do Nabo: Física II P2 2014 Rogério Motisuki Oscilações Exercícios a) A velocidade será nula quando a inclinação da reta tangente for horizontal, pois = Do gráfico, esse ponto é o = 3. b) Para acharmos

Leia mais

Prof. MSc. David Roza José 1/30

Prof. MSc. David Roza José 1/30 1/30 Autovalores e Autovetores Objetivos: Compreender a definição matemática de autovalores e autovetores; Compreender a interpretação física de autovalores e autovetores entro do contexto de sistemas

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS MAF- 04.05.2012 Prof. Dr. Antônio Newton Borges 1. Na caixa de 2,0 kg da figura abaixo são aplicadas duas forças, mais somente uma é mostrada. A aceleração da

Leia mais

PROGRAMA DE DISCIPLINA CRÉDITOS CARGA HORÁRIA PRÉ REQUISITO T P O 90 MAT01 1-EMENTA

PROGRAMA DE DISCIPLINA CRÉDITOS CARGA HORÁRIA PRÉ REQUISITO T P O 90 MAT01 1-EMENTA UNIVERSIDADE FEDERAL DE RORAIMA PRÓ-REITORIA DE GRADUAÇÃO FEDERAL CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE FÍSICA PROGRAMA DE DISCIPLINA CÓDIGO FIS01 DISCIPLINA FÍSICA CRÉDITOS CARGA HORÁRIA PRÉ

Leia mais

Controle de Sistemas Dinâmicos. Informações básicas

Controle de Sistemas Dinâmicos. Informações básicas Controle de Sistemas Dinâmicos Informações básicas Endereço com material http://sites.google.com/site/disciplinasrgvm/ Ementa Modelagem de Sistemas de Controle; Sistemas em Malha Aberta e em Malha Fechada;

Leia mais

Trabalho e Energia. = g sen. 2 Para = 0, temos: a g 0. onde L é o comprimento do pêndulo, logo a afirmativa é CORRETA.

Trabalho e Energia. = g sen. 2 Para = 0, temos: a g 0. onde L é o comprimento do pêndulo, logo a afirmativa é CORRETA. Trabalho e Energia UFPB/98 1. Considere a oscilação de um pêndulo simples no ar e suponha desprezível a resistência do ar. É INCORRETO afirmar que, no ponto m ais baixo da trajetória, a) a energia potencial

Leia mais

MATRIZES POSITIVAS DEFINIDAS

MATRIZES POSITIVAS DEFINIDAS MATRIZES POSITIVAS DEFINIDAS Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 7 de novembro de 2011 Roteiro 1 2 3 Roteiro 1 2 3 Por que saber se uma matriz é definida positiva? Importância do sinal

Leia mais

Mecânica e Ondas. Docentes da disciplina: João Seixas e Mário Pinheiro MeMEC Department of Physics and Institute for Plasma and Nuclear Fusion,

Mecânica e Ondas. Docentes da disciplina: João Seixas e Mário Pinheiro MeMEC Department of Physics and Institute for Plasma and Nuclear Fusion, Mecânica e Ondas Série 3 Docentes da disciplina: João Seixas e Mário Pinheiro MeMEC Department of Physics and Institute for Plasma and Nuclear Fusion, Instituto Superior Técnico, Av. & 1049-001 Lisboa,

Leia mais

Oscilações, Coerência e Ressonância

Oscilações, Coerência e Ressonância , Coerência e Ressonância 1. Por que alguns sistemas físicos oscilam e outros não?. O que caracteriza um sistema oscilatório? 3. Como se mede o período de um pêndulo? parâmetros internos Oscilaç A determinação

Leia mais

Capítulo 4 O Oscilador Amortecido

Capítulo 4 O Oscilador Amortecido Capítulo 4 O Oscilador Amortecido Vamos supor que um oscilador harmônico tenha amortecimento, isto é, sofre uma resistência ao seu movimento e que esta resistência, para simplificar seja linearmente proporcional

Leia mais

Problemas de Mecânica e Ondas 7

Problemas de Mecânica e Ondas 7 Problemas de ecânica e Ondas 7 P 7. Considere que as vagonetas de massa m e m (ver figur podem ser representadas por dois pontos materiais localizados nos centros de massa respectivos, para efeito da descrição

Leia mais

Cálculo Diferencial e Integral C. Me. Aline Brum Seibel

Cálculo Diferencial e Integral C. Me. Aline Brum Seibel Cálculo Diferencial e Integral C Me. Aline Brum Seibel Em ciências, engenharia, economia e até mesmo em psicologia, frequentemente desejamos descrever ou modelar o comportamento de algum sistema ou fenômeno

Leia mais

Física I Prova 2 10/05/2014

Física I Prova 2 10/05/2014 Posição na sala Física I Prova 2 10/05/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 2 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente)

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA QUÍMICA CURSO DE ENGENHARIA QUÍMICA FICHA DE DISCIPLINA

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA QUÍMICA CURSO DE ENGENHARIA QUÍMICA FICHA DE DISCIPLINA UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA QUÍMICA CURSO DE ENGENHARIA QUÍMICA FICHA DE DISCIPLINA DISCIPLINA: Física Geral Experimental CÓDIGO: GEQ013 UNIDADE ACADÊMICA: Instituto de Física

Leia mais

Antonio Eduardo Gonçalves Sampaio. Análise do Comportamento Dinâmico de Colunas Semi-Enterradas. Dissertação de Mestrado

Antonio Eduardo Gonçalves Sampaio. Análise do Comportamento Dinâmico de Colunas Semi-Enterradas. Dissertação de Mestrado Antonio Eduardo Gonçalves Sampaio Análise do Comportamento Dinâmico de Colunas Semi-Enterradas Dissertação de Mestrado Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo

Leia mais

ENERGIA MECÂNICA. Considerações Gerais

ENERGIA MECÂNICA. Considerações Gerais SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR SARGENTO NADER ALVES DOS SANTOS SÉRIE/ANO: 1º TURMA(S):

Leia mais

c il a ções Física 2 aula 9 2 o semestre, 2012

c il a ções Física 2 aula 9 2 o semestre, 2012 Os c il a ções Física aula 9 o semestre, 1 Movimento Harmônico simples: coneão entre vibrações e ondas Energia no MHS Energia Mecânica Total: 1 1 Quando =A ou =-A (etremos): E mv k 1 1 1 E m() k( A) ka

Leia mais

Solução Comentada da Prova de Física

Solução Comentada da Prova de Física Solução Comentada da Prova de Física 01. Uma partícula parte do repouso, no instante t = 0, na direção positiva do eixo x. O gráfico da aceleração da partícula ao longo eixo x, em função do tempo, é mostrado

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

Energia Potencial e Conservação de Energia. Energia Potencial Gravitacional

Energia Potencial e Conservação de Energia. Energia Potencial Gravitacional Fisica I IO Energia Potencial e Conservação de Energia Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202 crislpo@if.usp.br Energia Potencial Gravitacional Energia Potencial : Energia associada com a

Leia mais

Física I Prova 3 7/06/2014

Física I Prova 3 7/06/2014 Nota Física I Prova 3 7/06/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 2 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 12

Leia mais

ANÁLISE EXPERIMENTAL DO SISTEMA MASSA-MOLA ATRAVÉS DA LEI DE HOOKE

ANÁLISE EXPERIMENTAL DO SISTEMA MASSA-MOLA ATRAVÉS DA LEI DE HOOKE ANÁLISE EXPERIMENTAL DO SISTEMA MASSA-MOLA ATRAVÉS DA LEI DE HOOKE Resumo: Nascimento, L. 1 ; Melnyk, A. 2 Neste artigo, apresentamos as medidas efetuadas e as análises verificando a Lei de Hooke num sistema

Leia mais

Ao atingir o ponto B pela quarta vez, temos 3,5 oscilações completas em 7 segundos; logo:

Ao atingir o ponto B pela quarta vez, temos 3,5 oscilações completas em 7 segundos; logo: 01 Ao atingir o ponto B pela quarta vez, temos 3,5 oscilações completas em 7 segundos; logo: 7 T = T = 2 s 3,5 Resposta: E 1 02 Sabemos que o período de uma oscilação é proporcional a L é o comprimento;

Leia mais

Lista de Exercícios - OSCILAÇÕES

Lista de Exercícios - OSCILAÇÕES UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Lista de Exercícios - OSCILAÇÕES Perguntas: 1. O gráfico da figura 1 mostra a aceleração

Leia mais

4ª Experiência: Molas

4ª Experiência: Molas 4ª Experiência: Molas Objetivo Calibrar as molas usando a lei de Hooke. Determinar a constante elástica equivalente de associações em série e paralelo. Introdução A deformação x sofrida por uma mola é

Leia mais

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas.

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Capítulo 6 Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Definição (6.2): Seja e uma função real incógnita definida num intervalo aberto.

Leia mais

CSE-020 Revisão de Métodos Matemáticos para Engenharia

CSE-020 Revisão de Métodos Matemáticos para Engenharia CSE-020 Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais