CÁLCULO DO RETORNO ESPERADO DA CARTEIRA DE MERCADO E DO RETORNO DO ATIVO LIVRE DE RISCO PARA O BRASIL

Tamanho: px
Começar a partir da página:

Download "CÁLCULO DO RETORNO ESPERADO DA CARTEIRA DE MERCADO E DO RETORNO DO ATIVO LIVRE DE RISCO PARA O BRASIL"

Transcrição

1 ESCOLA FEDERAL DE ENGENHARIA DE ITAJUBÁ INSTITUTO DE ENGENHARIA MECÂNICA DEPARTAMENTO DE PRODUÇÃO CÁLCULO DO RETORNO ESPERADO DA CARTEIRA DE MERCADO E DO RETORNO DO ATIVO LIVRE DE RISCO PARA O BRASIL Dego Marque Barbosa Gustavo Mendes Borges Orentador: Edson de Olvera Pamplona, Dr. Escola Federal de Engenhara de Itajubá, Departamento de Produção Cx. P Itajubá, MG, Brasl Resumo. Para aplcação do Modelo CAPM, utlzado na determnação de taxas de descontos em avalação de nvestmentos, há a necessdade de utlzar parâmetros como retorno de atvo lvre de rsco e retorno esperado da cartera de mercado. Estes parâmetros não são encontrados com facldade na lteratura braslera. Fo calculado o retorno esperado da cartera de mercado e o retorno do atvo lvre de rsco para o Brasl. Mostrou-se a mportânca da escolha correta do índce de mercado para o cálculo de meddas estatístcas para avalação de performance de ações de empresas, pos uma escolha errada pode gerar dferentes classfcações na avalação e seleção de ações. Palavras-chave: CAPM, Parâmetros de Rsco, Beta, Sharpe, Treynor 1. INTRODUÇÃO O objetvo deste trabalho é calcular o retorno esperado da cartera de mercado, R m, e o retorno do atvo lvre de rsco, R f, para o Brasl. Com a ntenção de utlzar estes parâmetros no cálculo de ndcadores como: Sharpe, Treynor, Retorno Esperado - E(r) - de ações de empresas tradconas de grande porte, com grande lqudez e procura no mercado de ações, ou seja, Blue Chps. Para estes cálculos é necessáro a utlzação de ndcadores como β, σ e de modelos como o CAPM, que postula certa relação entre rsco e retorno (Varga, 2000). Uma questão mportante no cálculo desses ndcadores é a escolha correta do índce de mercado, e a pergunta, conhecda como crítca de Roll (Varga, 2000), é qual a cartera de mercado a ser utlzada? Pos dependendo do índce de mercado utlzado, podemos gerar dferentes classfcações, na hora de avalar ações de empresas. Perante este problema será tomada como cartera de mercado as ações que compõem o índce Bovespa, pos este contém as ações de empresas com maor lqudez no mercado naconal. Apesar de publcações específcas que calculam o retorno hstórco médo do índce Bovespa não serem comuns, este trabalho realzará os cálculos a partr do banco de dados Economátca Pro (software da empresa Economatca).

2 A prncpal adção dos modelos de fnanças à avalação de atvos de empresas vem da ncorporação do rsco, que ncou com o modelo de méda varânca de Markowtz, na década de 50. De acordo com Varga (2000): Se o retorno esperado de um atvo é tanto maor quanto seu rsco, então a nclusão de alguma medda de rsco na avalação deste permte verfcar quanto do retorno proporconado por um nvestdor vem de seu talento, quanto vem da sorte e quanto do rsco assumdo. Outro aspecto mportante na nclusão do rsco é a sua contrbução para a determnação da cartera ótma de um nvestdor (para nvestdores que se mportem com rsco, pos, no caso de nvestdores neutros ao rsco, basta conhecer o retorno esperado). Com sso, determnamos a contrbução do nvestdor para o retorno da cartera de ações seleconadas por ele. Entre as estatístcas de avalação de performance mas conhecdas está o índce de Sharpe (IS), apresentado em Sharpe (1996). Apesar de sua mportânca prátca, sua utlzação depende da valdade das hpóteses do CAPM, da estmação dos seus parâmetros e da aplcação que se pretende. Nas etapas seguntes será descrto o que é rsco, bem como o cálculo, a concetuação, a mportânca e as falhas que estão sujetos os índces de Sharpe, Treynor e o modelo CAPM. Conseqüentemente serão apresentados os ndcadores que compõem cada um desses cálculos, como β e σ. 2. RISCO E RETORNO Sempre que falamos de rsco e retorno, é mportante que tenhamos o conhecmento que atvos com rsco, em méda, proporconam um prêmo, ou seja, exste uma recompensa por correr este rsco. Quanto maor a recompensa em potencal de um nvestmento com rsco, maor é seu rsco. Através da moderna Teora de Portfolos proposta por Harry Markowtz (1952), a avalação do rsco e retorno esperado de uma ação, passou a ser calculada através de recursos estatístcos. Analsando a méda, desvo padrão e correlações com outros papés, tornou-se mas smples relaconar rsco e retorno. É mportante ressaltar que as condções macroeconômcas naconas e globas também são váldas para a análse de qualquer ação. O modelo CAPM e os ndcadores de performance baseados nele, devem-se preocupar com o retorno e rsco esperado e não com o que já aconteceu. Devdo a enorme dfculdade em se obterem estes valores esperados, uma estmatva muto comum para rsco e retorno esperado vem da avalação da méda e volatldade do seu retorno hstórco, supondo que o passado va se repetr de alguma forma. O retorno de qualquer ação é formado por dos componentes. Em prmero lugar, o retorno normal ou esperado da ação é aquela parte da taxa de retorno que é esperada, de acordo com as nformações que os nvestdores possuem a respeto da ação. A segunda parte é o retorno ncerto, provenente de nformações nesperadas, como planos governamentas, varações nas taxas de juros, etc. Quando examnamos os rscos assocados a atvos ndvduas, de acordo com Ross et all (1998), descobrmos que há dos tpos de rscos: RISCO SISTEMÁTICO: É aquele que nfluenca um grande número de atvos, em grau maor ou menor. Como os rscos sstemátcos são efetos que possuem ampltude gual á do mercado como um todo, são as vezes chamados de rsco de mercado.outro nome que pode ser encontrado é rsco não dversfcável. Mudanças no sstema polítco, socal e econômco e taxa de juros são fontes de rsco sstemátco. RISCO NÃO SISTEMÁTICO: É o que afeta um únco atvo ou um grupo pequeno de atvos. Como estes rscos são específcos a empresas ou atvos ndvduas, são às vezes chamados de rsco específco. As prncpas fontes do rsco não sstemátco são o rsco fnancero, o rsco da admnstração e os rscos do setor.

3 3. CAPM O Captal Asset Prcng Model (CAPM), desenvolvdo na década de 60, nos mostra que o retorno esperado de um dado atvo depende de três tens: 1) O valor puro do dnhero no tempo. Meddo pela taxa lvre de rsco, R f, esta é a recompensa por smplesmente esperar pela devolução de seu dnhero aplcado, sem rsco. 2) A recompensa por assumr rsco sstemátco [E(R M ) R f ], meddo pelo prêmo por rsco da cartera de mercado. Este componente é a recompensa que o mercado oferece por se assumr um nível médo de rsco sstemátco, além da espera pelo resultado da aplcação 3) O nível de rsco sstemátco. Meddo por β, essa é a quantdade de rsco sstemátco presente em um dado atvo, relatvamente a um atvo médo Logo, a equação do CAPM é representada da segunte forma: [ E(R M ) Rf ] x β E(R ) = R + (1) f O CAPM mostra que o rsco de um título ndvdual é bem representado pelo seu coefcente beta. Em termos estatístcos se o beta de uma ação é gual a 1, esta tende a subr e descer nas mesmas proporções do mercado. Ações com beta menor que 1 tendem a varar menos que o mercado, e ações com beta maor que 1, tendem a varar mas do que o mercado. O quocente recompensa /rsco do atvo é o quocente entre seu prêmo por rsco: [ E(R ) M R f ] (2) e seu beta, β,ou seja: E(R ) β R f (3) Num mercado bem organzado, esse quocente é dêntco para todos os atvos.em conseqüênca, quando fazemos um gráfco de retorno esperado contra beta, todos os atvos se posconam na mesma lnha reta, denomnada lnha de mercado de títulos (SML). R A SML RM B R F 1,0 β Fgura 1 - Lnha de mercado de títulos.

4 3.1. Beta (b ) Como o rsco sstemátco é o fator determnante do retorno esperado de um atvo, precsamos dspor de algum modo de medr o nível de rsco sstemátco de nvestmentos dferentes. A medda específca a ser utlzada é denomnada coefcente beta (b) O beta nos dz quanto rsco sstemátco um atvo possu, em relação a um atvo médo. Por defnção, um atvo médo possu beta gual a 1,0 em relação a s mesmo. O índce beta é calculado pela segunte manera: σ,c β = 2 (4) σ c onde: σ é a covarânca entre o retorno do atvo com o retorno da cartera de mercado -, c 2 - σ c é a varânca do retorno da cartera de mercado Para β >1, uma pequena varação no retorno da cartera refletra em uma maor varação no retorno do atvo, ou seja, este tpo de papel apresenta maor sensbldade. Para β < 1, uma pequena varação no retorno da cartera, representa uma menor varação no retorno do atvo, ou seja, este tpo de papel apresenta menor sensbldade 4. ÍNDICE DE SHARPE Tendo avalado as alternatvas para se calcular retorno e rsco, podemos tratar mas faclmente de um ndcador de performance que ajusta retorno ao rsco, como é o IS. Formulado por Wllan Sharpe (1966) o IS se encaxa na teora de seleção de cartera, mas especfcamente no modelo CAPM, apontando pontos na lnha do mercado de captas que correspondem a carteras ótmas. O IS costuma ser defndo como : E (R ) R f IS = (5) σc onde: - E (R ) é o retorno esperado da cartera de mercado - R f é o retorno do atvo lvre de rsco - σ C é a volatldade da cartera de mercado O IS é uma estatístca que depende do período sobre o qual fo calculada, e uma vez calculada para um certo prazo, pode ser transformada para um prazo dferente, de acordo com a segunte aproxmação: IS ANUAL = 252IS DIÁRIO (6) A teora de fnanças chega a cartera ótma, em um espaço rsco retorno, com carteras com máxmo retorno esperado para dado rsco. É fácl mostrar que as carteras com maor IS são exatamente as carteras ótmas.tendo determnado quas as carteras ótmas, o nvestdor

5 deve apenas seleconar aquela que proporcona a relação retorno rsco que mas adequar as suas demandas pessoas. Dversos cudados devem ser tomados ao se aplcar o IS na seleção na seleção ou classfcação de nvestmentos. O prmero deles é que o IS não ncorpora nformação sobre a correlação entre atvos, logo, perde a mportânca quando se quer utlzar este ndcador para adconar um atvo ou cartera com rsco a uma cartera que já tenha atvos arrscados. Um segundo cudado com o IS vem de este ser baseado em retorno e rsco esperados e retorno não realzado. Dada as dfculdades em se obterem valores esperados, mutos pratcantes utlzam estatístcas passadas para avalar o IS. O uso do IS anda apresenta alguns problemas como o tamanho da sére a ser utlzada para o cálculo do retorno e rsco esperado e utlzar a melhor taxa de retorno sem rsco Também encontramos problemas para a sua aplcação em atvos que apresentam baxa volatldade, como os fundos de renda fxa. O IS fca enorme devdo ao baxo valor do denomnador da fórmula. 5. MEDIDAS DE COMPARAÇÃO Anda com base no modelo CAPM, que relacona o excesso de retorno de uma cartera com o excesso de retorno de mercado, város outros ndcadores mportantes agregam nformação para a avalação de um nvestdor sobre uma cartera. Dferentes ndcadores podem gerar classfcações dferentes para as carteras e, conseqüentemente, levar a decsões dferentes sobre a aqusção de carteras. Cada um destes ndcadores é aproprado para um cenáro específco de nvestmento. Por exemplo, o IS é adequado para seleconar uma cartera de mercado quando o nvestdor não tem nenhum nvestmento arrscado e esta cartera será seu únco nvestmento com rsco Város ndcadores de performance são construídos, tomando-se a Eq. (5), que explca o excesso de retorno de um nvestmento arrscado, pela quantdade de rsco sstemátco e não sstemátco assumdo. (E(R ) R f ) = α + β (E(R M ) R f ) + ε (7) onde: - E(R ) é o retorno esperado da cartera de mercado - R f é o retorno do atvo lvre de rsco - β é o beta da cartera de mercado - E(R M ) é o retorno do mercado - ε é um erro aleatóro normal padrão O α desta equação mede o excesso de retorno obtdo pelo fundo após ajuste pelo rsco sstemátco, (dado pelo beta vezes o excesso de retorno do mercado). Este é um ndcador conhecdo como alfa ou índce de Jensen.

6 6. TREYNOR Extraído da Eq. (7), trata-se de outro ndcador que mede o excesso de retorno por undade de rsco sstemátco em vez de rsco total como no IS. IT E (R ) = β R F (8) Um nvestdor atvo (que não segue exatamente o índce de mercado), que é bem suceddo, deve mostrar excesso de retorno ajustado pelo beta, que é o alfa postvo. Ao adqurr uma cartera dferente da cartera do índce, na tentatva de superá-lo, ele tem um custo em termos de volatldade, que deve estar contda no termo do erro da Eq. (5). Esse erro é o preço pago para proporconar o retorno excedente dado pelo α. 7. CÁLCULOS De acordo com Ross et all (1995), um célebre conjunto de estudos ldando com taxa de retorno de ações ordnáras, obrgações e letras do tesouro fo realzado por Roger Ibbotson e Rex Snquefeld. Esses autores apresentam taxas hstórcas de retorno, ano a ano, para os seguntes cnco tpos mportantes de nstrumentos fnanceros nos Estados Undos: Ações ordnáras, Ações de Empresas de Menor Captalzação, Obrgações de Longo Prazo Emtdas por Empresas, Obrgações de Longo Prazo do Governo dos Estados Undos e Letras do Tesouro dos Estados Undos. Nenhum dos retornos é ajustado por mpostos ou custos de transação. Além dos retornos dos nstrumentos fnanceros ano a ano, a varação anual do índce de preços ao consumdor também é calculada. Essa é uma medda básca de nflação. Os retornos reas anuas podem ser calculados subtrando-se a nflação anual. = ( 1+ ) /(1 + θ) 1 (9) r a onde: - r é a taxa real; - a é a taxa aparente; - θ é a taxa de nflação. Os cálculos que serão apresentados nesse trabalho, serão um pouco dferentes do que foram apresentados no estudo de Ibbotson e Snquefeld. Essa dferença está na escolha da taxa lvre de rsco e a taxa de retorno da cartera de mercado, pos eles consderaram a prmera como sendo a taxa meda anual das letras do tesouro dos Estados Undos e a segunda como sendo a taxa méda anual das ações ordnáras. Enquanto que para o Brasl serão consderadas as taxas meda anual da poupança e a varação do índce Bovespa como sendo a taxa lvre de rsco e a taxa de retorno da cartera de mercado respectvamente. Tabela 1. Retornos totas anuas no Brasl, Sére Méda Artmétca Prêmo por Rsco Desvo Padrão Ações Ibovespa 28,78% 27,37% 81,70% Poupança 1,41% - 10,19%

7 Encontram-se no anexo os retornos hstórcos do índce Bovespa, nflação (calculada pelo índce IGPDI) e poupança. Agora que fo calculado o retorno médo no mercado de ações, parece sensato compara-lo aos retornos de outros títulos. A comparação mas óbva sera com os retornos de varabldade reduzda da poupança. Tal atvo está lvre da maor parte da volatldade observada no mercado de ações (Ross, 1995). Um ponto a ser dscutdo é o porque da escolha da poupança como taxa de juros sem rsco para o Brasl. Os pratcantes se dvdem entre taxa de juros da poupança e a do CDI. Claramente a do CDI é maor do que a da poupança, embora não seja tão claro que a poupança seja mas próxma de um verdadero atvo sem rsco, vde congelamento de atvos durante o plano Collor. Porém levando-se em conta que o Governo Federal garante a devolução de até cnco ml reas aplcados na poupança e que este atnge a maora dos nvestdores, será tomada a poupança como taxa lvre de rsco. Uma comparação nteressante será feta, envolvendo o retorno vrtualmente lvre de rsco, da poupança, e o muto arrscado retorno em ações contdas na cartera do Ibovespa. Esta dferença entre retornos com rsco e com retornos lvres de rsco é conhecda como retorno excessvo do atvo com rsco. É chamada como excedente porque é o retorno adconal resultante do maor rsco nas ações Ibovespa, e é nterpretada como um prêmo por rsco. A tabela 1 apresenta os retornos médos de ações Ibovespa e poupança anuas no período de 1969 a A partr da, podemos calcular os retornos excedentes. Pode-se ver que o retorno excedente médo de ações Ibovespa, no período ntero, fo de 27,37% (28,78%-1,41) Cálculo do retorno esperado da cartera de mercado (R m ) e o retorno do atvo lvre de rsco (R f ) para o Brasl Após o calculo do retorno esperado da cartera de mercado (R m = 28.78%) e o retorno do atvo lvre de rsco (R f =1,41%), os utlzaremos para o cálculo dos ndcadores como: Sharpe, Treynor, E(R ) e do modelo CAPM para as Blue chps do mês de Dezembro de Estes cálculos são apresentados na tabela abaxo Tabela 2. Algumas meddas de performance para as dez ações mas negocadas na bolsa de São Paulo. Amostra de março de 1999 a setembro de Blue chps Beta Desvo Padrão E(R) Sharpe Treynor Petrobrás PN 1 0,40 28,78% 0,68 0,27 Telemar PN 1,1 0,50 31,52% 0,60 0,25 Petrobrás ON 2,2 0,90 61,62% 0,67 0,12 Globo Cabo PN 1,2 0,80 34,25% 0,41 0,23 Embratel Par PN 1,3 0,70 36,99% 0,51 0,21 Vale do Ro Doce PNA 0,3 0,40 9,62% 0,21 0,91 Brasl T Par PN 0,6 0,50 17,83% 0,33 0,46 Eletrobrás ON 0,7 0,40 20,57% 0,48 0,39 Eletrobrás PNB 0,8 0,50 23,31% 0,44 0,34 Telesp Celular PN 1,1 0,80 31,52% 0,38 0,25

8 8. CONCLUSÃO Após os cálculos apresentados na tabela 2, podemos conclur que a ação que apresenta o maor retorno esperado não é necessaramente o melhor nvestmento. Para poder avalá-las de manera objetva, o nvestdor tem a sua dsposção alguns ndcadores fnanceros. Como apresentado anterormente, utlzamos os índces de Sharpe e Treynor, como meddas de desempenho, ou seja, levaremos em consderação a relação entre retorno e rsco. Se levássemos em consderação somente o retorno esperado da ação, teríamos a falsa mpressão de que a ação Petrobrás ON sera a melhor opção de nvestmento. Agora, levando em consderação o índce Sharpe (IS), o melhor nvestmento sera a ação Petrobrás PN, pos esta possu o maor IS, posto que, de acordo com a revsta Conjuntura Econômca 2000, esta alternatva pode ser combnada, em uma cartera, com o atvo de renda fxa, gerando retornos superores aos de outros nvestmentos, para um nível de rsco desejado. De manera semelhante também podemos ordenar as aplcações fnanceras pelo índce de Treynor (IT) para comparar alternatvas de nvestmentos, de forma a escolher aquela que possua o maor IT, posto que, de acordo com Conjuntura Econômca 2000, esta alternatva pode ser combnada, em uma cartera, com o atvo de renda fxa, gerando retornos superores aos de outros nvestmentos, para um nível de rsco não dversfcável (beta) desejado. Neste caso nossa melhor opção de nvestmento sera a ação Vale do Ro Doce PNA. A obtenção de parâmetros de rsco para o Brasl é fundamental, pos são completamente dferentes dos amercanos, que são encontrados com maor freqüêncas, mas não representam a nossa realdade. Fazendo uma comparação entre o retorno da cartera de mercado encontrado neste trabalho com a encontrada em alguns trabalhos da lteratura braslera, percebemos uma dferença relevante de uma taxa para a outra. O valor encontrado gra em torno de 23%, e o apresentado é de 28,78%. Essa dferença pode ser explcada pela utlzação de fatores dferencados como, por exemplo, a taxa da nflação adotada, o período consderado, a freqüênca dos dados e a forma de cálculo da méda. Neste trabalho fo adotado o índce IGPDI, que reflete a realdade naconal, enquanto que outros autores costumam dolarzar o índce bovespa e utlzam a nflação Norte Amercana. É mportante ressaltar que toda a análse fo feta em relação ao Ibovespa, que é o índce comumente utlzado nos cálculos no Brasl. Se fossem adotados outros índces de mercado como o FGV 100, IBV ou IBX, seram obtdos dferentes resultados na avalação realzada anterormente. Para efeto de comparação, sugere-se o desenvolvmento de trabalhos que utlzem outros parâmetros. REFERÊNCIAS Markowtz, Harry (1952). Portfolo Selecton. New York: John Wley & Sons. Revsta Conjuntura Econômca. Número 4, volume 54, Abrl, Ross, S. et all (1995). Admnstração Fnancera. São Paulo: Atlas. Ross, S. et all (1998). Prncípos de Admnstração Fnancera. São Paulo: Atlas. Sharp, Wllam (1966). Mutual Fund Performance, Journal of Busness, January, Vargas, Gyorg (2000). Capturado na nternet em 01/11/2000.

9 ANEXO Tabela e Gráfco dos Retornos reas da Poupança e Ibovespa. Data Ibovespa Poupança Inflação Retorno Real Ibovespa Retorno Real Poupança ,52% 24,89% 20,35% 119,79% 3,77% ,73% 26,41% 19,26% 29,74% 6,00% ,01% 30,49% 19,47% 78,30% 9,22% ,42% 24,48% 15,72% -51,97% 7,57% ,81% 19,71% 15,54% -9,29% 3,61% ,63% 38,71% 34,55% 1,55% 3,09% ,81% 30,75% 29,35% 4,22% 1,08% ,03% 41,95% 46,25% -15,19% -2,95% ,95% 43,03% 38,80% 1,55% 3,05% ,47% 41,53% 40,83% -25,81% 0,49% ,61% 49,86% 77,21% -11,62% -15,43% ,19% 64,03% 110,25% -31,42% -21,98% ,81% 97,97% 95,18% 9,55% 1,43% ,90% 105,13% 99,72% -17,94% 2,70% ,50% 213,14% 178,09% 208,71% 12,60% ,02% 234,72% 223,72% 67,43% 3,40% ,53% 239,06% 235,10% 49,67% 1,18% ,29% 81,26% 65,03% -14,39% 9,83% ,88% 395,43% 415,87% -73,85% -3,96% ,68% 872,54% 1037,52% 132,85% -14,50% ,49% 1492,00% 1783,01% -1,09% -15,45% ,28% 1616,61% 1476,71% -74,11% 8,87% ,96% 375,86% 480,17% 316,42% -17,98% ,65% 1212,72% 1157,84% -11,30% 4,36% ,20% 2575,46% 2708,17% 97,18% -4,73% ,65% 1087,11% 909,94% 14,82% 17,54% ,26% 41,11% 14,78% -13,97% 22,94% ,76% 16,07% 9,37% 49,73% 6,13% ,83% 16,01% 7,49% 34,74% 7,93% ,46% 14,79% 1,72% -34,59% 12,85% ,93% 12,30% 19,99% 109,96% -6,41% ,72% 8,47% 9,81% -18,70% -1,22% Méda 28,78% 1,41% Desv.Pad. 81,70% 10,19%

10 350,00% 300,00% 250,00% Poupança Ibovespa 200,00% 150,00% 100,00% 50,00% 0,00% -50,00% -100,00% Fgura 2 Gráfco do Retorno Real da Poupança e do Ibovespa de 1969 a 2000.

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

4 Otimização e Diversificação: o Binômio Risco-Retorno

4 Otimização e Diversificação: o Binômio Risco-Retorno 4 Otmzação e Dversfcação: o Bnômo Rsco-Retorno O alto dnamsmo e a crescente sofstcação do mercado fnancero mundal fazem com que os nvestdores tenham o constante desafo de utlzarem estratégas que maxmzem

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Diversificação - exemplo

Diversificação - exemplo INCETEZA E ISCO /4/009 Dversfcação - exemplo oss cap. 0 Cartera com N atvos Nova stuação: Cartera mas dversfcada Todos os títulos têm a mesma Varânca Todas as covarâncas são guas Todos os Títulos tem a

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Finanças - BACEN 1997 CESPE

Finanças - BACEN 1997 CESPE Fnanças - BACE 997 CESPE Legenda: Tema, Itens Importantes Certo, Errado Questão 3. Exstem dversos nstrumentos fnanceros a dsposção do nvestdores: LIBOR, ações, opções, Eurobond, Swaps. Quanto às característcas

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

UM ESTUDO SOBRE DIVERSIFICAÇÃO NA BOLSA DE VALORES DE SÃO PAULO

UM ESTUDO SOBRE DIVERSIFICAÇÃO NA BOLSA DE VALORES DE SÃO PAULO UM ESTUDO SOBRE DIVERSIFICAÇÃO A BOLSA DE VALORES DE SÃO PAULO Autores: André Luz Oda, Mara Carlota Morandn Senger e Alexandre oboru Chára Resumo O artgo estuda a redução de rsco que podera ter sdo obtda

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

PESQUISA EM MERCADO DE CAPITAIS. Prof. Patricia Maria Bortolon, D. Sc. (colaboração de Prof. Claudio Cunha)

PESQUISA EM MERCADO DE CAPITAIS. Prof. Patricia Maria Bortolon, D. Sc. (colaboração de Prof. Claudio Cunha) PESQUISA EM MERCADO DE CAPITAIS Prof. Patrca Mara Bortolon, D. Sc. (colaboração de Prof. Claudo Cunha) Cap. 15 Testes Empírcos de Modelos de Equlíbro ELTON, E.; GRUBER, M.; BROWN, S., GOETZMANN, W. Moderna

Leia mais

Teste do modelo de otimização de carteiras pelo índice beta

Teste do modelo de otimização de carteiras pelo índice beta Teste do modelo de otmzação de carteras pelo índce beta Cleber Gonçalves Junor Unversdade Federal de Itajubá cgj@unfe.edu.br Claton Gonçalves Unversdade Federal de Itajubá Resumo Recentemente, pode-se

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Universidade Estadual de Ponta Grossa/Departamento de Economia/Ponta Grossa, PR. Palavras-chave: CAPM, Otimização de carteiras, ações.

Universidade Estadual de Ponta Grossa/Departamento de Economia/Ponta Grossa, PR. Palavras-chave: CAPM, Otimização de carteiras, ações. A CONSTRUÇÃO DE CARTEIRAS EFICIENTES POR INTERMÉDIO DO CAPM NO MERCADO ACIONÁRIO BRASILEIRO: UM ESTUDO DE CASO PARA O PERÍODO 006-010 Rodrgo Augusto Vera (PROVIC/UEPG), Emerson Martns Hlgemberg (Orentador),

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

Construção e aplicação de índices-padrão

Construção e aplicação de índices-padrão Construção e aplcação de índces-padrão Artgo Completo José Aparecdo Moura Aranha (Admnstrador e Contador, Professor Assstente do Curso de Admnstração da Unversdade Federal de Mato Grosso do Sul - Câmpus

Leia mais

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação.

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação. Estudo quanttatvo do processo de tomada de decsão de um projeto de melhora da qualdade de ensno de graduação. Rogéro de Melo Costa Pnto 1, Rafael Aparecdo Pres Espíndula 2, Arlndo José de Souza Júnor 1,

Leia mais

COEFICIENTE DE GINI: uma medida de distribuição de renda

COEFICIENTE DE GINI: uma medida de distribuição de renda UNIVERSIDADE DO ESTADO DE SANTA CATARINA ESCOLA SUPERIOR DE ADMINISTRAÇÃO E GERÊNCIA DEPARTAMENTO DE CIÊNCIAS ECONÔMICAS COEFICIENTE DE GINI: uma medda de dstrbução de renda Autor: Prof. Lsandro Fn Nsh

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Revsta Matz Onlne ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Valera Ap. Martns Ferrera Vvane Carla Fortulan Valéra Aparecda Martns. Mestre em Cêncas pela Unversdade de São Paulo- USP.

Leia mais

METODOLOGIA DO ÍNDICE CARBONO EFICIENTE (ICO2)

METODOLOGIA DO ÍNDICE CARBONO EFICIENTE (ICO2) METODOLOGIA DO ÍNDICE CARBONO Abrl/2015 [data] METODOLOGIA DO ÍNDICE CARBONO O ICO2 é o resultado de uma cartera teórca de atvos, elaborada de acordo com os crtéros estabelecdos nesta metodologa. Os índces

Leia mais

Revista de Ciências da Administração ISSN: Universidade Federal de Santa Catarina Brasil

Revista de Ciências da Administração ISSN: Universidade Federal de Santa Catarina Brasil Revsta de Cêncas da Admnstração ISSN: 1516-3865 rca.cse@contato.ufsc.br Unversdade Federal de Santa Catarna Brasl Carnero Afonso da Costa Jr., Newton; Nór Güttler, Cao DIVERSFICAÇÃO E AVALIAÇÃO DE CARTEIRAS

Leia mais

APLICAÇÃO DE UM NOVO MODELO DE ANÁLISE DE RISCO NA BOVESPA: O D-CAPM

APLICAÇÃO DE UM NOVO MODELO DE ANÁLISE DE RISCO NA BOVESPA: O D-CAPM APLICAÇÃO E UM NOVO MOELO E ANÁLISE E RISCO NA BOVESPA: O -CAPM Perre Lucena 1 e 2 Rua Farme de Amoedo, 77 Apto. 203 Ipanema CEP: 22420-020 Ro de Janero/RJ Brasl Tel.: (21) 9394-0794 E-malperrelucena@uol.com.br

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Centfca Curso Matemátca Engenhara Electrotécnca º Semestre º 00/0 Fcha nº 9. Um artgo da revsta Wear (99) apresenta dados relatvos à vscosdade do óleo e ao desgaste do aço maco. A relação entre estas

Leia mais

Estudo de Eventos: Procedimentos e Estudos Empíricos

Estudo de Eventos: Procedimentos e Estudos Empíricos Estudo de Eventos: Procedmentos e Estudos Empírcos Wagner Moura Lamouner 1 Else MOntero Noguera RESUMO O prncpal objetvo deste trabalho é dscutr as aplcações e os pontos fundamentas da metodologa de estudo

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

MODELO DE SELEÇÃO DE PORTFOLIO USANDO FUNÇÃO DE UTILIDADE

MODELO DE SELEÇÃO DE PORTFOLIO USANDO FUNÇÃO DE UTILIDADE MODELO DE SELEÇÃO DE PORTFOLIO SDO FÇÃO DE TILIDDE Renata Patríca L. Jeronymo M. Pnto nversdade Federal da Paraíba Departamento de Estatístca João Pessoa, P rasl renata@de.ufpb.br Roberto Qurno do ascmento

Leia mais

Gabarito da Lista de Exercícios de Econometria I

Gabarito da Lista de Exercícios de Econometria I Gabarto da sta de Exercícos de Econometra I Professor: Rogéro lva Mattos Montor: eonardo enrque A. lva Questão Y X y x xy x ŷ ˆ ˆ y ŷ (Y - Y ) (X - X ) (Ŷ - Y ) 360 00-76 -00 35.00 40.000 36-4 30.976 3076

Leia mais

Sinézio Fernandes Maia Professor Adjunto do Departamento de Economia da UFPB

Sinézio Fernandes Maia Professor Adjunto do Departamento de Economia da UFPB SETOR BANCÁRIO BRASILEIRO NO PERÍODO DE JANEIRO DE 2009 A JULHO DE 2010: AVALIAÇÃO DA RELAÇÃO DE RISCO E RETORNO COM ABORDAGEM NAS TEORIAS DE MARKOWITZ E SHARPE Alza Slva de Lma Estudante de Pós-graduação

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

Análise de Regressão Linear Múltipla VII

Análise de Regressão Linear Múltipla VII Análse de Regressão Lnear Múltpla VII Aula 1 Hej et al., 4 Seções 3. e 3.4 Hpótese Lnear Geral Seja y = + 1 x 1 + x +... + k x k +, = 1,,..., n. um modelo de regressão lnear múltpla, que pode ser escrto

Leia mais

( k) Tema 02 Risco e Retorno 1. Conceitos Básicos

( k) Tema 02 Risco e Retorno 1. Conceitos Básicos FEA -USP Graduação Cêcas Cotábes EAC05 04_0 Profa. Joaíla Ca. Rsco e Retoro. Cocetos Báscos Rotero BE-cap.6 Tema 0 Rsco e Retoro. Cocetos Báscos I. O que é Retoro? II. Qual é o Rsco de um Atvo Idvdual

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais.

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais. 1 1Imagem Dgtal: Estatístcas INTRODUÇÃO Neste capítulo abordam-se os prncpas concetos relaconados com os cálculos de estatístcas, hstogramas e correlação entre magens dgtas. 4.1. VALOR MÉDIO, VARIÂNCIA,

Leia mais

Índices de Concentração 1

Índices de Concentração 1 Índces de Concentração Crstane Alkmn Junquera Schmdt arcos André de Lma 3 arço / 00 Este documento expressa as opnões pessoas dos autores e não reflete as posções ofcas da Secretara de Acompanhamento Econômco

Leia mais

Beta Contábil Versus Beta CAPM: Uma Investigação Empírica na Mercado Financeiro Brasileiro

Beta Contábil Versus Beta CAPM: Uma Investigação Empírica na Mercado Financeiro Brasileiro 40 Beta Contábl Versus Beta CAPM: Uma Investgação Empírca na Mercado Fnancero Braslero Accountable Beta Versus CAPM Beta: A Emprcal Research n tne Brazlan Fnancal Market Ramundo Nonato Rodrgues Doutor

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL. Iran Carlos Stalliviere Corrêa RESUMO

METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL. Iran Carlos Stalliviere Corrêa RESUMO Semnáro Anual de Pesqusas Geodéscas na UFRGS, 2. 2007. UFRGS METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL Iran Carlos Stallvere Corrêa Insttuto de Geocêncas UFRGS Departamento

Leia mais

Eixo Temático: Estratégia e Internacionalização de Empresas. PRECIFICAÇÃO DE ETFs BRASILEIROS. BRAZILIAN ETFs PRICING

Eixo Temático: Estratégia e Internacionalização de Empresas. PRECIFICAÇÃO DE ETFs BRASILEIROS. BRAZILIAN ETFs PRICING Exo Temátco: Estratéga e Internaconalzação de Empresas RESUMO PRECIFICAÇÃO DE ETFs BRASILEIROS BRAZILIAN ETFs PRICING Bruno Mlan e Paulo Sergo Ceretta O objetvo deste estudo é verfcar, com base nos tradconas

Leia mais

ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER. Reinaldo Bomfim da Silveira 1 Juliana Maria Duarte Mol 1 RESUMO

ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER. Reinaldo Bomfim da Silveira 1 Juliana Maria Duarte Mol 1 RESUMO ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER Renaldo Bomfm da Slvera 1 Julana Mara Duarte Mol 1 RESUMO Este trabalho propõe um método para avalar a qualdade das prevsões

Leia mais

Ccapm condicional com aprendizagem

Ccapm condicional com aprendizagem SÃO PAULO, SP JAN./FEV. 2013 ISSN 1518-6776 (mpresso) ISSN 1678-6971 (on-lne) Submssão: 8 fev. 2012. Acetação: 8 ago. 2012. Sstema de avalação: às cegas dupla (double blnd revew). UNIVERSIDADE PRESBITERIANA

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS Dnz, L.S. Santos, C.A.C. Lma, J.A. Unversdade Federal da Paraíba Laboratóro de Energa Solar LES/DTM/CT/UFPB 5859-9 - João Pessoa - PB, Brasl e-mal: cabral@les.ufpb.br

Leia mais

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8 Resposta da questão 1: [C] Calculando:,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 8, 8,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 5, x = 9,9 Moda = 8 8+ 8 Medana = = 8,5 + 10 + 8 + 9,4 + 8 +,4 + 7,4 Méda das outras

Leia mais

ELEMENTOS DETERMINANTES DA RENTABILIDADE DAS CARTEIRAS DE INSTRUMENTOS FINANCEIROS EM INSTITUIÇÕES FINANCEIRAS BRASILEIRAS

ELEMENTOS DETERMINANTES DA RENTABILIDADE DAS CARTEIRAS DE INSTRUMENTOS FINANCEIROS EM INSTITUIÇÕES FINANCEIRAS BRASILEIRAS ELEMENTOS DETERMINANTES DA RENTABILIDADE DAS CARTEIRAS DE INSTRUMENTOS FINANCEIROS EM INSTITUIÇÕES FINANCEIRAS BRASILEIRAS Ms. Renê Coppe Pmentel Unversdade de São Paulo e Mackenze End.: Av. Lucano Gualberto,

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Identidade dos parâmetros de modelos segmentados

Identidade dos parâmetros de modelos segmentados Identdade dos parâmetros de modelos segmentados Dana Campos de Olvera Antono Polcarpo Souza Carnero Joel Augusto Munz Fabyano Fonseca e Slva 4 Introdução No Brasl, dentre os anmas de médo porte, os ovnos

Leia mais

2. Validação e ferramentas estatísticas

2. Validação e ferramentas estatísticas . Valdação e ferramentas estatístcas Mutos aspectos relaconados à socedade são suportados, de alguma forma, por algum tpo de medção analítca. Mlhões de medções analítcas são realzadas todos os das, em

Leia mais

EFEITO DA IDADE E MATERIAL GENÉTICO NA FORMA DE ÁRVORES DE Eucalyptus

EFEITO DA IDADE E MATERIAL GENÉTICO NA FORMA DE ÁRVORES DE Eucalyptus EFEITO DA IDADE E MATERIAL GENÉTICO NA FORMA DE ÁRVORES DE Eucalyptus Dana Marques de Olvera ; Ellezer Almeda Mello ; Carolne Stephany Inocênco ; Adrano Rbero Mendonça Bolssta PBIC/UEG, graduandos do Curso

Leia mais

Dependência Espacial de espécies nativas em fragmentos. florestais

Dependência Espacial de espécies nativas em fragmentos. florestais Dependênca Espacal de espéces natvas em fragmentos 1 Introdução florestas 1 Mestranda em Engenhara Florestal LEMAF/DCF UFLA. e-mal: cunhadase@yahoo.com.br 2 Mestrando em Engenhara Florestal LEMAF/DCF UFLA.

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

O Modelo CAPM e o Modelo de Elton e Gruber para a composição da carteira de investimento

O Modelo CAPM e o Modelo de Elton e Gruber para a composição da carteira de investimento O Modelo CAPM e o Modelo de Elton e Gruber para a composção da cartera de nvestmento Dmtre de Carvalho Pós-graduado, MBA-nanças, UPIS Rcardo José Stefan Mestre em ADPUB (GV) e Professor da UPIS Introdução

Leia mais

Realimentação negativa em ampliadores

Realimentação negativa em ampliadores Realmentação negatva em ampladores 1 Introdução necessdade de amplfcadores com ganho estável em undades repetdoras em lnhas telefôncas levou o Eng. Harold Black à cração da técnca denomnada realmentação

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

Construção De Um Índice Agrícola Para O Mercado Derivativo De Commodities Agrícolas Negociadas Na BM&F

Construção De Um Índice Agrícola Para O Mercado Derivativo De Commodities Agrícolas Negociadas Na BM&F Construção De Um Índce Agrícola Para O Mercado Dervatvo De Commodtes Agrícolas Negocadas Na BM&F Autora: Renato Elas Fontes, Luz Gonzaga de Castro Junor, Wanderc Alves Btencourt Devdo às dfculdades que

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria Agregação Dnâmca de Modelos de urbnas e Reguladores de elocdade: eora. Introdução O objetvo da agregação dnâmca de turbnas e reguladores de velocdade é a obtenção dos parâmetros do modelo equvalente, dados

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON

PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON 1 PUCPR- Pontfíca Unversdade Católca Do Paraná PPGIA- Programa de Pós-Graduação Em Informátca Aplcada PROF. DR. JACQUES FACON LIMIARIZAÇÃO ITERATIVA DE LAM E LEUNG Resumo: A proposta para essa sére de

Leia mais

Relevância de Prêmio por Risco País no Custo de Capital das Empresas

Relevância de Prêmio por Risco País no Custo de Capital das Empresas Dsponível em http:// RAC, Ro de Janero, v. 19, Edção Especal, art. 3, pp. 38-52, Mao 2015 http://dx.do.org/10.1590/1982-7849rac2015140097 Relevânca de Prêmo por Rsco País no Custo de Captal das Empresas

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

Análise de influência

Análise de influência Análse de nfluênca Dzemos que uma observação é nfluente caso ela altere, de forma substancal, alguma propredade do modelo ajustado (como as estmatvas dos parâmetros, seus erros padrões, valores ajustados...).

Leia mais

INVESTIMENTOS NO MERCADO IMOBILIÁRIO DO RIO DE JANEIRO E A FRONTEIRA EFICIENTE DE MARKOWITZ

INVESTIMENTOS NO MERCADO IMOBILIÁRIO DO RIO DE JANEIRO E A FRONTEIRA EFICIENTE DE MARKOWITZ FACULDADE DE ECONOMIA E FINANÇAS IBMEC PROGRAMA DE PÓS-GRADUAÇÃO E PESQUISA EM ADMINISTRAÇÃO E ECONOMIA DISSERTAÇÃO DE MESTRADO PROFISSIONALIZANTE EM ADMINISTRAÇÃO INVESTIMENTOS NO MERCADO IMOBILIÁRIO

Leia mais

DECISÃO SOB INCERTEZA

DECISÃO SOB INCERTEZA PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Incerteza: o básco Curso de especalzação em Fnanças e Economa Dscplna: Incerteza e Rsco Prof: Sabno da Slva Porto Júnor Sabno@ppge.ufrgs.br 1 Introdução

Leia mais

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor.

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor. Estatístca Exercícos 1. (Enem 013) Fo realzado um levantamento nos 00 hotés de uma cdade, no qual foram anotados os valores, em reas, das dáras para um quarto padrão de casal e a quantdade de hotés para

Leia mais

'.. FGV RISCO IDIOSSINCRÁTICO E DIVERSIFICAÇÃO EM. PORTFÓLlOS

'.. FGV RISCO IDIOSSINCRÁTICO E DIVERSIFICAÇÃO EM. PORTFÓLlOS '.. FGV ESAPE FUNDAÇÃO GETULIO VAGAS ESCOLA BASILEIA DE ADMINISTAÇÃO PÚBLICA E DE EMPESAS MESTADO EXECUTIVO EM GESTÃO EMPESAIAL ISCO IDIOSSINCÁTICO E DIVESIFICAÇÃO EM POTFÓLlOS DISSETAÇÃO APESENTADA À

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.3 Afectação de Bens Públcos: a Condção de Isabel Mendes 2007-2008 5/3/2008 Isabel Mendes/MICRO II 5.3 Afectação de Bens

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard Estatístca 8 Teste de Aderênca UNESP FEG DPD Prof. Edgard 011 8-1 Teste de Aderênca IDÉIA: descobrr qual é a Dstrbução de uma Varável Aleatóra X, a partr de uma amostra: {X 1, X,..., X n } Problema: Seja

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

Preço Base = 2,581 US$/MMBTU x TMD 0

Preço Base = 2,581 US$/MMBTU x TMD 0 Portara Intermnsteral MME/MF/nº 176, de 01 de junho de 2001. OS MINISTROS DE ESTADO DE MINAS E ENERGIA E DA FAZENDA, no uso das atrbuções que lhes são conferdas pelo art. 87, parágrafo únco, ncso II, da

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

NOVA METODOLOGIA PARA RECONCILIAÇÃO DE DADOS: CONSTRUÇÃO DE BALANÇÃO HÍDRICOS EM INDÚSTRIA UTILIZANDO O EMSO

NOVA METODOLOGIA PARA RECONCILIAÇÃO DE DADOS: CONSTRUÇÃO DE BALANÇÃO HÍDRICOS EM INDÚSTRIA UTILIZANDO O EMSO I Congresso Baano de Engenhara Santára e Ambental - I COBESA NOVA METODOLOGIA PARA RECONCILIAÇÃO DE DADOS: CONSTRUÇÃO DE BALANÇÃO HÍDRICOS EM INDÚSTRIA UTILIZANDO O EMSO Marcos Vnícus Almeda Narcso (1)

Leia mais