A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto n fatores

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto n fatores"

Transcrição

1 POTENCIAÇÃO E RADICIAÇÃO

2 POTENCIAÇÃO DEFINIÇÃO DE POTENCIAÇÃO A poteição idi ultiplições de ftores iguis Por eeplo, o produto pode ser idido for Assi, o síolo de ftores iguis : - é se; - é o epoete; - o resultdo é potêi, sedo u úero iteiro e u úero turl ior que, sigifi o produto ftores Por defiição teos que: 0 e Eeplos: ) ) ) CUIDADO!! Cuiddo o os siis Núero egtivo elevdo epoete pr fi positivo Eeplos: Núero egtivo elevdo epoete ípr peree egtivo Eeplo: E : Se, qul será o vlor de Oserve:?, pois o sil egtivo ão está elevdo o qudrdo os prêteses deve ser usdos, porque o sil egtivo - ão deve ser elevdo o qudrdo, soete o úero que é o vlor de PROPRIEDADES DA POTENCIAÇÃO Qudro Resuo ds Proprieddes ; o 0

3 A seguir presetos lgus eeplos pr ilustrr o uso ds proprieddes: ) Nest propriedde veos que qudo tiveros ultiplição de poteis de ses iguis teos que oservr se e sor os epoetes E : E : E : este so deveos prieirete resolver s potêis pr depois ultiplir os resultdos, pois s ses e são diferetes Os: Deveos lerr que est propriedde é válid os dois setidos Assi: Eeplo: ou ) Nest propriedde veos que qudo tiveros divisão de poteis de ses iguis teos que oservr se e sutrir os epoetes E : E : Os:Est propriedde té é válid os dois setidos, ou sej ou Eeplo: ) Nest propriedde teos u potei elevd u outro epoete, pr resolver teos que oservr se e ultiplir os epoetes E : E : Os:Est propriedde té é válid os dois setidos, ou sej ou E: Est propriedde os ostr que todo rdil pode se trsfordo u potei de epoete frioário, ode o ídie d riz é o deoidor do epoete E : E : E : E : Os:Est propriedde té é válid os dois setidos, ou sej ou E: ou

4 e) 0 o, E : E : Os:Est propriedde té é válid os dois setidos, ou sej ou E: f) E : E : E : Os:Est propriedde té é válid os dois setidos, ou sej ou E: g) E : E : E : Os:Est propriedde té é válid os dois setidos, ou sej ou E: ) ) CUIDADO!!! O sil egtivo o epoete idi que se d potêi deve ser ivertid e siulteete deveos eliir o sil egtivo do epoete Prieiro eliios o sil egtivo do epoete ivertedo se

5 Os: É iportte olor que os três eeplos i o sil egtivo do epoete ão iterferiu o sil do resultdo fil, pois est ão é su fução EXERCÍCIOS ) Clule s potêis: ) ) (-) ) - (-) e) - f) 0 g) (-) 0 h) i) j) k) 0 l) ) (-) 0 ) (-) o) O vlor de [ 0 ] : ( ) é: ) ) ) e) Qul é for is siples de esrever: ) ( ) ( ) ) Sedo e, o quoiete de por é: ) ) e) ) Clule o vlor d epressão: A Siplifido epressão ) ), oteos o úero: ) e) Qudo e, qul o vlor uério d epressão?

6 Esrev for deil de represetr s seguites potêis: ) - = ) 0 - = ) - = Eeplos is opleos: () () () () fipositivo epoetepr, elevdo ºegtivo ou () Nos eeplos () e () seguir, deveos prieiro resolver operção que pree detro dos prêteses () () ou

7 EXERCÍCIOS Efetue: ) ) ) e) f) ) ( g) ) ( h) i) j) k) 0 Sedo que, deterie o vlor de Ateção este eeplo Siplifique s epressões: Coo teos ultiplição e divisão de potêis de ses diferetes, deveos reduzir tods es se Coo eor se é, tetreos esrever todos os úeros que pree se Sustituireos por e por Agor plireos s proprieddes de ultiplição e divisão de potêis de es se ou Eeríios Siplifique s epressões: ) E ) E ) 00 G RADICIAÇÃO DEFINIÇÃO DE RADICIAÇÃO A rdiição é operção ivers d poteição De odo gerl podeos esrever: e E : pois E : pois N riz, teos: - O úero é hdo ídie; - O úero é hdo rdido

8 CÁLCULO DA RAIZ POR DECOMPOSIÇÃO PROPRIEDADES DOS RADICAIS p p ) E : E : E : Ess propriedde ostr que todo rdil pode ser esrito for de u potêi Os: é iportte lerr que est propriedde té é uito usd o setido otrário ou sej p p (o deoidor do epoete frioário é o ídie do rdil) Eeplo : ) E: ) E: E: ou e) E: f) E: EXERCÍCIOS Dê o vlor ds epressões e presete o resultdo for frioári: () () 00 () () 0, 0 0,, Clule riz idid: ()

9 () () t t Esrev for de potêi o epoete frioário: () () () (f) (g) (h) Esrev for de rdil: () () () (f) (g) (h) De que for esreveos o úero riol 0,00, usdo epoete iteiro egtivo? () () () RAÍZES NUMÉRICAS Eeplos: Deveos ftorr ) For ftord de

10 Os: ou ou Ne sepre hegreos eliir o rdil Resultdos possíveis For ftord de R A Í Z E S L I T E R A I S ) Esrever o rdil for de epoete frioário ão resolve o prole, pois ove ão é divisível por Assi deoporeos o úero d seguite for: = +, pois é divisível por que é o ídie d riz Assi tereos: ) pois é divisível por (ídie d riz) Outros Eeplos: ) (pois é divisívelpor )

11 ) pois ãoé divisível por EXERCÍCIOS Clule: () () () 0 (f) (g) (h) (i) Ftore e esrev for de potêi o epoete frioário: () () () (f) Clule riz idid: () () () 00 (f) (g) (h) (i) (j) (k) z 0 Siplifique os rdiis: () () 0 (f) ()

12 O P E R A Ç Õ E S C O M R A D I C A I S Adição e Sutrção Qudo teos rdiis seelhtes e u dição lgéri, podeos reduzi-los u úio rdil sodo-se os ftores eteros desses rdiis Eeplos: ) ) Os: ftores eteros Podeos dizer que estos olodo e evidêi os rdiis que preer e todos os teros d so ) ) ão pode ser is reduzid EXERCÍCIOS Siplifique : Deterie s sos lgéris: () () () 0 Siplifique s epressões e lule s sos lgéris: () 0 () 0 () (f) (g) (h) Clule s sos lgéris: () 0 () () 000 (f) (g) (h) 00

13 Cosidere, 00, e deterie: ) + + = ) ( + )= ) + = ( + ) = Siplifique epressão 0 0 Multiplição Teos sos ásios pr ultiplição de rdiis, seguir vereos d u: º CASO: Rdiis tê rízes ets Neste so st etrir riz e ultiplir os resultdos: Eeplo: º CASO: Rdiis tê o eso ídie Deveos oservr o ídie e ultiplir os rdidos, siplifido sepre que possível o resultdo otido Eeplos: ) ) pode prr qui! Se quiseros otiur, podeos seprr os rdiis dite de ultiplição e divisão: A orde dos ftores ão lter o produto (ultiplição) ) 0 º CASO: Rdiis tê ídies diferetes O iho is fáil é trsforr os rdiis e potêis frioáris Logo e seguid, trsforr os epoetes frioários e frções equivletes (o eso deoidor) Multiplios uerdor e deoidor d frção por e trsforos frção equivlete Eeplos:) ) ATENÇÃO: -, ou sej, riz de is riz de dois é igul dus rízes de dois por que? - ou id podeos lerr que tod riz pode ser esrit for de potêi, etão:

14 Coservos se e soos os epoetes regr de poteição Divisão A divisão de rdiis te sos ásios, seguir vereos d u deles: º CASO: Os rdiis tê rízes ets Nesse so, etríos s rízes e dividios os resultdos Eeplo: : : º CASO: Rdiis tê o eso ídie Deveos oservr o ídie e dividir os rdidos Coo os ídies ds rízes são iguis, podeos sustituir s dus rízes por u só! Eeplos: : : º CASO: Rdiis o ídies diferetes O iho is fáil é trsforr os rdiis e potêis frioáris, efetur s operções de potêis de es se e voltr pr for de rdil Eeplo: : RACIONALIZAÇÃO DE DENOMINADORES Riolizr u frção ujo deoidor é u úero irriol, sigifi hr u frção equivlete à el o deoidor riol Pr isso, deveos ultiplir os os teros d frção por u úero oveiete Aid podeos dizer que riolizr u frção sigifi reesrever frção eliido do deoidor os rdiis Vejos lgus eeplos: ) Teos o deoidor pes riz qudrd: ) Teos o deoidor rízes o ídies iores que : () Teos que ultiplir uerdor e deoidor por, pois + =

15 () Teos que ultiplir uerdor e deoidor por, pois + = ) Teos o deoidor so ou sutrção de rdiis: O sil deve ser otrário, seão riz ão será eliid do deoidor EXERCÍCIOS Clule () () 0 () (f) (g) (h) (i) 0 Siplifique os rdiis e efetue: () () () Efetue: () () () 0

16 0 Esrev for is siplifid: () () () (f) (g) (h) (i) (j) (k) Efetue s ultiplições e divisões: () () () (f) 0 Efetue: () () () (f) Qudo, o vlor uério d epressão é: () 0 () () Se e : ) é o doro de ;

17 ) ) é o triplo de ; e) Riolize s frções: ) ) )

18 Resposts dos Eeríios ª Questão: ) h) ) i) ) j) k) 0 e) l) f) ) g) ) - o) - ª Questão: ª Questão: ) ) ª Questão: ) ª Questão: A ª Questão: ) ª Questão: ª Questão: ) 0, ) 0,0 ) 0, ª Questão: ) 0 ) g) e) h) j) k) ) f) i) 0ª Questão: ª Questão: ) E = ) F = ) G = + ª Questão:

19 ) ) 0 ) - 0 e) f) 0 0 ª Questão: ) ) ) t t t ª Questão: ) ) ) e) f) ª Questão: ) ) e) g) ) f) h) ª Questão: ) ª Questão: ) ) e) 0 g) - ) f) h) i) - ª Questão: ) ) ) e) f) g) h) ª Questão: ) ) ) e) f) g) 0 h) 0 i) j) k) z 0ª Questão: ) ) e) ) f) ª Questão: 0

20 ª Questão: ) ) ) ª Questão: ) ) e) g) ) 0 f) 0 h) ª Questão: ) ) ) ( ) e) g) f) h) 0 ª Questão: ) ) ) ª Questão: ª Questão: ) ) ) e) g) 0 f) h) i) ª Questão: ) ) ) ( ) ª Questão: ) ( ) ) ( ) ) ( ) 0ª Questão: ) ) ) g) e) h) f) - i) j) k) ª Questão: ) ) ) e) f) ª Questão: ) ) e)

21 ) f) ª Questão: ) ª Questão: ) ª Questão: ) ) ) Fote: wwwprofessorjootetipgor/postils/poteiodo

Revisão de Potenciação e Radiciação

Revisão de Potenciação e Radiciação Revisão de Poteição e Rdiição Agrdeietos à Prof : Alessdr Stdler Fvro Misik Defiição de Poteição A poteição idi ultiplições de ftores iguis Por eeplo, o produto pode ser idido for Assi, o síolo, sedo u

Leia mais

MÓDULO II POTENCIAÇÃO RADICIAÇÃO

MÓDULO II POTENCIAÇÃO RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO O ódulo II é oposto por eeríios evolvedo poteição e rdiição Estos dividido-o e dus prtes pr elhor opreesão ª PARTE: POTENCIAÇÃO DEFINIÇÃO

Leia mais

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO A potecição idic ultiplicções de ftores iguis. Por eeplo, o produto... pode ser idicdo for. Assi, o síolo, sedo u úero iteiro e u úero turl ior que, sigific o produto

Leia mais

a) N g)... Q c) 4... Z d) e) ... I... Z ... Q h)... N i) N

a) N g)... Q c) 4... Z d) e) ... I... Z ... Q h)... N i) N CONJUNTOS NUMÉRICOS NÚMEROS NATURAIS(N) N = { 0,,,,,,...} ou N* = {,,,,,...} NÚMEROS INTEIROS(Z) Z = {...,-,-,-,-,0,,,,,...} Sucojuto de Z Cojuto dos úeros iteiros ão-ulos. Z* = {...,-,-,-,-,,,,,...} Cojuto

Leia mais

9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2

9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2 COLÉGIO PEDRO II Cpus Niterói Discipli: Mteátic Série: ª Professor: Grziele Souz Mózer Aluo (: Tur: Nº: RADICAIS º Triestre (Reforço) INTRODUÇÃO 9 porque 9 porque - - porque (- ) - 8 porque 8 porque De

Leia mais

a é dita potência do número real a e representa a

a é dita potência do número real a e representa a IFSC / Mteátic Básic Prof. Júlio Césr TOMIO POTENCIAÇÃO [ou Expoecição] # Potêci co Expoete Nturl: Defiição: Ddo u úero iteiro positivo, expressão ultiplicção do úero rel e questão vezes. é dit potêci

Leia mais

No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou.

No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou. MAT Cálculo Diferecil e Itegrl I RESUMO DA AULA TEÓRICA 3 Livro do Stewrt: Seções.5 e.6. FUNÇÃO EXPONENCIAL: DEFINIÇÃO No ue segue, presetos u defiição forl pr epoecição uisuer R e., pr 2 3 Se, por defiição

Leia mais

ESCOLA TÉCNICA DE BRASILIA CURSO DE MATEMÁTICA APLICADA

ESCOLA TÉCNICA DE BRASILIA CURSO DE MATEMÁTICA APLICADA AULA 0 POTENCIAÇÃO E RADICIAÇÃO. POTENCIAÇÃO N figur 0- teos o exeplo de u poteci DOIS ELEVADO A TRÊS ou DOIS ELEVADO AO CUBO ou siplesete DOIS AO CUBO. POTENCIAÇÃO Expoete (úero de vezes que o ftor se

Leia mais

EXERCÍCIOS BÁSICOS DE MATEMÁTICA

EXERCÍCIOS BÁSICOS DE MATEMÁTICA . NÚMEROS INTEIROS Efetur: ) + ) 8 ) 0 8 ) + ) ) 00 ( ) ) ( ) ( ) 8) + 9) + 0) ( + ) ) 8 + 0 ) 0 ) ) ) ( ) ) 0 ( ) ) 0 8 8) 0 + 0 9) + 0) + ) ) ) 0 ) + 9 ) 9 + ) ) + 8 8) 9) 8 0000 09. NÚMEROS FRACIONÁRIOS

Leia mais

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo

Leia mais

Z = {, 3, 2, 1,0,1,2,3, }

Z = {, 3, 2, 1,0,1,2,3, } Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv

Leia mais

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA Professor Muriio Lutz LOGARITMO ) Defiição FUNÇÃO LOGARÍTMICA Chm-se ritmo de um úmero N, positivo, um se positiv e diferete de um, todo úmero, devemos elevr pr eotrr o úmero N Ou sej ÎÂ tl que é o epoete

Leia mais

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 = MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (

Leia mais

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2. Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r 0.000.0 00.0 00 0 0.0 00 0 00.000 00 000.008 90 0.000.000 00 000 008 90.00 00 00 00 9 Dividedo = Divisor x Quociete + Resto.0 = x.008 + 0.000. Num divisão

Leia mais

TÓPICOS. Álgebra matricial. Igualdade. Adição. Multiplicação por um escalar. Multiplicação matricial. Potenciação. Matriz transposta.

TÓPICOS. Álgebra matricial. Igualdade. Adição. Multiplicação por um escalar. Multiplicação matricial. Potenciação. Matriz transposta. Note em: leitur destes potmetos ão dispes de modo lgum leitur tet d iliogrfi priipl d deir TÓPICOS Álger mtriil. UL Chm-se teção pr importâi do trlho pessol relizr pelo luo resolvedo os prolems presetdos

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Professores: Griel Brião / Mrcello Amdeo Aluo(: Turm: ESTUDO DOS RADICAIS LISTA RADICIAÇÃO Deomi-se riz de ídice de um úmero rel, o úmero rel tl que

Leia mais

LOGARITMOS DEFINIÇÃO. log b. log 2 2. log61 0. loga. logam N logam. log N N. log. f ( x) log a. log FUNÇÃO LOGARITMICA

LOGARITMOS DEFINIÇÃO. log b. log 2 2. log61 0. loga. logam N logam. log N N. log. f ( x) log a. log FUNÇÃO LOGARITMICA LOGARITMOS DEFIIÇÃO log 0,, 0 FUÇÃO LOGARITMICA f ( ) log Eelos. Esoce o gráfico d fução 0,, 0 y log Eelos: log 8 ois 8 log log6 0 ois 0 ois 6 CODIÇÃO DE EXISTÊCIA 0 log eiste 0, EXEMPLO: Deterie os vlores

Leia mais

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL Professor Muricio Lutz REVISÃO SOBRE POTENCIAÇÃO ) Expoete iteiro positivo FUNÇÃO EPONENCIAL Se é u uero rel e é iteiro, positivo, diferete de zero e ior que u, expressão represet o produto de ftores,

Leia mais

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais.

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais. EXPOENTE 2 3 = 8 RESULTADO BASE Podeos entender potencição coo u ultiplicção de ftores iguis. A Bse será o ftor que se repetirá O expoente indic qunts vezes bse vi ser ultiplicd por el es. 2 5 = 2. 2.

Leia mais

Limites. Consideremos a função f(x)=2x+1 e vamos analisar o seu comportamento quando a variável x se aproxima cada vez mais de 1.

Limites. Consideremos a função f(x)=2x+1 e vamos analisar o seu comportamento quando a variável x se aproxima cada vez mais de 1. Liites Noção ituitiv Cosidereos fução f() e vos lisr o u coporteto qudo vriável proi cd vez is de. o ) tede, ssuido vlores iferiores.,6,7,8,9,9,99,999,9999 f(),,,6,8,9,98,998,9998 ) tede, ssuido vlores

Leia mais

Tempo Estratégia Descrição (Arte) 36,00 e compro. 3 de R$ 36,00. devo pagar 4. Multiplicação Solução 2. Devo pagar R$ 27,00. Multiplicação Aplicação

Tempo Estratégia Descrição (Arte) 36,00 e compro. 3 de R$ 36,00. devo pagar 4. Multiplicação Solução 2. Devo pagar R$ 27,00. Multiplicação Aplicação Curso Turo Discipli Crg Horári Licecitur Ple Noturo Mteátic 0h e Mteátic Eleetr I Aul Período Dt Coordedor.. /0/00 (terç-feir) Tepo Estrtégi Descrição (Arte) 0 / / 0 Vh Aertur P Céli Uidde V O cojuto dos

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ).

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ). OSG: / ENSINO PRÉ-UNIVERSITÁRIO T MATEMÁTIA TURNO DATA ALUNO( TURMA Nº SÉRIE PROFESSOR( JUDSON SANTOS ITA-IME SEDE / / Ftorl Defção h-se ftorl de e dc-se or o úero turl defdo or: > se ou se A A A A Eercícos

Leia mais

Universidade Fernando Pessoa Departamento de Ciência e Tecnologia. Apontamentos ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Maria Alzira Pimenta Dinis

Universidade Fernando Pessoa Departamento de Ciência e Tecnologia. Apontamentos ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Maria Alzira Pimenta Dinis Uiversidde Ferdo Pesso Deprteto de Ciêci e ecologi potetos de ÁLGER LINER E GEOMERI NLÍIC Mri lir Piet Diis 99 Ídice Ídice Pág. Cpítulo I Mtries e Sistes de Equções Lieres. Mtries. dição de Mtries e Multiplicção

Leia mais

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada:

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada: 66 Numero de Rizes Reis Teorem de Bolzo Sej = um equção lgébric com coeficietes reis,b. Se b , etão eiste um úmero pr de rízes reis, ou ão eistem

Leia mais

4 SISTEMAS DE EQUAÇÕES LINEARES. 4.1 Equação Linear

4 SISTEMAS DE EQUAÇÕES LINEARES. 4.1 Equação Linear SISTEMAS DE EQUAÇÕES INEARES. Eqção ier U eqção do tipo = qe epress vriável e fção d vriável e d costte, é chd eqção lier. A plvr lier é tilid tedo e vist qe o gráfico dess eqção é lih ret. D es for, eqção

Leia mais

Métodos Matemáticos Aplicados a Processos Químicos e Bioquímicos. Capítulo IV : Funções Ortogonais e Séries de Fourier

Métodos Matemáticos Aplicados a Processos Químicos e Bioquímicos. Capítulo IV : Funções Ortogonais e Séries de Fourier J.. de Medeiros & Oféli Q.F. Arújo DISCIPINA Métodos Mteáticos Aplicdos Processos Quíicos e Bioquíicos Cpítulo IV : Fuções Ortogois e Séries de Fourier José uiz de Medeiros e Oféli Q.F. Arújo Egehri Quíic

Leia mais

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares;

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares; Álger Lier Mtrizes e vetores Sistems lieres Espços vetoriis Bse e dimesão Trsformções lieres Mtriz de um trsformção lier Aplicções d Álger Lier: Redes elétrics Circuitos que cotém resistêcis e gerdores

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2 Resolução ds tividdes copleentres Mteátic M0 Função rític p. 7 Sendo ƒ u função dd por f(), clcule o vlor de f(). f() f()??? f() A epressão é igul : ) c) 0 e) b) d)? 0 0 Clcule y, sendo. y y Resolv epressão.

Leia mais

1. Associe cada igualdade a uma das afirmações escrevendo o símbolo romano correspondente.

1. Associe cada igualdade a uma das afirmações escrevendo o símbolo romano correspondente. COLÉGIO MCHDO DE SSIS Disipli MTEMÁTIC Professor TLI RETZLFF Turm 8 o ( ) ( )B ( )C Dt / / Pupilo ssoie igule um s firmções esreveo o símolo romo orrespoete I ( + ) = + + II ( ) = + III ( + ) ( ) = ) O

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

Curso de linguagem matemática Professor Renato Tião. Operadores

Curso de linguagem matemática Professor Renato Tião. Operadores Operdores Curso de ligugem mtemátic Professor Reto Tião No uiverso dos úmeros reis, há sete operções ritmétics defiids, sedo que seis dels são idicds por síolos específicos: +,,,,,, e outr é idicd pel

Leia mais

META: Apresentar o conceito de módulo de números racionais e sua representação

META: Apresentar o conceito de módulo de números racionais e sua representação Racioais META: Apresetar o coceito de ódulo de úeros racioais e sua represetação decial. OBJETIVOS: Ao fi da aula os aluos deverão ser capazes de: Idetificar a fora decial de u úeros racioal. Idetificar

Leia mais

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO MÚLTIPLOS E DIVISORES - (Of. Justiç Bttis e Adrdi). Ds firmtivs: - O úmero zero é o úico úmero pr que é primo; - O úmero ão é primo em composto; - Os úmeros que têm mis de dois divisores são chmdos úmeros

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 SISTEMAS LINEARES

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 SISTEMAS LINEARES INTRODUÇÃO... EQUAÇÕES LINEARES... SOLUÇÕES DE UMA EQUAÇÃO LINEAR... MATRIZES DE UM SISTEMA... SOLUÇÃO DE UM SISTEMA LINEAR... SISTEMAS ESCALONADOS... RESOLUÇÃO DE SISTEMA ESCALONADO... SISTEMAS EQUIVALENTES...

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra

Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI- Mteátic Coputciol Crlos Alberto Aloso Sches Juli de Melo Bezerr CCI- Rízes de Sistes ieres Eliição de Guss Guss-Jord Decoposição U Guss-Jcobi Guss-Seidel CCI- Itrodução Métodos diretos Regr de Crer

Leia mais

Capitulo 1 - Nivelamento

Capitulo 1 - Nivelamento Cpitulo - Niveleto. Objetivo Este cpítulo foi itroduzido est postil co o objetivo de proover o iveleto de lgus luos que teh dificulddes e álgebr. Portto, o luo que ão sete dificuldde est áre d teátic está

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

FICHA DE TRABALHO N.º 3 MATEMÁTICA A - 10.º ANO RADICAIS E POTÊNCIAS DE EXPOENTE RACIONAL

FICHA DE TRABALHO N.º 3 MATEMÁTICA A - 10.º ANO RADICAIS E POTÊNCIAS DE EXPOENTE RACIONAL Rdicis e Potêcis de Expoete Rciol Site: http://recursos-pr-mtemtic.webode.pt/ FIH E TRLHO N.º MTEMÁTI - 0.º NO RIIS E POTÊNIS E EXPOENTE RIONL ohece Mtemátic e domirás o Mudo. Glileu Glilei GRUPO I ITENS

Leia mais

Levantamento de Dados. Escolha do Método Numérico Adequado

Levantamento de Dados. Escolha do Método Numérico Adequado UNIDADE I. Itrodução Estudreos este curso étodos uéricos pr resolução de proles que surge s diverss áres. A resolução de tis proles evolve váris fses que pode ser ssi estruturds: Prole Rel evteto de Ddos

Leia mais

AULA 07 LOGARITMOS EXERCÍCIOS

AULA 07 LOGARITMOS EXERCÍCIOS FUNÇÃO LOGARÍTMICA Itroução Cosieremos os seguites prolems: A que epoete se eve elevr o úmero pr se oter? Pelo euio, temos: = = = Esse vlor eotro pr o epoete eomi-se ritmo o úmero se e se represet por:

Leia mais

LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano)

LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano) PARTE I ) Determine s potêncis: ) 4 = b) - = ) Escrev usndo potênci de bse 0: ) 7 bilhões: b) um milionésimo: ) Trnsforme os números ddos em potencições e simplifique epressão: 0000000 00000 5 = 4) Escrev

Leia mais

Unidade 2 Progressão Geométrica

Unidade 2 Progressão Geométrica Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m Mateática FUVEST QUESTÃO 1 Dados e iteiros, cosidere a fução f defiida por fx (), x para x. a) No caso e que, ostre que a igualdade f( ) se verifica. b) No caso e que, ache as iterseções do gráfico de

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas:

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas: SISTEMAS LINEARES Do grego system ( Sy sigific juto e st, permecer, sistem, em mtemátic,é o cojuto de equções que devem ser resolvids juts,ou sej, os resultdos devem stisfzêlos simultemete. Já há muito

Leia mais

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES - SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES.- Métodos etos pr solução de sistems lieres Métodos pr solução de sistems de equções lieres são divididos priciplmete em dois grupos: ) Métodos Etos:

Leia mais

2. Resolução Numérica de Equações Não-Lineares

2. Resolução Numérica de Equações Não-Lineares . Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro

Leia mais

SISTEMA DE EQUAÇÕES LINEARES

SISTEMA DE EQUAÇÕES LINEARES SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é

Leia mais

TRANSFORMAÇÃO ENTRE AS FORMAS ESPAÇO DOS ESTADOS E FUNÇÃO DE TRANSFERÊNCIA

TRANSFORMAÇÃO ENTRE AS FORMAS ESPAÇO DOS ESTADOS E FUNÇÃO DE TRANSFERÊNCIA Edrdo Loo Lo Crl TRANSFORMAÇÃO ENTRE AS FORMAS ESPAÇO OS ESTAOS E FUNÇÃO E TRANSFERÊNCIA. Moição e eeidde Eie iee d for de repreer diâi de ie: Epço do Edo SS; Fção de Trferêi TF. O o d d for de repreer

Leia mais

Departamento de Matemática, Física, Química e Engenharia de Alimentos Projeto Calcule! Profª: Rosimara Fachin Pela Profª: Vanda Domingos Vieira

Departamento de Matemática, Física, Química e Engenharia de Alimentos Projeto Calcule! Profª: Rosimara Fachin Pela Profª: Vanda Domingos Vieira Deprtmeto de Mtemátic, Físic, Químic e Egehri de Alimetos Projeto Clcule! Profª Rosimr Fchi Pel Profª Vd Domigos Vieir PARTE CONJUNTOS NUMÉRICOS E NUMEROS REAIS Um umero rel e qulquer umero que pode ser

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

CURSO DE INVERNO DE MATEMÁTICA BÁSICA 2013

CURSO DE INVERNO DE MATEMÁTICA BÁSICA 2013 Progrm de Pós-Grdução em Físic Curso de Ivero de Mtemátic Básic 0 CURSO DE INVERNO DE MATEMÁTICA BÁSICA 0 Progrm de Pós-Grdução em Físic Pró-Reitori de Esio de Grdução/UFSC Pró-Reitori de Esio de Pós-Grdução/UFSC

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8 GUIÃO REVISÕES Simplificção de expressões Um disco rígido de 00Gb foi dividido em qutro prtições. O conselho directivo ficou com 1 4, os docentes ficrm com 1 4, os lunos ficrm com 8 e o restnte ficou pr

Leia mais

Os Números Racionais e Irracionais. Máximo divisor comum e mínimo múltiplo comum: Critérios de divisibilidade. n e n. m são ditas irredutíveis,

Os Números Racionais e Irracionais. Máximo divisor comum e mínimo múltiplo comum: Critérios de divisibilidade. n e n. m são ditas irredutíveis, 0/0/0 Máio divisor cou e ínio últiplo cou: Dados dois núeros naturais e n, chaareos de aior divisor cou entre n e o núero natural dc (,n) que é otido pelo produto dos fatores couns entre e n. Assi podeos

Leia mais

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga Soms de Riem e Itegrção Numéric Cálculo 2 Prof. Alie Plig Itrodução Problems de tgete e de velocidde Problems de áre e distâci Derivd Itegrl Defiid 1.1 Áres e distâcis 1.2 Itegrl Defiid 1.1 Áres e distâcis

Leia mais

Exercícios. . a r. 2º Caso: Agrupamento. É uma aplicação do 1º caso, só que o termo comum aparece em grupos. 3º Caso: Diferença de dois quadrados

Exercícios. . a r. 2º Caso: Agrupamento. É uma aplicação do 1º caso, só que o termo comum aparece em grupos. 3º Caso: Diferença de dois quadrados Mtemátic Básic Ftorção Aul. Definição Ftorr um epressão lgéric consiste em trnsformá-l num produto. É um prolem de grnde interesse n Álger, nálogo o d decomposição de um número em ftores primos. º Cso:

Leia mais

d) xy 2 h) x c a b c) d) e) 20

d) xy 2 h) x c a b c) d) e) 20 AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Rdicis ) Escrev em form de potênci com epoente frcionário ) Escrev em form de rdicl ) Dividindo o índice do rdicl e os epoentes de todos os ftores do rdicndo

Leia mais

Gabarito Sistemas Lineares

Gabarito Sistemas Lineares Gbrito Sistes ineres Eercício : () rieir inh :. > Segund inh :. > Terceir inh :. Qurt inh :. α á( α ) > ogo, não stisfz o Critério ds inhs. (b) rieir inh : > Segund inh : 6 > Terceir inh : > Qurt inh :

Leia mais

... Soma das áreas parciais sob a curva que fornece a área total sob a curva.

... Soma das áreas parciais sob a curva que fornece a área total sob a curva. CAPÍTULO 7 - INTEGRAL DEFINIDA OU DE RIEMANN 7.- Notção Sigm pr Soms A defiição forml d itegrl defiid evolve som de muitos termos, pr isso itroduzimos o coceito de somtório ( ). Eemplos: ( + ) + + + +

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário Mtemátic Professor Pulo Cesr Pfltgrff Ferreir i Sumário Uidde Revisão de Tópicos Fudmetis do Esio Médio... 0. Apresetção... 0. Simologi Mtemátic mis usul... 0. Cojutos Numéricos... 0. Operções com Números

Leia mais

Operadores Lineares e Matrizes

Operadores Lineares e Matrizes Operadores Lieares e Matrizes Ua Distição Fudaetal e Álgebra Liear Prof Carlos R Paiva Operadores Lieares e Matrizes Coeceos por apresetar a defiição de operador liear etre dois espaços lieares (ou vectoriais)

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. PROFESSOR: MARCOS AGUIAR CÁLCULO II INTEGRAIS DEFINIDAS. NOTAÇÃO DE SOMAÇÃO

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

( ) Logaritmos. Logaritmos. a é a base do logaritmo, b é o logaritmando, x é o logaritmo. Exemplos

( ) Logaritmos. Logaritmos. a é a base do logaritmo, b é o logaritmando, x é o logaritmo. Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Lgritms. Cneit de lgritm

Leia mais

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E R é o cojuto dos úeros reis. A c deot o cojuto copleetr de A R e R. A T é triz trspost d triz A. (, b) represet o pr ordedo. [,b] { R; b}, ],b[ { R; < < b} [,b[ { R; < b}, ],b] { R; < b}.(ita - ) Se R

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTS E U Geometri lític e Álger ier Sistems de Equções ieres Professor: ui Ferdo Nues, r Geometri lític e Álger ier ii Ídice Sistems de Equções ieres efiições Geris Iterpretção Geométric de Sistems de

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Uiversidde Slvdor UNIFACS Cursos de Egehri Métodos Mtemáticos Aplicdos / Cálculo Avçdo / Cálculo IV Prof: Ilk Rebouçs Freire Série de Fourier Texto : Itrodução. Algus Pré-requisitos No curso de Cálculo

Leia mais

Combinações simples e com repetição - Teoria. a combinação de m elementos tomados p a p. = (*) (a divisão por p! desconta todas as variações.

Combinações simples e com repetição - Teoria. a combinação de m elementos tomados p a p. = (*) (a divisão por p! desconta todas as variações. obiações siles - Defiição obiações siles e co reetição - Teoria osidereos u cojuto X co eleetos distitos. No artigo Pricíios Multilicativos e Arrajos - Teoria, aredeos a calcular o úero de arrajos de eleetos

Leia mais

Revisão de Álgebra Matricial

Revisão de Álgebra Matricial evisão de Álgebr Mtricil Prof. Ptrici Mri ortolo Fote: OLDINI, C. e WETZLE, F.; Álgebr Lier. ª. ed. São Pulo. Editor Hrbr, 986 Álgebr Mtricil D Mtemátic do º. Gru: y ( y ( De( : y Em ( : ( Em ( : y y 8

Leia mais

Aula 1 - POTI = Produtos Notáveis

Aula 1 - POTI = Produtos Notáveis Aul 1 - POTI = Produtos Notáveis O que temos seguir são s demonstrções lgébrics dos sete principis produtos notáveis e tmbém prov geométric dos três primeiros. 1) Qudrdo d Som ( + b) = ( + b) * ( + b)

Leia mais

A C T A N. º I V /

A C T A N. º I V / 1 A C T A N. º I V / 2 0 0 9 - - - - - - A o s d e z a s s e t e d i a s d o m ê s d e F e v e r e i r o d o a n o d e d o i s m i l e n o v e, n e s t a V i l a d e M o n c h i q u e, n o e d i f í c

Leia mais

Matemática Fascículo 03 Álvaro Zimmermann Aranha

Matemática Fascículo 03 Álvaro Zimmermann Aranha Mtemátic Fscículo 03 Álvro Zimmerm Arh Ídice Progressão Aritmétic e Geométric Resumo Teórico... Exercícios...3 Dics...4 Resoluções...5 Progressão Aritmétic e Geométric Resumo teórico Progressão Aritmétic

Leia mais

UFF/GMA - Matemática Básica I - Parte II Notas de aula - Marlene

UFF/GMA - Matemática Básica I - Parte II Notas de aula - Marlene UFF/GMA - Mtemáti Bási I - Prte II Nots de ul - Mrlene - 20-6 Sumário II Números reis - operções e ordenção 7 2 Operções, ioms e proprieddes dos reis 7 2. As operções Som e Produto e os Aioms Algérios..................

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

Teoria VII - Tópicos de Informática

Teoria VII - Tópicos de Informática INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA ICET Cmpins Limeir Jundií Teori VII - Tópicos de Informátic 1 Fórmuls Especiis no Excel 2 Função Exponencil 3 Função Logrítmic Unip 2006 - Teori VII 1 1- FÓRMULAS

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

PRÉ-REQUISITOS PARA O CÁLCULO

PRÉ-REQUISITOS PARA O CÁLCULO Veremos qui um breve revisão de oneitos de álgebr neessários pr o estudo do Cálulo. É bom lembrr que voê não pode prender Cálulo sem esses pré-requisitos, priniplmente álgebr, que podemos onsiderr omo

Leia mais

II NÚMEROS RACIONAIS NÃO NEGATIVOS 3. FRAÇÕES DECIMAIS. PERCENTAGENS SIMPLIFICAÇÃO DE FRAÇÕES. FRAÇÃO IRREDUTÍVEL 42

II NÚMEROS RACIONAIS NÃO NEGATIVOS 3. FRAÇÕES DECIMAIS. PERCENTAGENS SIMPLIFICAÇÃO DE FRAÇÕES. FRAÇÃO IRREDUTÍVEL 42 ÍNDIE I NÚMEROS NTURIS 1. NÚMEROS NTURIS 4 2. DIÇÃO E SUTRÇÃO 6 3. MULTIPLIÇÃO 8 4. DIVISÃO 10 5. MÚLTIPLOS E DIVISORES 12 6. EXPRESSÕES LGÉRIS E PROLEMS 14 7. RITÉRIOS DE DIVISIILIDDE POR 2, 3, 4, 5,

Leia mais

MÚLTIPLOS DE UM NÚMERO NÚMEROS PRIMOS

MÚLTIPLOS DE UM NÚMERO NÚMEROS PRIMOS PROFESSOR DISCIPLINA ZERO ÍNDICE Aul Coteúdo Pági 0 Divisiilidde, MMC e MDC 0 Números Iteiros 6 0 Números Rciois 6 0 Potecição e Rdicição 66 0 Ftorção e Produtos Notáveis Sem ser que er impossível, ele

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

TÓPICOS DE CÁLCULO UNIVERSIDADE CRUZEIRO DO SUL 1º SEMESTRE 2014

TÓPICOS DE CÁLCULO UNIVERSIDADE CRUZEIRO DO SUL 1º SEMESTRE 2014 urso: ENGENHRI Professor Responsável: Ms.rlos Henrique Pontução:,0 (dois) TÓPIOS DE ÁLULO UNIVERSIDDE RUZEIRO DO SUL º SEMESTRE 0 UNIVERSIDDE RUZEIRO DO SUL tividde Pontud Disciplin: TÓPIOS DE ÁLULO Limite

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

Análise no Domínio do Tempo de Sistemas Discretos

Análise no Domínio do Tempo de Sistemas Discretos S 43 Siis e Sistes Aálise o Doíio do Tepo de Sistes Disretos Prof. Aluizio Fusto Ribeiro Arújo Depto. of Sistes de Coputção Cetro de Iforáti - UFP Cpítulo 3 Siis e Sistes g. d Coputção Itrodução Coteúdo

Leia mais

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA.

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA. CCI - MATMÁTICA COMPUTACIONAL INTGRAÇÃO NUMÉRICA CCI- Fórulas de Newto-Cotes Regras de Sipso Regra de Sipso de / Regra de Sipso de / Fórula geral de Newto-Cotes stiativas de erros DFINIÇÃO deteriadas situações,

Leia mais

II Números reais: inteiros, racionais e irracionais 26

II Números reais: inteiros, racionais e irracionais 26 UFF/GMA - Mtemáti Bási - Prte II - Números reis Nots de ul - Mrlene - 2009-25 Sumário II Números reis: inteiros, rionis e irrionis 26 2 Operções, ioms e proprieddes dos reis 26 2. As operções Som e Produto

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO COORDENAÇÃO ENSINO MÉDIO AVALIAÇÃO - 0 TRIMESTRE NOTA UNIDADE(S): CAMBOINHAS PROFESSOR Equie DISCIPLINA Mtemátic SÉRIE/TURMA O /A E B DATA /0/00 NITERÓI SÃO GONÇALO X X ALUNO(A) GABARITO N IMPORTANTE:.

Leia mais

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2 DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d

Leia mais

MATRIZES. Exemplo: A tabela abaixo descreve as safras de milho, trigo, soja, arroz e feijão, em toneladas, durante os anos de 1991, 1992, 1993 e 1994.

MATRIZES. Exemplo: A tabela abaixo descreve as safras de milho, trigo, soja, arroz e feijão, em toneladas, durante os anos de 1991, 1992, 1993 e 1994. Professor Muricio Lut MTRIZES INTRODUÇÃO Qudo um prolem evolve um grde úmero de ddos (costtes ou vriáveis), disposição destes um tel retgulr de dupl etrd propici um visão mis glol do mesmo s tels ssim

Leia mais

NÃO existe raiz real de um número negativo se o índice do radical for par.

NÃO existe raiz real de um número negativo se o índice do radical for par. 1 RADICIAÇÃO A rdicição é operção invers d potencição. Sbemos que: ) b) Sendo e b números reis positivos e n um número inteiro mior que 1, temos, por definição: sinl do rdicl n índice Qundo o índice é,

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostil de Itrodução Aos Métodos Numéricos PARTE II o Semestre - Prof. Slete Souz de Oliveir Buffoi Ídice SISTEMAS LINEARES... INTRODUÇÃO... MÉTODOS DIRETOS: ELIMINAÇÃO DE GAUSS... Sistem lier com... Eemplo:...

Leia mais

ÁREA 1 FACULDADE DE CIÊNCIA E TECNOLOGIA PROF: ARTUR PASSOS DIAS LIMA CURSO NIVELAMENTO

ÁREA 1 FACULDADE DE CIÊNCIA E TECNOLOGIA PROF: ARTUR PASSOS DIAS LIMA CURSO NIVELAMENTO ÁREA FACULDADE DE CIÊNCIA E TECNOLOGIA PROF: ARTUR PASSOS DIAS LIMA CURSO DE NIVELAMENTO List de Figurs Figur: Gráfico do poliômio f ( ) 8 7 Figur: Gráfico d fução costte 9 Figur : Gráfico d fução idetidde

Leia mais

II Números reais: inteiros, racionais e irracionais 27

II Números reais: inteiros, racionais e irracionais 27 UFF/GMA - Mtemáti Bási - Prte II - Números reis Nots de ul - Mrlene - 200-2 26 Sumário II Números reis: inteiros, rionis e irrionis 27 2 Operções, ioms e proprieddes dos reis 27 2. As operções Som e Produto

Leia mais

Gráfico do Método de Newton original

Gráfico do Método de Newton original Cmetáris Adiiis d Métd de Newt-Rphs Métd de Newt Mdiid Sej epressã gerl d métd: Oserve que d iterçã é luld derivd d uçã v pt. A iterpretçã grái d métd está igur i. A d iterçã iliçã d ret tgete é mdiid.

Leia mais

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B.

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B. Mtemátic A Etensivo V. Eercícios 0) B 0) B f() = I. = y = 6 6 = ftorndo 6 = = II. = y = 6 = 6 = pel propriedde N = N = De (I) e (II) podemos firmr que =, então: ) 6 = = 6 ftorndo 6 = = pel propriedde N

Leia mais