Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA"

Transcrição

1 Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA 01. Num saco estão 10 bolas indistinguíveis ao tato, das quais 6 são azuis e 4 são verdes. Retiram-se, sucessivamente e sem reposição duas bolas. Determine a probabilidade de saírem duas bolas da mesma cor. Campo Amostral será 10 bolas, total. Para saírem 2 bolas da mesma cor, estas podem ser ambas azuis ou ambas verdes. A probabilidade de tirar ambas azuis é. A probabilidade de tirar ambas verdes é de. Logo, a probabilidade pedida é de: 02. Uma equipa de futebol é composta por 5 jogadores portugueses, 3 brasileiros, 2 angolanos e 1 espanhol. Escolhido um jogador ao acaso a probabilidade de ser: a) português é 5. b) europeu é 0,54 c) espanhol é 1% d) angolano é 0,5. Campo Amostral será: 11 jogadores, total. Como 5 portugueses e 1 espanhol são europeus. Então: P = E/A >>>> P = 6/11 >>> P = 0, Numa turma de 28 alunos, 9 só praticam natação, 12 praticam apenas futebol e os restantes praticam as duas modalidades. Escolhido um aluno ao acaso, a probabilidade de: a) praticar natação é 4/7. b) praticar natação é 9/28. c) praticar futebol é 12/28. d) não praticar natação é 19/28. as duas modalidades : = = 7 natação : = 16 probabilidade : p = 16/28 = 4/7 04. Num saco estão bolas azuis e vermelhas, num total de 50 bolas. Sabendo que a probabilidade de tirar bola azul é 0,34 podemos concluir que o número de bolas vermelhas é: a) 33. b) 16. c) 25. d) 17. Vamos chamar de a o número de bolas azuis e v a quantidade de bolas vermelhas nesse saco. Como há 50 bolas no total, temos: a + v = 50. Além disso, sabemos que, a probabilidade de tirar uma bola azul é 0,34. Como há a bolas azuis entre 50, podemos afirmar que,. Daí, concluímos que,. Lembrando que, temos, donde. Logo, a quantidade de bolas vermelhas nesse saco é.

2 05. Num frasco temos 17 rebuçados de limão, 5 de laranja e 10 de mentol. Retiram-se, sucessivamente e sem reposição 3 rebuçados. Sabendo que os dois primeiros são de limão, escolhe a opção correta: a) a probabilidade do terceiro ser de laranja é 5/32. b) a probabilidade do terceiro ser de limão é 17/30. c) a probabilidade do terceiro ser de laranja é 3/30. d) a probabilidade do terceiro ser de limão é 1/2. Tirando os 2 primeiros rebuçados que são limão, fica apenas 15 de limão. Somando os outros tem 30 rebuçados no total, e se ainda falta um rebuçado para tirar, vai ser 1 em 30, ou seja, e pelas alternativas, o único certo é o limão, pois ele das 30 chances, ocupa 15, ou seja, meio:1/2 05. Perguntou-se a 200 pessoas se viam telenovelas. Os resultados foram registados na tabela: Escolhida uma pessoa ao acaso: a) P ( " ser homem " ) = 80 b) P ( " ser mulher ou ver telenovelas " ) = 17/20 c) P ( " não ser mulher " ) = 60% d) P ( " não ser mulher nem ver telenovelas " ) = 2/5 200 pessoas % 120 mulheres X % X = / 200 X = 60 % 06. Numa algibeira estão guardadas 2 moedas de 20 cêntimos e duas moedas de 50 cêntimos. Tira-se uma moeda ao acaso, e em seguida, tira-se uma segunda moeda sem ter reposto a primeira. Podemos afirmar que: a) A probabilidade de as duas moedas serem de 20 cêntimos é 1/6. b) A probabilidade de terem valores diferentes é 4/15. c) A probabilidade de ambas serem de 50 cêntimos é 1/15. d) A probabilidade de ambas serem de 20 cêntimos é 1/3. Analisando as combinações Homem e Mulheres, teremos. 20 cêntimos: = 2 12 = 1 6 e 50 cêntimos: = 2 12 = 1 6 Logo: = 2 6 = Um casal está a pensar ter 3 filhos. Supondo que a probabilidade de nascer rapaz é igual à probabilidade de nascer rapariga, podemos afirmar que: a) a probabilidade de os três serem rapazes é 1/2. b) a probabilidade de serem dois rapazes e uma rapariga é 30% c) a probabilidade dos dois mais velhos serem do mesmo sexo é 1/4. d) a probabilidade de não serem todos do mesmo sexo é 3/4. Analisando as combinações Homem e Mulheres, teremos. HHH HHM HMH MHH Logo: P = 2/8 >>> P = 1/4 MMH MHM Não poderia ser: HHH ou MMM pois o terceiro teria mesmo sexo. MMM HMM

3 08. A turma T de uma certa escola tem vinte e três alunos, com números em uma lista de 1 a 23. Em algumas aulas, os alunos estão divididos em dois turnos: os alunos com número ímpar pertencem ao primeiro turno e os restantes alunos pertencem ao segundo turno. Escolhe-se ao acaso, um aluno do primeiro turno. Qual a probabilidade de o aluno escolhido ter um número na lista superior a 17? a) 1/3 b) 1/4 c) 1/6 d) 1/7 Dados: 23 alunos 1º turno { 1,3,5,7,9,11,13,15,17,19,21,23} =12 alunos 2º turno = 11 alunos Superior a 17 do primeiro turno { 19,21,23} P= 3 Casos favoráveis / 12 casos possíveis P= 3/ 12 P= 1/4 09. Na primeira quinzena de março, hospedaram-se no hotel Paraiso 100 turistas: 40 portugueses e 60 estrangeiros. O gráfico seguinte apresenta a distribuição dos turistas estrangeiros, por nacionalidade. Escolhendo-se ao acaso, um dos 100 turistas hospedados no hotel Paraiso na primeira quinzena de março. Qual é a probabilidade de o turista escolhido ser francês? a) 16% b) 18% c) 22% d) 24% Como são 100 turistas no total = 40 portugueses + 60 estrangeiros, temos 60 estrangeiros para serem distribuídos no percentual, logo: 50 % espanhóis = 30 pessoas 30% dos estrangeiros franceses = 18 20% dos estrangeiros ingleses = 12 Daí os estrangeiros serão: 18% >>>> 18 de 100 é 18% 10. O João tem num saco, 9 bolas numeradas de 1 a 9. As bolas são indistinguíveis ao tato. O João retira ao acaso uma bola do saco. Qual a probabilidade de a bola retirada ter um número que admita exatamente dos divisores? a) 2/9 b) 3/9 c) 4/9 d) 5/9 Sabemos que números que tem apenas dois divisores, são chamados de números primos: ( 1; 2; 3; 4; 5; 6; 7; 8; 9 ) dos quais são primos: ( 2; 3; 5; 7 ) P = 4/7 11. Um certo conjunto de cartas de jogar é constituído de dozes cartas vermelhas e por algumas cartas pretas. Escolhese, ao acaso, uma carta desse baralho. Sabe-se que a probabilidade dessa carta ser vermelha é 75%. Quantas cartas pretas há neste baralho? a) 3 b) 4 c) 6 d) 9

4 Temos um total de 12(vermelhas) + X cartas pretas. Se a chance é de 75% ser vermelha então 12 que são as vermelhas sobre o total, que é: 12 + X = 0,75 12 / (12+x) = 0,75 0,75. (12+x) = 12 x = Uma certa turma de 9 o ano é constituída por rapazes e por moças. Nessa turma há 6 meninas. Sabendo que, escolhendo ao acaso um dos alunos da turma a probabilidade de esse aluno ser rapaz é de 2/3. Quantos rapazes há nessa turma? a) 6 b) 9 c) 12 d) Um tratador de animais de um jardim zoológico é responsável pela limpeza de três jaulas: a de um tigre, a de uma pantera e a de um leopardo. O tratador tem de lavar a jaula de cada um destes animais, uma vez por dia. De quantas maneiras diferentes pode o tratador realizar a sequência da lavagem das três jaulas? Assinala a opção correta. a) 2 b) 3 c) 4 d) Pediu-se a 210 pessoas, cada uma delas dona de um cão e de um gato, que respondessem a seguinte questão: Como classifica a relação entre o seu cão e o seu gato. Havia 3 opções de resposta: Boa; Indiferente e Agressiva. A tabela apresenta os totais de cada uma das opções de resposta. Escolhida ao acaso uma das pessoas entrevista, qual é a probabilidade de essa pessoa ter respondido que a relação entre o seu cão e o seu gato é boa? 15. A comissão organizadora de um arraial fez 250 rifas para um sorteio. Apenas uma dessas rifas é premiada. As rifas foram todas vendidas. A Alice comprou algumas rifas. Sabe-se que a probabilidade de a Alice ganhar o prêmio é 1/25. Quantas rifas comprou a Alice? a) 25 b) 10 c) 5 d) A Teresa tem três irmãs: Maria, Inês e Joana. A Teresa vai escolher, ao acaso, uma das irmãs para ir com ela a um arraial no máximo fim de semana. A Teresa vai escolher, também ao acaso, se vai ao arraial no próximo sábado ou no próximo domingo. Qual é a probabilidade de a Teresa escolher ir ao arraial no sábado com a Maria? a) 1/2 b) 1/3 c) 1/5 d) 1/6 17. A mãe, o pai e o filho mais velho da família Coelho ganharam três automóveis num concurso de TV: 1 carro cinza, um carro branco e um carro preto. Todos queriam o automóvel preto, por isso decidiram distribuir aleatoriamente os três automóveis. Qual a probabilidade de o automóvel preto não ser atribuído a mãe? a) 1/3 b) 2/3 c) 1/6 d) 5/6 18. O Scrabble é um jogo em que os jogadores têm de retirar, ao acaso, peças de dentro de um saco. Em cada peça está inscrita uma letra. Os jogadores usam essas letras para tentar construir palavras. Num determinado momento de um jogo de Scrabble ente o Martim e a Leonor estavam, dentro do saco 28 peças. Na tabela seguinte indica-se a frequência absoluta de cada letra. Retirando, ao acaso, uma peça do saco, qual dos seguintes valores é a probabilidade de sair uma vogal?

5 a) 2/7 b) 3/7 c) 4/7 d) 5/7 19. No clube desportivo Os Medalhados vai ser sorteado uma viagem aos próximos Jogos Olímpicos. As 90 rifas para o sorteio foram numeradas de 1 a 90 e foram todas vendidas. O João tem 14 anos. Qual é a probabilidade de a rifa premiada ter um número múltiplo da sua idade? a) 1/15 b) 2/15 c) 1/2 d) 1/ Numa Faculdade, realizou-se um estudo sobre o número de alunos da turma de Beatriz que já doaram sangue. O gráfico que se segue mostra o número de doadores de sangue, por sexos. Relativamente aos dados do gráfico, qual das seguintes afirmação é verdadeira? a) 30% dos alunos nunca doaram sangue. b) 30% dos alunos doaram sangue duas vezes. c) 65% dos alunos doaram sangue mais do que uma vez. d) 75% dos alunos doaram sangue menos do que duas vezes. 20. Numa escola com 1000 alunos, fez-se um estudo sobre o número de vezes que, em média, as meninas e os meninos da escola iam ao cinema por mês. Com os dados recolhidos contraíram a tabela que se segue: Qual dos gráficos que se seguem representa os dados da tabela? 21. Os alunos da turma da Marta combinaram de encontrar-se no Parque das Nações. Cada um deles utilizou um meio de transporte para chegar ao parque. Na tabela que se segue, pode observar os meios de transporte usados e o número de alunos que utilizou cada um deles.

6 Escolhendo, ao acaso, um aluno da turma da Marta, qual dos seguintes valores é o da probabilidade de esse aluno não ter ido de autocarro? a) 60% b) 70% c) 80% d) 90% 22. Na escola de Rita, fez-se um estudo sobre o gosto dos alunos pela leitura. Uma pesquisa realizada incluía a questão seguinte: Quantos livros lestes desde o início do ano letivo?. As respostas obtidas na turma da Rita, relativamente a esta pergunta, estão representadas no gráfico de barras que se segue. Escolhendo, ao acaso, um aluno da turma da Rita, qual dos seguintes acontecimentos é o mais provável? a) ter lido menos do que 1 livro. b) ter lido menos do que 2 livros. c) ter lido menos do que 3 livros. d) ter lido menos do que 4 livros. 23. Jogamos dois dados comuns. Qual a probabilidade de que o total de pontos seja igual a 10? a) 1/12 b) 1/11 c) 1/10 d) 2/23 e) 1/6 24. A probabilidade de um casal com quatro filhos ter dois do sexo masculino e dois do sexo feminino é: a) 60% b) 50% c) 45% d) 37,5% e) 25% 25. Dois jovens partiram, do acampamento em que estavam, em direção à Cachoeira Grande e à Cachoeira Pequena, localizadas na região, seguindo a trilha indicada neste esquema: Em cada bifurcação encontrada na trilha, eles escolhiam, com igual probabilidade, qualquer um dos caminhos e seguiam adiante. Então, é CORRETO afirmar que a probabilidade de eles chegarem à Cachoeira Pequena é: a) 1/2 b) 2/3 c) 3/4 d) 5/6 e) 1/6 26. Dois dados cúbicos, não viciados, com faces numeradas de 1 a 6, serão lançados simultaneamente. A probabilidade de que sejam sorteados dois números consecutivos, cuja soma seja um número primo, é de: a) 2/9 b) 1/3 c) 4/9 d) 5/9 e) 2/3 27. As cinco cartelas numeradas representadas a seguir foram colocadas numa caixa.

7 Se forem retiradas duas cartelas da caixa, simultaneamente e ao acaso, a probabilidade de que a soma dos valores das cartelas retiradas seja 5 ou 6 é: a) 1/5 b) 2/5 c) 3/5 d) 4/5 e) 5/6 28. No lançamento de uma moeda há 50% de chance de sair cara e outros 50% de chance de sair coroa. A chance de sair cara no lançamento de uma moeda é de: a) 1/5 b) 1/2 c) 50/10 d) 50/2 e) 2/ A população de uma pequena cidade do interior de Minas Gerais variou entre 1987 e 1996 segundo o gráfico a seguir. A população dessa cidade era de habitantes: a) Entre 1987 e 1990 b) Entre 1990 e 1993 c) Entre 1993 e 1996 d) Após Numa turma as notas a Matemática foram as seguintes: Ao escolher um aluno, ao acaso, qual a probabilidade da sua nota a Matemática ter sido 2? 31. Lança-se um dado não viciado. Qual é a probabilidade de: a) sair múltiplo de 3; b) sair um 7; c) não sair um 2; d) sair um número menor que 5; e) sair um número par; f) sair um Num saco estão 5 bolas iguais, duas pretas e três brancas. Qual a probabilidade de tirar (sem repor): a) uma bola branca; b) uma bola preta; c) três bolas pretas (3 extrações); d) uma bola branca ou preta. 33. Na lista de chamada de uma turma, os 30 alunos são numerados de 1 a 30. Em certo dia, quando faltaram os alunos de 11 e 26, o professor sorteou um aluno para resolver umas atividades no quadro. Qual é a probabilidade do número sorteado ser:

8 a) Par? b) Menor que 9? c) Múltiplo de 4? d) Primo? e) Maior que 12 e menor que 25? 34. Em uma escola estudam alunos de dois segmentos: no ensino médio são 400 meninos e 200 meninas, e no ensino fundamental são 400 meninas e 300 meninos. Ao sortear um aluno dessa escola, calcule a probabilidade de ser: a) Menino, sabendo que é aluno do ensino médio b) Aluno do ensino médio, sabendo que é menino 35. Um grupo de 1000 pessoas apresenta, conforme sexo e qualificação profissional, a composição: Escolhendo uma dessas pessoas ao acaso: a) Qual a probabilidade de ser homem? b) Qual a probabilidade de ser mulher não especialista? c) Qual porcentagem de não especializados? d) Qual a porcentagem de homens especializados? e) Se for especializado, qual a chance de ser mulher?

1. Um saco contém várias bolas com o número 1, várias bolas com o número 2 e várias

1. Um saco contém várias bolas com o número 1, várias bolas com o número 2 e várias Questões Exame Probabilidades (U1) Matemática 9º Ano ANO LECTIVO 2012 / 2013 1. Um saco contém várias bolas com o número 1, várias bolas com o número 2 e várias bolas com o número 3. As bolas são indistinguíveis

Leia mais

MATEMÁTICA - 3o ciclo Probabilidades (9 o ano)

MATEMÁTICA - 3o ciclo Probabilidades (9 o ano) MATEMÁTICA - 3o ciclo Probabilidades (9 o ano) Exercícios de provas nacionais e testes intermédios. Num saco, A, estão três bolas numeradas de a 3, indistinguíveis ao tato... Retira-se, ao acaso, uma bola

Leia mais

Escola Básica de Ribeirão (Sede) ANO LETIVO 2012/201 Ficha de Trabalho dezembro 2012 Nome: N.º: Turma: Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Probabilidades

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Considere um dado cúbico, com as faces numeradas de 1 a 6, e um saco que contém cinco bolas, indistinguíveis

Leia mais

Tema: Probabilidades e Estatística

Tema: Probabilidades e Estatística Escola Básica de Ribeirão (Sede) ANO LETIVO 2011/2012 Ficha de Trabalho Janeiro 2012 Nome: N.º: Turma: Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Probabilidades

Leia mais

Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades

Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades Nome: Data: / / 1. Das seguintes experiências diz, justificando, quais são as aleatórias: 1.1. Deitar um berlinde num copo de água

Leia mais

Teste de Avaliação de MATEMÁTICA 12º ano

Teste de Avaliação de MATEMÁTICA 12º ano Teste de Avaliação de MATEMÁTICA º ano º Período de 0/ duração 90 min. Prof. Josué Baptista Turma: e º teste A 4 de Outubro Classificação: Nº Nome GRUPO I O Professor: As cinco questões deste grupo são

Leia mais

01 - (UEM PR) um resultado "cara sobre casa preta" é (MACK SP)

01 - (UEM PR) um resultado cara sobre casa preta é (MACK SP) ALUNO(A): Nº TURMA: 2º ANO PROF: Claudio Saldan CONTATO: saldan.mat@gmail.com LISTA DE EXERCÍCIOS PROBABILIDADE 0 - (UEM PR) Considere a situação ideal na qual uma moeda não-viciada, ao ser lançada sobre

Leia mais

c) 17 b) 4 17 e) 17 21

c) 17 b) 4 17 e) 17 21 Probabilidade I Exercícios. Dois jogadores A e B vão lançar um par de dados. Eles combinam que se a soma dos números dos dados for 5, A ganha e se a soma for 8, B é quem ganha. Os dados são lançados. Sabe-se

Leia mais

PROBABILIDADE PROPRIEDADES E AXIOMAS

PROBABILIDADE PROPRIEDADES E AXIOMAS PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Exercícios de exames e testes intermédios 1. Seja Ω, conjunto finito, o espaço de resultados associado a uma certa experiência

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos

Leia mais

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais

Aula 16 - Erivaldo. Probabilidade

Aula 16 - Erivaldo. Probabilidade Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar

Leia mais

Nome do aluno: Nº. Classificação: E.Educação:

Nome do aluno: Nº. Classificação: E.Educação: 9º Ano ESCOLA SECUNDÁRIA/3 DE SANTA MARIA DA FEIRA Ano Letivo 2012/13 TURMA: A TESTE DE MATEMÁTICA Professora Lourdes Fonseca Nome do aluno: Nº Classificação: E.Educação: 1. Observa a roleta da sorte representada

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios ) (UFRGS/20) Observe a figura abaixo. Na figura, um triângulo equilátero está inscrito em um círculo, e um hexágono regular está circunscrito ao mesmo círculo. Quando se lança um

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova 1 de Probabilidade I Prof.: Fabiano F. T. dos Santos Goiânia, 15 de setembro de 2014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano Escola Secundária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 0/ Distribuição de probabilidades.º Ano Nome: N.º: Turma:. Numa turma do.º ano, a distribuição dos alunos por idade e sexo

Leia mais

ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO

ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO Teste 1 Matemática 9.º C Nome: n.º Data: 14/10/2016 Classificação: Professor: Instruções gerais Não é permitido o uso de corretor. É permitido a utilização

Leia mais

Teste de Avaliação Escrita

Teste de Avaliação Escrita Teste de Avaliação Escrita Duração: 9 minutos 8 de outubro de Escola E.B., Eng. Nuno Mergulhão Portimão Ano Letivo /4 Matemática 9.º B Nome: N.º Classificação: Fraco (% 9%) Insuficiente (% 49%) Suficiente

Leia mais

12.º Ano de Escolaridade

12.º Ano de Escolaridade gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) (Dec.-Lei n.º 286/89, de 29 de Agosto, para alunos

Leia mais

Matemática E Extensivo V. 5

Matemática E Extensivo V. 5 Extensivo V Exercícios 0) a) / b) / c) / a) N(E) N(A), logo P(A) b) N(E) N(A), logo P(A) c) N(E) N(A), logo P(A) 0) a) 0 b) / % c) 9/0 90% d) /0 % 0) E a) N(E) 0 + + + 0 b) N(E) 0 N(A), logo P(A) 0, %

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 2014/20 PROFESSOR (a) DISCIPLINA Matemática ALUNO (a) SÉRIE 2º ano 1. OBJETIVO

Leia mais

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, 55 2- Faça a análise da

Leia mais

Ficha de Avaliação. Matemática A. Duração do Teste: 90 minutos. 12.º Ano de Escolaridade. Teste de Matemática A 12.º Ano Página 1

Ficha de Avaliação. Matemática A. Duração do Teste: 90 minutos. 12.º Ano de Escolaridade. Teste de Matemática A 12.º Ano Página 1 Ficha de Avaliação Matemática A Duração do Teste: 90 minutos 12.º Ano de Escolaridade Teste de Matemática A 12.º Ano Página 1 1. Colocaram-se numa urna 12 bolas, indistinguíveis pelo tato, numeradas de

Leia mais

Regras de seleção. MATEMÁTICA- 9.º ANO Setembro Escolas João de Araújo Correia

Regras de seleção. MATEMÁTICA- 9.º ANO Setembro Escolas João de Araújo Correia Escolas João de Araújo Correia ESCOLA SECUNDÁRIA DR. JOÃO DE ARAÚJO CORREIA MATEMÁTICA- 9.º ANO Setembro 0 TEMA: Organização e tratamento de dados exercícios saídos em TI e exames. A Associação de Estudantes

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE 01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS 12º Ano Turma B - C.C.H. de Ciências e Tecnologias - 1ª Teste de Avaliação de Matemática A V1 Duração: 90 min 04 Nov. 09 Prof.: Na folha de respostas, indicar de forma legível

Leia mais

2) Existem três suspeitos de um assalto a banco, que podem ou não ter agido em. (A) Lenin e Rasputin não existiram. (B) Lenin não existiu.

2) Existem três suspeitos de um assalto a banco, que podem ou não ter agido em. (A) Lenin e Rasputin não existiram. (B) Lenin não existiu. www.exatasconcursos.mat.br 1) Se Rasputin não tivesse existido, Lenin também não existiria. Lenin existiu. Logo, (A) Lenin e Rasputin não existiram. (B) Lenin não existiu. (C) Rasputin existiu. (D) Rasputin

Leia mais

Probabilidade e Estatística Preparação para P1

Probabilidade e Estatística Preparação para P1 robabilidade e Estatística reparação para rof.: Duarte ) Uma TV que valia R$ 00,00, entrou em promoção e sofreu uma redução de 0% em seu preço. Qual é o novo preço da TV? ) Um produto foi vendido por R$

Leia mais

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M. Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com

Leia mais

Sala de Estudo Acompanhado Municipal

Sala de Estudo Acompanhado Municipal Sala de Estudo Acompanhado Municipal 9º Ano º Teste Intermédio (Modelo) Lê com atenção as questões que se seguem e responde de forma correcta. Bom trabalho! "Cada problema que resolvi, tornou-se numa regra,

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA ANÁLISE COMBINATÓRIA 1) (PUC) A soma das raízes da equação (x + 1)! = x 2 + x é (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 2) (UFRGS) Um painel é formado por dois conjuntos de sete lâmpadas cada um, dispostos como

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

LEIA ATENTAMENTE AS INSTRUÇÕES

LEIA ATENTAMENTE AS INSTRUÇÕES Matemática e suas Tecnologias CÓDIGO DA PROVA / SIMULADO Aluno(a): POMA - Matemática Questões Professores: Neydiwan PC 0-0 - 4 ª Série º Bimestre - N 0 / 06 / 06 LEIA ATENTAMENTE AS INSTRUÇÕES Este caderno

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL.

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL. Estatística Aplicada Administração p(a) = n(a) / n(u) PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL Prof. Carlos Alberto Stechhahn 2014 1. Noções de Probabilidade Chama-se experimento

Leia mais

Tema: Probabilidades e Estatística

Tema: Probabilidades e Estatística 9.º Ano Ficha de Trabalho Setembro 2013 Nome: N.º: Turma: 2013/2014 Compilação de Exercícios de Exames Nacionais / Provas Finais (EN/PF) e de Testes Intermédios (TI) Tema: Probabilidades e Estatística

Leia mais

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 Um teste de múltipla escolha e composto de 12 questões, com 5 alternativas de resposta, sendo que somente uma, é correta. Qual a probabilidade de uma pessoa, marcando aleatoriamente

Leia mais

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três.

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três. 1 a Lista de Exercício - Estatística (Probabilidade) Profa. Ms. Ulcilea A. Severino Leal Algumas considerações importantes sobre a resolução dos exercícios. (i) Normas da língua culta, sequência lógica

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES 1) Determine a probabilidade de cada evento: a) Um nº par aparece no lançamento de um dado; b) Uma figura

Leia mais

12.º Ano de Escolaridade

12.º Ano de Escolaridade gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) (Dec.-Lei n.º 286/89, de 29 de Agosto, para alunos

Leia mais

FICHA DE TRABALHO N. O 9

FICHA DE TRABALHO N. O 9 FICHA DE TRABALHO N. O 9 ASSUNTO: Modelos de probabilidade: probabilidade condicional 1. Sejam A e B dois acontecimentos tais que: P (A) = 0,3 e P (B ) = 0,7 Determine P (A B ), sabendo que: 1.1 Os acontecimentos

Leia mais

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho Contagem e Probabilidade Exercícios Adicionais Paulo Cezar Pinto Carvalho Exercícios Adicionais Contagem e Probabilidade Para os alunos dos Grupos 1 e 2 1. Um grupo de 4 alunos (Alice, Bernardo, Carolina

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO Título do Podcast Área Segmento Duração Probabilidade Matemática Ensino médio 4min32seg. Habilidades: H10. Utilizar os princípios probabilísticos

Leia mais

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e

Leia mais

Prof. Luiz Alexandre Peternelli

Prof. Luiz Alexandre Peternelli Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos

Leia mais

Leon: Oi Lara, a primeira aula de probabilidade foi muito legal, né?

Leon: Oi Lara, a primeira aula de probabilidade foi muito legal, né? Módulo 04 Aula 04 TÍTULO: Probabilidade Parte 2. Para início de conversa... Fazer quadrinhos do seguinte diálogo: Leon: Oi Lara, a primeira aula de probabilidade foi muito legal, né? Lara: É mesmo Leon,

Leia mais

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO 1. (Magalhães e Lima, pg 40) Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos: (a) Uma moeda é lançada duas vezes

Leia mais

EXERCÍCIOS EXAMES E TESTES INTERMÉDIOS ESTATÍSTICA E PROBABILIDADES

EXERCÍCIOS EXAMES E TESTES INTERMÉDIOS ESTATÍSTICA E PROBABILIDADES EXERCÍCIOS EXAMES E TESTES INTERMÉDIOS ESTATÍSTICA E PROBABILIDADES. Num acampamento de verão, estão jovens de três nacionalidades: jovens portugueses, espanhóis e italianos. Nenhum dos jovens tem dupla

Leia mais

Exercícios resolvidos sobre Teoremas de Probabilidade

Exercícios resolvidos sobre Teoremas de Probabilidade Exercícios resolvidos sobre Teoremas de Probabilidade Aqui você tem mais uma oportunidade de estudar os teoremas da probabilidade, por meio de um conjunto de exercícios resolvidos. Observe como as propriedades

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS 12º Ano Turma A - C.C.H. de Ciências e Tecnologias - 1ª Teste de Avaliação de Matemática A V1 Duração: 90 min 05 Nov. 09 Prof.: Na folha de respostas, indicar de forma legível

Leia mais

REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO ALUNO(A): Nº: MATEMÁTICA

REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO ALUNO(A): Nº: MATEMÁTICA REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul MATEMÁTICA 0. (UFRGS - VESTIBULAR 205) Escolhe-se

Leia mais

Exercícios. 1. (Uerj 2017) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes:

Exercícios. 1. (Uerj 2017) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes: Probabilidade - Questões Extras Exercícios 1. (Uerj 01) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes: A {0, 1,, 3, 4, 5, 6,, 8, 9} 1. Cada número primo de A foi multiplicado

Leia mais

Exame Nacional de a chamada

Exame Nacional de a chamada Exame Nacional de 200. a chamada. A Teresa tem três irmãs: a Maria, a Inês e a Joana. A Teresa vai escolher, ao acaso, uma das irmãs para ir com ela a um arraial no próximo fim-de-semana. A Teresa vai

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal

Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal Probabilidade Tópicos Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal Conjuntos Conjunto: Na matemática, um conjunto é uma coleção de elementos com características

Leia mais

2.º Teste de Matemática A. 12.º Ano 7 Dez ª Parte. Entrada

2.º Teste de Matemática A. 12.º Ano 7 Dez ª Parte. Entrada 2.º Teste de Matemática A.º Ano 7 Dez. 20 1.ª Parte Para cada uma das cinco questões desta primeira parte, seleccione a resposta correcta de entre as quatro alternativas que são apresentadas e escreva

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

Mat1- Lista Probabilidade-2 série- 2013

Mat1- Lista Probabilidade-2 série- 2013 Mat1- Lista Probabilidade-2 série- 2013 1. (Unicamp simulado 2011) Uma empresa tem 5000 funcionários. Desses, 48% têm mais de 30 anos e 36% são especializados. Entre os especializados, 1400 têm mais de

Leia mais

MATEMÁTICA - 3o ciclo Organização e Tratamento de Dados (7 o ano)

MATEMÁTICA - 3o ciclo Organização e Tratamento de Dados (7 o ano) MATEMÁTICA - 3o ciclo Organização e Tratamento de Dados (7 o ano) Exercícios de provas nacionais e testes intermédios 1. Seja k um número natural menor do que 1. Considera o seguinte conjunto de dados

Leia mais

IBGE- RACIOCÍNIO LÓGICO & MATEMÁTICA. Josimar Padilha

IBGE- RACIOCÍNIO LÓGICO & MATEMÁTICA. Josimar Padilha IBGE- RACIOCÍNIO LÓGICO & MATEMÁTICA Josimar Padilha 01- Ano: 2016 Banca: FGV João olhou as dez bolas que havia em um saco e afirmou: Todas as bolas desse saco são pretas". Sabe-se que a afirmativa de

Leia mais

UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática

UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática 1 a Lista de Exercícios de Probabilidade e Estatística 1.

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 2 a série do Ensino Médio

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 2 a série do Ensino Médio AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 2 a série do Ensino Médio Turma EM GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 3 o Bimestre de 2016 Data / / Escola Aluno A B C D E 1 2 3 4 5

Leia mais

Módulo de Introdução à Probabilidade. O que é Probabilidade? 2 a série E.M.

Módulo de Introdução à Probabilidade. O que é Probabilidade? 2 a série E.M. Módulo de Introdução à Probabilidade O que é Probabilidade? a série E.M. Probabilidade O que é Probabilidade? 1 Exercícios Introdutórios Exercício 1. Qual a probabilidade de, aleatoriamente, escolhermos

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova de Probabilidade Prof.: Fabiano F. T. dos Santos Goiânia, 31 de outubro de 014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

TEORIA DAS PROBABILIDADES

TEORIA DAS PROBABILIDADES TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da

Leia mais

Matemática 9.º Ano. Resoluções

Matemática 9.º Ano. Resoluções Resoluções A_Prova Tema Organização e tratamento de dados Estatística Praticar páginas 8 a... Q Q = 0 = 7 R.: A amplitude interquartil da distribuição é 7... 0,7 0 = 0 R.: O João percorreu até 0 km, no

Leia mais

Analista TRT 10 Região / CESPE 2013 /

Analista TRT 10 Região / CESPE 2013 / Ao comentar sobre as razões da dor na região lombar que seu paciente sentia, o médico fez as seguintes afirmativas. P1: Além de ser suportado pela estrutura óssea da coluna, seu peso é suportado também

Leia mais

7- Probabilidade da união de dois eventos

7- Probabilidade da união de dois eventos . 7- Probabilidade da união de dois eventos Sejam A e B eventos de um mesmo espaço amostral Ω. Vamos encontrar uma expressão para a probabilidade de ocorrer o evento A ou o evento B, isto é, a probabilidade

Leia mais

TESTE DE MATEMÁTICA Ano Lectivo º I - 20/10/2010

TESTE DE MATEMÁTICA Ano Lectivo º I - 20/10/2010 TESTE DE MATEMÁTICA Ano Lectivo - - 9º I - // Nome: Nº Versão A Duração da Prova: 9 minutos O teste inclui cinco itens de escolha múltipla. Seleccione a única resposta correcta de entre as quatro alternativas

Leia mais

12.º Ano de Escolaridade (Decreto-Lei n.º 74/2004, de 26 de Março) PROBABILIDADES E COMBINATÓRIA VERSÃO 4

12.º Ano de Escolaridade (Decreto-Lei n.º 74/2004, de 26 de Março) PROBABILIDADES E COMBINATÓRIA VERSÃO 4 gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A A 12.º Ano de Escolaridade (Decreto-Lei n.º 74/2004, de 26 de Março) Duração da Prova: 90 minutos 7/Dezembro/2006

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Aula 3 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3

Leia mais

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S.

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S. PROBABILIDADE A história da teoria das probabilidades, teve início com os jogos de cartas, dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo da probabilidade.

Leia mais

5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas?

5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas? TERCEIRA LISTA DE EXERCÍCIOS DE PROBABILIDADE CURSO: MATEMÁTICA PROF. LUIZ CELONI 1) Dê um espaço amostral para cada experimento abaixo. a) Uma urna contém bolas vermelhas (V), bolas brancas (B) e bolas

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web MATEMÁTICA XXVII ENEM. (Enem 202) Certo vendedor tem seu salário mensal calculado da seguinte maneira: ele ganha um valor fixo de R$750,00, mais uma comissão de R$3,00 para cada produto vendido. Caso ele

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos Primeira Lista de Exercícios Introdução à probabilidade e à estatística Prof Patrícia Lusié Assunto: Probabilidade. 1. (Apostila 1 - ex.1.1) Lançam-se três moedas. Enumerar o espaço amostral e os eventos

Leia mais

Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes. Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 09.02.2009 3.º Ciclo do Ensino Básico 9.º ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de

Leia mais

ESCOLA EB 2,3 DE SANDE ENC. DE EDUC.: OBSERVAÇÃO:

ESCOLA EB 2,3 DE SANDE ENC. DE EDUC.: OBSERVAÇÃO: ESCOLA EB 2,3 DE SANDE FICHA DE AVALIAÇÃO N.º 2 DE MATEMÁTICA 9.º ANO ANO LETIVO 2011/2012 VERSÃO B NOME: N.º TURMA: DATA: / / PROFESSOR: CLASSIFICAÇÃO: ENC. DE EDUC.: OBSERVAÇÃO: Apresenta o teu raciocínio

Leia mais

Módulo de Fração como Porcentagem e Probabilidade. Fração como Probabilidade. 6 ano E.F.

Módulo de Fração como Porcentagem e Probabilidade. Fração como Probabilidade. 6 ano E.F. Módulo de Fração como Porcentagem e Probabilidade Fração como Probabilidade. 6 ano E.F. Fração como Porcentagem e Probabilidade Fração como Probabilidade. 1 Exercícios Introdutórios Exercício 1. Um dado

Leia mais

CAIXA ECONOMICA FEDERAL. Prof. Sérgio Altenfelder

CAIXA ECONOMICA FEDERAL. Prof. Sérgio Altenfelder 14.) (ICMS-MG/05) Um empréstimo contraído no início de abril, no valor de R$ 15.000,00 deve ser pago em dezoito prestações mensais iguais, a uma taxa de juros compostos de 2% ao mês, vencendo a primeira

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

Escola Secundária da Sobreda. Análise Combinatória e Probabilidades. Actividade 4

Escola Secundária da Sobreda. Análise Combinatória e Probabilidades. Actividade 4 Escola Secundária da Sobreda Análise Combinatória e Probabilidades Actividade 4 Os vinte alunos de uma turma de uma escola secundária resolveram formar uma comissão de três de entre eles para organizar

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci Termo-Estatística (2013) 2ª Aula Prof. Alvaro Vannucci Na Mecânica Estatística, será muito útil a utilização dos conceitos básicos de Análise Combinatória e Probabilidade. Por ex., uma garota vai sair

Leia mais

QUESTÃO 16 Tia Anastaćia uniu quatro retângulos de papel de 3 cm de comprimento por 1 cm de largura, formando a figura que segue:

QUESTÃO 16 Tia Anastaćia uniu quatro retângulos de papel de 3 cm de comprimento por 1 cm de largura, formando a figura que segue: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 7 Ọ ANO DO ENSINO FUNDAMENTAL EM 207 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Tia Anastaćia uniu quatro retângulos de

Leia mais

Escola Secundária com 3ºCEB de Lousada

Escola Secundária com 3ºCEB de Lousada Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 8º ano - n Data / / 2010 Assunto: Preparação para o Teste Intermédio de Matemática Parte II Lições nº, 1. O Paulo e o seu amigo

Leia mais

Resolução da Prova de Raciocínio Lógico da Agente Penitenciário/MA, aplicada em 24/04/2016.

Resolução da Prova de Raciocínio Lógico da Agente Penitenciário/MA, aplicada em 24/04/2016. de Raciocínio Lógico da gente Penitenciário/M, aplicada em 24/04/206. - sentença Se Maria é médica, então Silvio é engenheiro. é logicamente equivalente a () se Maria é médica, então Silvio é engenheiro.

Leia mais

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE 1) Uma moeda não tendenciosa é lançada quatro vezes. A probabilidade de que sejam obtidas duas caras e duas coroas é: (A) 3/8 (B) ½ (C) 5/8 (D) 2/3

Leia mais

AMEI Escolar Matemática 9º Ano Probabilidades e Estatística

AMEI Escolar Matemática 9º Ano Probabilidades e Estatística AMEI Escolar Matemática 9º Ano Probabilidades e Estatística A linguagem das probabilidades As experiências podem ser consideradas: - aleatórias ou casuais: quando é impossível calcular o resultado à partida;

Leia mais

Proposta de Teste Intermédio Matemática A 12.º ano

Proposta de Teste Intermédio Matemática A 12.º ano Proposta de Teste Intermédio Matemática A 1.º ano Nome da Escola Ano letivo 0-0 Matemática A 1.º ano Nome do Aluno Turma N.º Data Professor - - 0 GRUPO I Os cinco itens deste grupo são de escolha múltipla.

Leia mais

a) 6,0% b) 6,4% c) 7,2% d) 7,8% e) 8,0% a) 7. d) 14. total de lançamentos c) 15

a) 6,0% b) 6,4% c) 7,2% d) 7,8% e) 8,0% a) 7. d) 14. total de lançamentos c) 15 . (Ufsm 204) A tabela mostra o resultado de uma pesquisa sobre tipos sanguíneos em que foram testadas 600 pessoas. Qual é a probabilidade de uma pessoa escolhida ao acaso ter sangue do tipo A + ou A? 4.

Leia mais

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Def.: Um experimento é dito aleatório quando o seu resultado não for previsível antes de sua realização, ou seja,

Leia mais

2016/2017 outubro de 2016

2016/2017 outubro de 2016 FICHA DE TRABALHO N.º 5 TURMA:12.ºA 2016/2017 outubro de 2016 Análise Combinatória; Triângulo de Pascal; Binómio de Newton; Aplicações ao Cálculo das Probabilidades 1. A Sara é colecionadora e tem 200

Leia mais