13.1 Propriedades Magnéticas da Matéria

Tamanho: px
Começar a partir da página:

Download "13.1 Propriedades Magnéticas da Matéria"

Transcrição

1 Capítulo 13 Materiais Magnéticos 13.1 Propriedades Magnéticas da Matéria Apresentaremos neste tópico uma discussão qualitativa tentando não usar a mecânica quântica. No entanto, devemos ter em mente que: Não é possível compreender os efeitos magnéticos da matéria do ponto de vista da física clássica! As propriedades magnéticas dos materiais são fenômenos completamente quânticos. Apesar disso, faremos uso de descrições clássicas, embora erradas, para termos uma visão, ainda que muito limitada, do que está acontecendo. Inicialmente, vamos pressupor já conhecidos alguns conceitos: 1. Átomo: núcleo no centro e elétrons orbitando ao seu redor; 2. Elétron é negativamente carregado 3. O elétron possui um momento angular intrínseco que é denominado spin. Vejamos então inicialmente: 241

2 242 CAPÍTULO 13. MATERIAIS MAGNÉTICOS Figura 13.1: Produção de campo magnético pelo elétron. Efeitos devido às órbitas dos elétrons - Elétrons nos átomos produzem campos magnéticos. Os elétrons giram ao redor do núcleo em órbitas, o que é o mesmo se tivéssemos espiras de corrente. Por outro lado, correntes produzem campo magnético. Normalmente, no entanto, este é um efeito pequeno, pois no total há um cancelamento, visto que as órbitas estão aleatoriamente orientadas. - O que acontece então se colocarmos o material na presença de um campo externo B? Pelo que já estudamos sabemos que, pela lei de Lenz, teremos correntes induzidas, de sentido tal a se opor ao aumento do campo. Desta forma, os momentos magnéticos induzidos nos átomos são opostos ao campo magnético. Desta forma o efeito resultante é: o campo magnético total resultante é menor.

3 13.2. MOMENTOS MAGNÉTICOS E MOMENTO ANGULAR Momentos magnéticos e Momento angular Consideremos uma carga q se movendo numa órbita circular. Figura 13.2: Carga em órbita circular. O momento angular clássico orbital é: L = r p L = mvr Por outro lado, sabemos que a corrente é: I = carga tempo = q 2πr v = qv 2πr Sabemos também que o momento magnético é: Das equações acima, temos: µ = IA = Iπr 2 = qv 2πr πr2 = qvr 2 No caso do elétron, temos: µ = q L 2 m (13.1)

4 244 CAPÍTULO 13. MATERIAIS MAGNÉTICOS Figura 13.3: Momento magnético da órbita do elétron. µ = e L 2m e (13.2) Isto é o que se espera classicamente e como milagre também vale quanticamente. Além do momento angular orbital, elétrons possuem um momento angular intrínseco (spin), que associado a este há um momento magnético: Algumas propriedades: µ s = e m e S (13.3) Lei de Lenz não se aplica, pois este campo está associado ao elétron por si mesmo. O próprio S não pode ser medido. Entretanto, sua componente ao longo de qualquer eixo pode ser medida. Uma componente medida de S é quantizada. Quantização de S z :

5 13.2. MOMENTOS MAGNÉTICOS E MOMENTO ANGULAR 245 S z = m s m s = ± 1 2 = h 2π Sendo h a constante de Plank, cujo valor é de 6, J.s. Portanto, o momento magnético de spin será dado por: µ s,z = em s m e µ B = e 2m e = = ± e = ±µ B 2m e eh = 9, J 4πm e T A constante µ B é chamada magnéton de Bohr. Momentos magnéticos de spins de elétrons e de outras partículas são então expressos em termos de µ B. Da mesma forma que o spin, o momento angular orbital L não pode ser medido, apenas a sua componente ao longo de qualquer eixo. L = m l m l = 0, ±1, ±2, Onde m l é o número quântico magnético orbital. µ = el = em l = m l µ B 2m e 2m e Vimos durante o nosso curso que se colocássemos uma espira passando corrente num campo magnético, esta sentia uma força, e observamos a tendência do alinhamento do momento magnético µ com B.

6 246 CAPÍTULO 13. MATERIAIS MAGNÉTICOS Figura 13.4: Torque causado por um campo magnético em uma espira. τ = µ B Desta forma, se colocarmos um material composto por átomos que possuem um momento magnético permanente, inicialmente orientado em direções distribuídas ao acaso, na presença de um campo magnético, esses momentos magnéticos se orientarão na direção do campo, resultando em uma magnetização diferente de zero. Então como resultado teremos que o campo magnético resultante será maior que o original. A grandeza magnetização é definida como o dipolo magnético por unidade de volume: 1 M = lim v 0 v i µ i = dµ dv (13.4) O que implica em: µ total = Mdv v Análise dimensional:

7 13.3. MATERIAIS DIAMAGNÉTICOS 247 M = momento magné tico volume = corrente x á rea comprimento = A m = B µ 0 (13.5) Perceba que esta grandeza é análoga à polarização de materiais dielétricos. Resumo até então Lei de Lenz nas órbitas dos elétrons se opõe ao aumento do campo no material. Isto pode ser pensado como se o elétron fosse acelerado ou retardado em sua órbita. Torque magnético agindo em elétrons individualmente aumentando o campo magnético no material. Ou seja, temos dois comportamentos opostos. Qual deles é mais importante? Isto dependerá das propriedades do material (estrutura química, se há elétrons livres, etc). Podemos, no entanto notar que é muito mais custoso mudar as órbitas dos elétrons que seus spins. A este respeito, podemos separar os materiais em três categoriais: 1. Materiais diamagnéticos; 2. Materiais paramagnéticos; 3. Materiais ferromagnéticos Materiais Diamagnéticos São materiais que apresentam uma magnetização oposta ao campo magnético. O campo magnético no interior do material é menos intenso que o externo.

8 248 CAPÍTULO 13. MATERIAIS MAGNÉTICOS Figura 13.5: Substâncias diamagnéticas são repelidas do campo magnético, deslocando-se para a região de campo magnético menos intenso. Lei de Lenz ganha do efeito do spin. O diamagnetismo é muito fraco e difícil de se ver. A Lei de Lenz sempre está presente em todos os materiais. O efeito do spin, se estiver presente, será sempre mais forte. Logo, os materiais diamagnéticos são aqueles onde não há o efeito do spin. Exemplos de materiais diamagnéticos: Orbitais que possuem os elétrons emparelhados não há momento magnético resultante Materiais Paramagnéticos São materiais nos quais a magnetização aumenta na presença de um campo externo. O campo magnético no interior do material é mais intenso que o externo. Efeito de spin ganha da Lei de Lenz. Os átomos possuem um momento magnético resultante e permanente µ. Na ausência de campo externo estes momentos estão orientados de forma

9 13.5. MAGNETIZAÇÃO E O CAMPO H 249 Figura 13.6: Substâncias paramagnéticas são atraídas para região de campo magnético mais intenso. aleatória, e o momento de dipolo magnético resultante do material é nulo. Entretanto, se uma amostra do material for colocada em um campo magnético externo, os momentos tendem a se alinhar com o campo, o que dá um momento magnético total µ total não nulo na direção do campo externo B ext Magnetização e o campo H Relembrando a definição de magnetização (Equação 13.4): M = dµ dv = momento de dipolo magné tico unidade de volume Definimos um novo campo magnético H, tal que: B = µ 0 H + M (13.6) H B µ 0 M (13.7) B: campo magnético total = indução magnética H: campo magnético devido às correntes externas

10 250 CAPÍTULO 13. MATERIAIS MAGNÉTICOS M: magnetização, componente de B devido às propriedades do material. Você pode estar se perguntando, mas esta formula de H caiu do céu? Podemos chegar nela da seguinte forma: Como um dos exercícios da lista, você deve ter obtido que o potencial vetor de um único dipolo é dado por: A (r) = µ 0 µ ˆR 4π ˆR Se pensarmos num material, então cada elemento de volume possui um momento de dipolo magnético M dv, logo: A (r) = µ 0 4π M (r ) ˆR dv R 2 Utilizando a identidade: Temos: Utilizando a identidade: 1 R = ˆR R 2 A (r) = µ o M (r ) 4π 1 dv R fm M f = f M M f = f M fm Ficamos com:

11 13.5. MAGNETIZAÇÃO E O CAMPO H 251 A (r) = µ 0 4π A (r) = µ 0 4π 1 R M (r ) M (r ) dv R dv + µ 0 4π M (r ) dv R M (r ) ˆn ds R Relembrando, tínhamos escrito: A (r) = µ 0 J (r ) 4π R ds Desta forma, podemos identificar dois termos: A (r) = µ JM 0 (r ) 4π R dv + µ 0 4π κm (r ) R dv J M (r ) = M (r ): Densidade de corrente de magnetização; κ M (r ) = M (r ) ˆn : Densidade superficial de corrente de magnetização. Similar a: ρ p = P σ p = p ˆn Havendo corrente de magnetização e, simultaneamente, correntes livres (que não podemos controlar), o campo de indução magnética tem a sua origem em ambas:

12 252 CAPÍTULO 13. MATERIAIS MAGNÉTICOS B = µ 0 Jlivre + J M densidade de corrente total B = µ Jlivre 0 + M B µ 0M = µ0jlivre B µ0m = µ 0Jlivre µ 0 H µ 0 H = µ0 Jlivre H = J livre (13.8) Então agora a nomenclatura ficou: B: campo de indução magnética; H: campo magnético proveniente da contribuição devida às correntes livres; M: magnetização devido às corrente de magnetização. Podemos determinar um campo a partir de seu gradiente e de seu rotacional. Já obtemos o rotacional, e podemos determinar seu gradiente a partir de sua definição (Equação 13.7): H = B µ 0 M H = B µ 0 M H = M

13 13.6. MATERIAIS MAGNÉTICOS LINEARES 253 Observação Deve-se tomar cuidado com a analogia entre os campos H e B. Apesar da similaridade entre as expressões de seus rotacionais, devemos lembrar que um campo não é determinado somente pelo seu rotacional. Em especial, mesmo que não haja nenhuma corrente livre, na presença de materiais magnéticos, o campo H pode ser não nulo Materiais Magnéticos Homogêneos, Lineares e Isotrópicos Neste caso, a magnetização M do material varia linearmente com o campo magnético H: M = χ MH Onde χ M é a susceptibilidade magnética do meio, que é uma grandeza adimensional. Assim: B = µ o H + M = µ o H + χmh = µ o (1 + χ M ) H = µ o µ rh B = µ H Cuidado com a notação: Aqui, µ é a permeabilidade magnética do meio (não confundir com o momento magnético). O sinal de χ M depende do tipo de material: B = µ o (1 + χ M ) H

14 254 CAPÍTULO 13. MATERIAIS MAGNÉTICOS Em materiais diamagnéticos, B < H, e portanto: χ M < 0 Em materiais paramagnéticos, B > H, e portanto: χ M > Materiais Ferromagnéticos A não linearidade entre M e H o distingue do paramagnetismo. Em materiais ferromagnéticos, M e H não possuem uma relação simples. A magnetização permanece mesmo após o campo magnético ser desligado. Razão: Mecânica Quântica termo de troca interação dos spins de átomos. A interação de troca produz um forte alinhamento de dipolo atômico adjacente em um material ferromagnético. Os momentos magnéticos de muitos átomos tendem a se alinhar em pequenas regiões iguais a domínios ( 0.1mm), no entanto estes domínios, se nenhum campo magnético externo for aplicado, estão alinhados aleatoriamente orientados, resultando numa magnetização do material nula. Por isso que o ferro não atrai nenhum metal a princípio. F e: sólido policristalino Se magnetizarmos uma amostra de F e colocando-a em um campo magnético externo de intimidade gradualmente crescente, haverá um crescimento em tamanho dos domínios que estão orientados ao longo do campo externos. A curva que descreve a relação entre H e B para um material ferromagnético é chamada de histerese ou ciclo de histerese. De a até b mostra o comportamento da amostra se magnetizando. Após H 1 diminui-se H até H = 0 (ponto c): valor de B diminui conforme b c muito mais lentamente do que inicialmente tinha aumentado. Em c, há uma

15 13.7. MATERIAIS FERROMAGNÉTICOS 255 (a) Antes: M = 0 (b) Após: M = 0 Figura 13.7: Orientação dos domínios de um material ferromagnético na presença de campo magnético. Figura 13.8: Alinhamento dos domínios do material na presença de campo magnético externo. magnetização remanescente B = 0. Para se conseguir B = 0 aplica-se um campo H com sentido inverso. Se aumentar H em módulo atinge-se o ponto d. Se zerar H novamente, B diminui em módulo de acordo com d e, e mesmo em e, B = 0. Temperatura de Curie A temperatura de Curie T C é a temperatura acima da qual o material ferromagnético perde a sua magnetização. T > T C : fase desordenada paramagnética

16 256 CAPÍTULO 13. MATERIAIS MAGNÉTICOS Figura 13.9: Ciclo de histerese de materiais ferromagnéticos. T < T C : fase ordenada ferromagnético A transição de fase é abrupta. Para T > T C, o movimento aleatório dos momentos magnéticos se torna tão forte que eles não conseguem mais se alinhar para formar os domínios. Para o Fe, T C = 770 o C. A Tabela 13.1 mostra a temperatura de Curie para outros materiais ferromagnéticos. Material Temperatura de Curie (K) Co 1388 Fe 1043 MnBi 630 Ni 627 MnSb 587 CrO MnAs 318 Gd 292 Tabela 13.1: Temperatura de Curie de materiais ferromagnéticos

17 13.8. ENERGIA EM MEIOS MAGNÉTICOS Energia armazenada no campo magnético Vimos que: na presença de meios magnéticos U m = 1 2 J livre Adv V Mas J l = H, então: U m = 1 2 H Adv Aplicando a identidade: A H = A H H A Chegamos em: V U m = 1 2 A Hdv 1 2 A H dv U m = 1 2 V V B Hdv 1 2 V V A H dv Fazendo V todo espaço, o segundo termo tende a zero, portanto: U B = 1 B Hdv (13.9) 2 R 3

Campo na matéria II. 1 Resumem da aula anterior. Aula de março de campo magnetizante

Campo na matéria II. 1 Resumem da aula anterior. Aula de março de campo magnetizante Campo na matéria II Aula 4 3 de março de 11 1 Resumem da aula anterior A fim de explicar o magnetismo observado na matéria Ampère propões a existência de corrente internas, hoje conhecidas como correntes

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Materiais Magnéticos (Capítulo 8) Materiais Diamagnéticos. Materiais Paramagnéticos. Materiais Ferromagnéticos.

Leia mais

Lei de Ampere. 7.1 Lei de Biot-Savart

Lei de Ampere. 7.1 Lei de Biot-Savart Capítulo 7 Lei de Ampere No capítulo anterior, estudamos como cargas em movimento (correntes elétricas) sofrem forças magnéticas, quando na presença de campos magnéticos. Neste capítulo, consideramos como

Leia mais

Faculdade de Tecnologia de Bauru Sistemas Biomédicos

Faculdade de Tecnologia de Bauru Sistemas Biomédicos Faculdade de Tecnologia de Bauru Sistemas Biomédicos Física Aplicada à Sistemas Biomédicos II Aula 5 Propriedades Magnéticas de Materiais Profª. Me Wangner Barbosa da Costa MAGNETISMO NA MATÉRIA - μ orb

Leia mais

PROPRIEDADES MAGNÉTICAS. Magnetismo é a propriedade que os minerais apresentam de serem atraídos por um imã.

PROPRIEDADES MAGNÉTICAS. Magnetismo é a propriedade que os minerais apresentam de serem atraídos por um imã. PROPRIEDADES MAGNÉTICAS Magnetismo é a propriedade que os minerais apresentam de serem atraídos por um imã. São poucos minerais que mostram esta propriedade isto é, são atraídos por um imã. Ex: magnetita

Leia mais

Momento Magnético Momento de Dipolo

Momento Magnético Momento de Dipolo Propriedades Magnéticas I Magnetismo Fenômeno pelo qual certos materiais exercem uma força ou influência atrativa e repulsiva sobre outros materiais Aplicações mais importantes Geradores de potência elétrica

Leia mais

Aula 14: Magnetismo da Matéria e Equações de Maxwell

Aula 14: Magnetismo da Matéria e Equações de Maxwell Aula 14: Magnetismo da Matéria e Equações de Maxwell Curso de Física Geral III F-38 1 o semestre, 14 F38 1S14 1 Ímãs Polos e dipolos Introdução As propriedades magnéticas dos materiais podem ser compreendidas

Leia mais

Fontes de Campo Magné0co

Fontes de Campo Magné0co FONTES Fontes de Campo Magné0co * Imã e * corrente elétrica (movimento de carga elétrica) Fio reto Espira circular Solenóide LINHAS Densidade de linhas n o de linhas α B área (Gauss) spin * Microscopicamente

Leia mais

Campo Magnético na Matéria Uma Introdução

Campo Magnético na Matéria Uma Introdução Campo Magnético na Matéria Uma Introdução R Galvão O efeito prático de materiais ferromagnéticos na intensificação do campo magnético produzido por bobinas é em geral conhecido por técnicos em eletricidade

Leia mais

Magnetismo da Matéria e Equações de Maxwell

Magnetismo da Matéria e Equações de Maxwell Magnetismo da Matéria e Equações de Maxwell Ímãs Pólos e dipolos Introdução As propriedades magnéticas dos materiais podem ser compreendidas pelo que ocorre com seus átomos e elétrons. A estrutura mais

Leia mais

Propriedades magnéticas de minerais e rochas

Propriedades magnéticas de minerais e rochas Propriedades magnéticas de minerais e rochas Magnetismo de rochas Associação do movimento do eletron ao redor do núcleo atômico com o movimento dos planetas ao redor do Sol. - carga orbitando forma uma

Leia mais

MAGNETISMO. Manoel S. D Agrella Filho

MAGNETISMO. Manoel S. D Agrella Filho MAGNETISMO Manoel S. D Agrella Filho Propriedade magnética dos materiais O elétron em sua órbita em torno do núcleo representa uma corrente e, como uma espira onde circula uma corrente, apresenta momento

Leia mais

O magnetismo é um fenômeno pelo qual alguns materiais impõem uma força ou influência de atração ou de repulsão sobre outros materiais.

O magnetismo é um fenômeno pelo qual alguns materiais impõem uma força ou influência de atração ou de repulsão sobre outros materiais. Materiais magnéticos FUNDAMENTOS O magnetismo é um fenômeno pelo qual alguns materiais impõem uma força ou influência de atração ou de repulsão sobre outros materiais. As aplicações de materiais magnéticos

Leia mais

PROPRIEDADES MAGNÉTICAS DOS MATERIAIS

PROPRIEDADES MAGNÉTICAS DOS MATERIAIS UNIVERSIDADE FEDERAL DO ABC Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) BC-1105: MATERIAIS E SUAS PROPRIEDADES PROPRIEDADES MAGNÉTICAS DOS MATERIAIS INTRODUÇÃO Algumas Aplicações

Leia mais

Materiais Elétricos - Teoria. Aula 04 Materiais Magnéticos

Materiais Elétricos - Teoria. Aula 04 Materiais Magnéticos Materiais Elétricos - Teoria Aula 04 Materiais Magnéticos Bibliografia Nesta aula Cronograma: 1. Propriedades gerais dos materiais; 2. ; 3. Materiais condutores; 4. Materiais semicondutores; 5. Materiais

Leia mais

Física Quântica. Momento de Dipolo Magnético. Prof. Dr. Walter F. de Azevedo Jr Dr. Walter F. de Azevedo Jr.

Física Quântica. Momento de Dipolo Magnético. Prof. Dr. Walter F. de Azevedo Jr Dr. Walter F. de Azevedo Jr. 2019 Dr. Walter F. de Azevedo Jr. Física Quântica Momento de Dipolo Magnético Prof. Dr. Walter F. de Azevedo Jr. 1 Força de Lorentz Uma partícula deslocando numa região sujeita a um campo elétrico (E)

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado Eletromagnetismo Aplicado Unidade 3 Prof. Marcos V. T. Heckler 1 Conteúdo Introdução Materiais dielétricos, polarização e permissividade elétrica Materiais magnéticos, magnetização e permeabilidade magnética

Leia mais

FÍSICA III Professora Mauren Pomalis ENGENHARIA ELÉTRICA - 3º PERÍODO UNIR/PORTO VELHO 2017/1

FÍSICA III Professora Mauren Pomalis ENGENHARIA ELÉTRICA - 3º PERÍODO UNIR/PORTO VELHO 2017/1 FÍSICA III Professora Mauren Pomalis mauren.pomalis@unir.br ENGENHARIA ELÉTRICA - 3º PERÍODO UNIR/PORTO VELHO 2017/1 Magnetismo em Meios Materiais Sumário Introdução Momento dipolo spin/orbital Magnestismo

Leia mais

H. 33-7, 34-2, 34-3, 34-6, 34-7, 34-8, 36-6 S.

H. 33-7, 34-2, 34-3, 34-6, 34-7, 34-8, 36-6 S. Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III - Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 33-7, 34-2, 34-3, 34-6, 34-7, 34-8, 36-6 S. 29-9,

Leia mais

O que é magnetismo de Rochas? Uma breve introdução

O que é magnetismo de Rochas? Uma breve introdução O que é magnetismo de Rochas? { Uma breve introdução Geomagnetismo Estudo do campo magnético da Terra, variações de período curto e suas origens. Paleomagnetismo Estudo do campo magnético da Terra em escala

Leia mais

Leis de Biot-Savart e de Ampère

Leis de Biot-Savart e de Ampère Leis de Biot-Savart e de Ampère 1 Vimos que uma carga elétrica cria um campo elétrico e que este campo exerce força sobre uma outra carga. Também vimos que um campo magnético exerce força sobre uma carga

Leia mais

HISTERESE FERROMAGNÉTICA

HISTERESE FERROMAGNÉTICA HISTERESE FERROMAGNÉTICA Introdução Um material magnetizado é descrito pelo seu vetor de magnetização M definido como o momento de dipolo magnético por unidade de volume. M = dm dv (1) De acordo com o

Leia mais

Aula 10. Eletromagnetismo I. Campo Elétrico na Matéria. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira

Aula 10. Eletromagnetismo I. Campo Elétrico na Matéria. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Eletromagnetismo I Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Aula 10 Campo Elétrico na Matéria Até agora discutimos eletrostática no vácuo, ou na presença de condutores perfeitos,

Leia mais

Máquinas elétricas CC / CA

Máquinas elétricas CC / CA Máquinas elétricas CC / CA Endereço com material http://sites.google.com/site/disciplinasrgvm/ Ementa Fundamentos das máquinas de corrente contínua, geradores e motores de corrente contínua em regime permanente.

Leia mais

Termodinâmica 5. Alexandre Diehl. Departamento de Física - UFPel

Termodinâmica 5. Alexandre Diehl. Departamento de Física - UFPel Termodinâmica 5 Alexandre Diehl Departamento de Física - UFPel A amostra em estudo, quando colocada dentro de um campo magnético, pode ser analisada pela termodinâmica? Depende do tipo de amostra! Amostra

Leia mais

Propriedades Magnéticas dos Materiais

Propriedades Magnéticas dos Materiais . Propriedades Magnéticas dos Materiais Os materiais magnéticos são utilizados em inúmeras aplicações: motores eléctricos, geradores armazenamento de informação (quer como suporte da informação (fitas

Leia mais

r r r F = v Q B m ou r r df = I ( ds B ) 1

r r r F = v Q B m ou r r df = I ( ds B ) 1 r F m ou r df = = r r Qv B r I( ds B) db µ = 4 π r 0 Idl rˆ 2 2 Permeabilidade Magnética Todos os materiais têm um valor particular de condutividade eléctrica e, portanto têm também um valor específico

Leia mais

Física Quântica. Momentos de Dipolo Magnético e Spin. Prof. Dr. Walter F. de Azevedo Jr Dr. Walter F. de Azevedo Jr.

Física Quântica. Momentos de Dipolo Magnético e Spin. Prof. Dr. Walter F. de Azevedo Jr Dr. Walter F. de Azevedo Jr. 2019 Dr. Walter F. de Azevedo Jr. Física Quântica Momentos de Dipolo Magnético e Spin Prof. Dr. Walter F. de Azevedo Jr. 1 Momento de Dipolo Magnético Orbital Consideremos uma carga elétrica (e) que se

Leia mais

ELETROTÉCNICA -1 / 34. Dipolos magnéticos:

ELETROTÉCNICA -1 / 34. Dipolos magnéticos: ELETROTÉCNICA -1 / 34. Dipolos magnéticos Dipolos magnéticos: - Determinam o comportamento dos materiais num campo magnético; - Tem origem no momentum angular dos elétrons nos íons ou átomos que formam

Leia mais

Aula 05 Materiais Magnéticos

Aula 05 Materiais Magnéticos Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica Materiais Elétricos - Teoria Aula 05 Materiais Magnéticos Clóvis Antônio Petry, professor. Florianópolis, outubro de 2006. Bibliografia

Leia mais

Eletromagnetismo I. Aula 16. Na aula passada denimos o vetor Magnetização de um meio material como. M = n m. n i m i

Eletromagnetismo I. Aula 16. Na aula passada denimos o vetor Magnetização de um meio material como. M = n m. n i m i Eletromagnetismo I Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Aula 16 Campo Magnético na Matéria - Continuação Na aula passada denimos o vetor Magnetização de um meio material como

Leia mais

UNIDADE 18 Propriedades Magnéticas dos Materiais

UNIDADE 18 Propriedades Magnéticas dos Materiais UNIDADE 18 Propriedades Magnéticas dos Materiais 1. O que são domínios magnéticos? 2. Defina os seguintes termos: Magnetização de saturação Permeabilidade magnética inicial Remanência Coercividade 3. Preencha

Leia mais

Projeto de Elementos Magnéticos Revisão de Eletromagnetismo

Projeto de Elementos Magnéticos Revisão de Eletromagnetismo Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina! Departamento Acadêmico de Eletrônica! Eletrônica de Potência! Projeto de Elementos Magnéticos Revisão de Eletromagnetismo Prof. Clovis

Leia mais

Força Magnetizante, Histerese. e Perdas Magnéticas

Força Magnetizante, Histerese. e Perdas Magnéticas INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA Força_Magnetizante_Histerese-e-Perdas-Magnéticas -1-40. 18 Curso Técnico em Eletrotécnica Força Magnetizante, Histerese

Leia mais

Equações de Maxwell; Magnetismo da Matéria

Equações de Maxwell; Magnetismo da Matéria Cap. 32 Equações de Maxwell; Magnetismo da Matéria Copyright 32-1 Lei de Gauss para Campos Magnéticos A estrutura magnética mais simples que existe é o dipolo magnético. Não existem (até onde sabemos)

Leia mais

Aula 17 Tudo sobre os Átomos

Aula 17 Tudo sobre os Átomos Aula 17 Tudo sobre os Átomos Física 4 Ref. Halliday Volume4 Sumário Algumas propriedades dos átomos; O spin do elétron; Momento Angular e momento magnético; O experimento de Stern-Gerlach; O princípio

Leia mais

Electromagnetismo Aula Teórica nº 24

Electromagnetismo Aula Teórica nº 24 Electromagnetismo Aula Teórica nº 24 Departamento de Engenharia Física Faculdade de Engenharia Universidade do Porto PJVG, LMM 1 Breve revisão da última aula Energia magnética Corrente de deslocamento

Leia mais

INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA

INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA Campos Magnéticos_Densidade-de-Fluxo-Permeabilidade-Relutância - 1-29. 17 Curso Técnico em Eletrotécnica Campos Magnéticos,

Leia mais

Revisão de Eletromagnetismo

Revisão de Eletromagnetismo Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Eletrônica de Potência Revisão de Eletromagnetismo Prof. Clóvis Antônio Petry. Florianópolis,

Leia mais

Importante. Desligar os celulares ou colocar no modo silencioso

Importante. Desligar os celulares ou colocar no modo silencioso Importante Desligar os celulares ou colocar no modo silencioso ENG101 MATERIAIS ELÉTRICOS E MAGNÉTICOS CAPÍTULO 02 MATERIAIS MAGNÉTICOS E APLICAÇÕES Prof. Dr. Vitaly F. Rodríguez-Esquerre Estrutura cristalina

Leia mais

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry. Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores Força Magnetizante, Histerese e Perdas Magnéticas Prof. Clóvis Antônio Petry. Florianópolis, setembro de

Leia mais

Princípios de Magnetoquímica. Prof. Fernando R. Xavier

Princípios de Magnetoquímica. Prof. Fernando R. Xavier Princípios de Magnetoquímica Prof. Fernando R. Xavier UDESC 2015 Parte da física é simples, parte da física é complicada. Magnetismo está na segunda parte. (1921) 2 Conceitos básicos Magnetismo é uma propriedade

Leia mais

Campos Magnéticos Produzidos por Correntes

Campos Magnéticos Produzidos por Correntes Cap. 29 Campos Magnéticos Produzidos por Correntes Prof. Oscar Rodrigues dos Santos oscarsantos@utfpr.edu.br Campos Magnéticos Produzidos por Correntes 1 Campos Magnéticos Produzidos por Correntes Campos

Leia mais

Curvas de Magnetização e Histerese Perdas Magnéticas Materiais Magnéticos

Curvas de Magnetização e Histerese Perdas Magnéticas Materiais Magnéticos Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores Curvas de Magnetização e Histerese Perdas Magnéticas Materiais Magnéticos Clóvis Antônio Petry, professor.

Leia mais

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 02 Circuitos Magnéticos

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 02 Circuitos Magnéticos SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA Aula 02 Circuitos Magnéticos Revisão Aula Passada Aplicação da Lei Circuital de Ampère Exemplo 1 l r N núcleo toroidal de material ferromagnético I H.dl NI H

Leia mais

O spin do elétron. Vimos, na aula 2, que Goudsmit e Uhlenbeck propõem uma variável, quantizada, com 2 valores, com propriedades de momento angular.

O spin do elétron. Vimos, na aula 2, que Goudsmit e Uhlenbeck propõem uma variável, quantizada, com 2 valores, com propriedades de momento angular. O spin do elétron Vimos, na aula, que Goudsmit e Uhlenbeck propõem uma variável, quantizada, com valores, com propriedades de momento angular. Analogia com o momento angular orbital e e com e foram observadas

Leia mais

Eletrodinâmica Clássica II

Eletrodinâmica Clássica II Eletrodinâmica Clássica II Introdução e Recapitulação Prof. Ricardo Luiz Viana Curso de Pós-Graduação em Física, Universidade Federal do Paraná Curitiba, Paraná, Brasil Ementa Recapitulação - Equações

Leia mais

HISTERESE FERROMAGNÉTICA

HISTERESE FERROMAGNÉTICA HISTERESE FERROMAGNÉTICA Introdução Um material magnetizado é descrito pelo seu vetor de magnetização M definido como o momento de dipolo magnético por unidade de volume. M = dm dv (1) De acordo com o

Leia mais

8. Spin do elétron e átomos complexos

8. Spin do elétron e átomos complexos 8. Spin do elétron e átomos complexos Sumário Revisão: momento magnético do elétron Efeito Zeeman Spin do elétron Experiência de Stern-Gerlach O princípio da exclusão de Pauli Configuração eletrônica Tabela

Leia mais

Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 5

Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 5 Universidade de São Paulo Instituto de Física Física Moderna II Profa. Márcia de Almeida Rizzutto o Semestre de 014 1 19: experiência de Stern&Gerlach Proposta: Medir os valores possíveis do momento de

Leia mais

Vimos que a radiação eletromagnética comportase como onda e partícula Dualidade ondapartícula da radiação eletromagnética

Vimos que a radiação eletromagnética comportase como onda e partícula Dualidade ondapartícula da radiação eletromagnética Estrutura eletrônica dos átomos Vimos que a radiação eletromagnética comportase como onda e partícula Dualidade ondapartícula da radiação eletromagnética Onda Com propriedades como comprimento de onda,

Leia mais

A Dualidade Onda-Partícula

A Dualidade Onda-Partícula Dualidade Onda-Partícula O fato de que as ondas têm propriedades de partículas e viceversa se chama Dualidade Onda-Partícula. Todos os objetos (macroscópicos também!) são onda e partícula ao mesmo tempo.

Leia mais

Ismael Rodrigues Silva Física-Matemática - UFSC. cel: (48)

Ismael Rodrigues Silva Física-Matemática - UFSC. cel: (48) Ismael Rodrigues Silva Física-Matemática - UFSC cel: (48)9668 3767 72 Agulhas magnéticas ao redor de um condutor perpendicular à folha (cuja corrente sai da folha) se posicionam da maneira mostrada abaixo

Leia mais

A Equação de Onda de Schröedinger. O Princípio da Incerteza de Heisenberg. λ =

A Equação de Onda de Schröedinger. O Princípio da Incerteza de Heisenberg. λ = O Modelo Mecânico-Quântico Louis de Broglie apresentou a idéia de que, se as ondas luminosas exibiam características de partícula, então talvez as partículas de matéria pudessem mostrar propriedades ondulatórias.

Leia mais

Física Moderna II Aula 03. Marcelo G Munhoz Pelletron, sala 245, ramal 6940

Física Moderna II Aula 03. Marcelo G Munhoz Pelletron, sala 245, ramal 6940 Física Moderna II Aula 03 Marcelo G Munhoz Pelletron, sala 245, ramal 6940 munhoz@if.usp.br Schroedinger X Bohr Qual a vantagem da teoria de Schroedinger sobre a teoria de Bohr do ponto de vista da observação

Leia mais

Campos Magnéticos, Densidade de Fluxo, Permeabilidade e Relutância

Campos Magnéticos, Densidade de Fluxo, Permeabilidade e Relutância Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Retificadores Campos Magnéticos, Densidade de Fluxo, Permeabilidade e Relutância Prof. Clóvis

Leia mais

7. A teoria quântica do átomo de Hidrogênio

7. A teoria quântica do átomo de Hidrogênio 7. A teoria quântica do átomo de Hidrogênio Sumário A equação de Schrödinger para o átomo de hidrogênio Autovalores de energia Números quânticos Momento de dipolo magnético Autofunções de energia Orbitais

Leia mais

SOLUÇÃO PRATIQUE EM CASA

SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PC1. [D] Primeiramente é necessário encontrar o sentido da força magnética. Para tal, é direto verificar, utilizando a regra da mão esquerda, que o sentido desta força

Leia mais

Propriedades Magnéticas II

Propriedades Magnéticas II Propriedades Magnéticas II INFLUÊNCIA DA TEMPERATURA NO COMPORTAMENTO MAGNÉTICO Ferromagnéticos e ferrimagnéticos Agitação Térmica: Enfraquece as forças de acoplamento entre dipolos, mesmo na presença

Leia mais

MAGNETISMO E SUAS PROPRIEDADES

MAGNETISMO E SUAS PROPRIEDADES MAGNETISMO E SUAS PROPRIEDADES Apresentação: Pôster Anna Caroliny Ferreira Diniz 1 ; Rodrigo Cavalcanti de Lima 2 ; Jakcson Victor Cintra Serafim 3 ; Oberlan da Silva 4 Introdução É muito comum crianças

Leia mais

Em um mau condutor, como vidro ou borracha, cada elétron está preso a um particular átomo. Num condutor metálico, de forma diferente, um ou mais

Em um mau condutor, como vidro ou borracha, cada elétron está preso a um particular átomo. Num condutor metálico, de forma diferente, um ou mais Capítulo 6 Condutores 6.1 Breve Introdução Em um mau condutor, como vidro ou borracha, cada elétron está preso a um particular átomo. Num condutor metálico, de forma diferente, um ou mais elétrons por

Leia mais

Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/2 e de Dois Níveis

Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/2 e de Dois Níveis Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/ e de Dois Níveis Bruno Felipe Venancio 8 de abril de 014 1 Partícula de Spin 1/: Quantização do Momento Angular 1.1

Leia mais

UNIDADE XX PROPRIEDADES MAGNÉTICAS DA MATÉRIA

UNIDADE XX PROPRIEDADES MAGNÉTICAS DA MATÉRIA INSTITUTO DE FÍSICA UFRGS FÍSICA IIC (FIS01182) Método Keller UNIDADE XX PROPRIEDADES MAGNÉTICAS DA MATÉRIA I. Introdução: Nesta unidade analisaremos as propriedades magnéticas da matéria, do mesmo modo

Leia mais

2. Materiais magnetostrictivos

2. Materiais magnetostrictivos 17 2. Materiais magnetostrictivos Neste capítulo é descrito o fenômeno da magnetostricção, característico dos materiais ferromagnéticos. Este fenômeno será à base de um dos sensores propostos nesta tese.

Leia mais

Notas de Aula 2. Campo da Matéria Magnetizada

Notas de Aula 2. Campo da Matéria Magnetizada Notas de Aula 2 Campo da Matéria Magnetizada Prof. Valdir Bindilatti 16 de abril de 2009 Notas revistas por: Prof. Daniel Cornejo Sumário 2 Campo Magnético da Matéria Magnetizada 3 2.1 Momento angular

Leia mais

Eletricidade Aula 8. Componentes Reativos

Eletricidade Aula 8. Componentes Reativos Eletricidade Aula 8 Componentes Reativos Campo Elétrico Consideremos uma diferença de potencial V entre duas chapas condutoras. Em todo ponto entre essas duas chapas, passa uma linha invisível chamada

Leia mais

Introdução. O spin é uma propriedade das partículas elementares, eminentemente quântica, sem equivalente no mundo clássico.

Introdução. O spin é uma propriedade das partículas elementares, eminentemente quântica, sem equivalente no mundo clássico. Ressonância de Spin Introdução O spin é uma propriedade das partículas elementares, eminentemente quântica, sem equivalente no mundo clássico. Nos próximos slides apresentaremos, brevemente, alguns aspectos

Leia mais

Força elétrica e Campo Elétrico

Força elétrica e Campo Elétrico Força elétrica e Campo Elétrico 1 Antes de Física III, um pouco de Física I... Massas e Campo Gravitacional 2 Força Gravitacional: Força radial agindo entre duas massas, m 1 e m 2. : vetor unitário (versor)

Leia mais

Fundamentos de Física Capítulo 39 Mais Ondas de Matéria Questões Múltipla escolha cap. 39 Fundamentos de Física Halliday Resnick Walker 1) Qual das

Fundamentos de Física Capítulo 39 Mais Ondas de Matéria Questões Múltipla escolha cap. 39 Fundamentos de Física Halliday Resnick Walker 1) Qual das Fundamentos de Física Capítulo 39 Mais Ondas de Matéria Questões Múltipla escolha cap. 39 Fundamentos de Física Halliday Resnick Walker 1) Qual das frases abaixo descreve corretamente a menor energia possível

Leia mais

Notas de Aula 2. Campo da Matéria Magnetizada

Notas de Aula 2. Campo da Matéria Magnetizada Notas de Aula 2 Campo da Matéria Magnetizada Prof. Valdir Bindilatti 24/04/2007 Notas revistas por: Prof. Daniel Cornejo Índice 2 3 2.1 Momento angular e momento magnético.................. 3 2.2 Momentos

Leia mais

Elétrons como ondas? Um bom modelo deve ser capaz de explicar propriedades atômicas, propriedades periódicas, ligação química

Elétrons como ondas? Um bom modelo deve ser capaz de explicar propriedades atômicas, propriedades periódicas, ligação química OS ELÉTRONS O MODELO DA MECÂNICA QUÂNTICA E AS ENERGIAS ELETRÔNICAS Modelo atual se baseia na MECÂNICA QUÂNTICA Considera os conceitos da quantização da energia eletrônica (Bohr), fornecendo uma explicação

Leia mais

H B. Campo magnético (A.m 1 ) Indução magnética (Tesla) ou densidade de fluxo magnético. Magnetização

H B. Campo magnético (A.m 1 ) Indução magnética (Tesla) ou densidade de fluxo magnético. Magnetização Capítulo VII.1 Magnetismo ÁTOMO LIVRE: magnético, se tiver associado um momento dipolar magnético. SÓLIDO: conjunto de átomos magnéticos (ou não) que interactuam t com os vizinhos. ii REVISÃO: H B Campo

Leia mais

Desmagnetização do Ferro. Introdução. Materiais Necessários

Desmagnetização do Ferro. Introdução. Materiais Necessários Intro 01 Introdução O magnetismo é uma propriedade dos materiais relacionada ao movimento dos elétrons nos átomos, já que carga em movimento gera campo magnético. O modo de organização dos elétrons em

Leia mais

Física 3. Resumo e Exercícios P2

Física 3. Resumo e Exercícios P2 Física 3 Resumo e Exercícios P2 Resumo Teórico Parte 1 Corrente Elétrica Definição: i = dq dt Convenção: Sentido das cargas positivas Corrente Média: I = Q = n. v. A t Onde: n: densidade de partículas

Leia mais

Cap. 8 - Campo Magnético

Cap. 8 - Campo Magnético Cap. 8 - Campo Magnético 1 8.1. Introdução A região do espaço em torno de uma carga em movimento ou em torno de uma substância magnética, apresenta um campo que chamaremos de Campo Magnético (B). 2 3 4

Leia mais

NOTAS DE AULA DE ELETROMAGNETISMO

NOTAS DE AULA DE ELETROMAGNETISMO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA NOTAS DE AULA DE ELETROMAGNETISMO Prof. Dr. Helder Alves Pereira Abril, 08 - CONTEÚDO DAS AULAS NAS TRANSPARÊNCIAS -.

Leia mais

Física E Intensivo v. 2

Física E Intensivo v. 2 Física E Intensivo v. Exercícios ) A ) D Polos com indicações contrárias se atraem e polos com indicações iguais se repelem. 8. Incorreta. O principio da inseparidade magnética assegura que todo rompimento

Leia mais

Propriedades Magnéticas em Materiais

Propriedades Magnéticas em Materiais FACULDADE SUDOESTE PAULISTA Ciência e Tecnologia de Materiais Prof. Msc. Patrícia Correa Propriedades Magnéticas em Materiais Propriedades Magnéticas dos Materiais Materiais magnéticos: Imãs Esses possuem

Leia mais

Anisotropia Magnética

Anisotropia Magnética Anisotropia Magnética Anisotropia Magnética Anisotropia => Propriedade física do material é função da direção Anisotropia Magnética Os momentos magnéticos se alinham preferencialmente em uma dada direção

Leia mais

EUF. Exame Unificado

EUF. Exame Unificado EUF Exame Unificado das Pós-graduações em Física Para o primeiro semestre de 2016 14 de outubro de 2015 Parte 1 Instruções ˆ Não escreva seu nome na prova. Ela deverá ser identificada apenas através do

Leia mais

FNC Física Moderna 2 Aula 26

FNC Física Moderna 2 Aula 26 1 Física Nuclear: cronologia do início Descoberta da Radioatividade (Becquerel) 1896 Separação química do Ra (Marie e Pierre Curie) 1898 Modelo atômico de Rutherford 1911 Descoberta de isótopos (J.J. Thomson)

Leia mais

Magnetostática Cap. 5

Magnetostática Cap. 5 Magnetostática Cap. 5 Campo magnético e potencial vetor magnético Equações da magnetostática Transformações de calibre Momentos de dipolo magnético Campo magnético dipolar Magnetização e correntes de magnetização

Leia mais

Equações de Maxwell; Magnetismo da Matéria 32-1 LEI DE GAUSS PARA CAMPOS MAGNÉTICOS CAPÍTULO 32. Objetivos do Aprendizado.

Equações de Maxwell; Magnetismo da Matéria 32-1 LEI DE GAUSS PARA CAMPOS MAGNÉTICOS CAPÍTULO 32. Objetivos do Aprendizado. CAPÍTULO 32 Equações de Maxwell; Magnetismo da Matéria 32-1 LEI DE GAUSS PARA CAMPOS MAGNÉTICOS Objetivos do Aprendizado Depois de ler este módulo, você será capaz de... 32.01 Saber que a estrutura magnética

Leia mais

QFL 2144 Parte 3A: Ressonância magnética nuclear

QFL 2144 Parte 3A: Ressonância magnética nuclear QFL 2144 Parte 3A: Ressonância magnética nuclear Espectroscopia de RMN: espectroscopia associada com a mudança de estado energético de núcleos atômicos na presença de um campo magnético. Elementos básicos

Leia mais

4) Quais são os elementos químicos que apresentam efeito ferromagnético? 5) Explique detalhadamente o processo de magnetização.

4) Quais são os elementos químicos que apresentam efeito ferromagnético? 5) Explique detalhadamente o processo de magnetização. 1) Como são chamados os pequenos volumes magnéticos formados em materiais ferromagnéticos? 2) Em um átomo de elemento ferromagnético de onde provém o campo magnético? Represente um modelo simplificado

Leia mais

Paramagneto, Ferromagneto e Transições de Fase

Paramagneto, Ferromagneto e Transições de Fase Paramagneto, Ferromagneto e Transições de Fase Estudo a partir da mecânica estatística Mecânica Estatística 014 Sistemas paramagnéticos Sistemas ferromagnéticos Transições de fase Modelo de Ising Sistema

Leia mais

Diamagnetismo e paramagnetismo. Kittel 7ª edição Cap 14 Kittel 8ª edição Cap 11 Aschcroft Cap 31

Diamagnetismo e paramagnetismo. Kittel 7ª edição Cap 14 Kittel 8ª edição Cap 11 Aschcroft Cap 31 Diamagnetismo e paramagnetismo Kittel 7ª edição Cap 14 Kittel 8ª edição Cap 11 Aschcroft Cap 31 1 Introdução Histórico Conceitos básicos Campo magnético Indução magnética Magnetização Momento magnético

Leia mais

Eletromagnetismo. Descrição Macroscópica do Magnetismo dos Materiais

Eletromagnetismo. Descrição Macroscópica do Magnetismo dos Materiais Eletromagnetismo Descrição Macroscópica do Magnetismo dos Materiais Eletromagnetismo» Descrição Macroscópica do Magnetismo dos Materiais 1 Materiais Magnéticos Neste capítulo, faremos uma descrição macroscópica

Leia mais

Lista 7. Campo magnético, força de Lorentz, aplicações

Lista 7. Campo magnético, força de Lorentz, aplicações Lista 7 Campo magnético, força de Lorentz, aplicações Q28.1) Considere a equação da força magnética aplicada sobre uma partícula carregada se movendo numa região com campo magnético: F = q v B. R: Sim,

Leia mais

Aula 01 Estrutura eletrônica

Aula 01 Estrutura eletrônica Universidade Tecnológica Federal do Paraná Departamento Acadêmico de Química e Biologia Aula 01 Estrutura eletrônica Dr. Tiago P. Camargo Átomos - Estrutura Núcleo (prótons e nêutrons) Eletrosfera (elétrons)

Leia mais

Conversão de Energia II

Conversão de Energia II Departamento de Engenharia Elétrica Aula 1.2 Circuitos Magnéticos Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica

Leia mais

Campo Magnético. não existe campo elétrico. Se ao entrar em movimento aparece uma força na partícula existe campo magnético!

Campo Magnético. não existe campo elétrico. Se ao entrar em movimento aparece uma força na partícula existe campo magnético! Força Magnética Campo Magnético Vimos: campo elétrico + carga elétrica força elétrica Considere-se uma região onde uma partícula com carga q em repouso não sinta força não existe campo elétrico. Se ao

Leia mais

Mapeamento Magnético de Pinturas a Óleo

Mapeamento Magnético de Pinturas a Óleo Mapeamento Magnético de Pinturas a Óleo Aluno: Fabio Zaccaro Scelza Orientador: Paulo Costa Ribeiro Co-orientador: João Manoel Barbosa Pereira Introdução A falsificação e venda de pinturas, apesar de todos

Leia mais

Prof. Flávio Cunha, (19) Consultoria em Física, Matemática e Programação.

Prof. Flávio Cunha,  (19) Consultoria em Física, Matemática e Programação. CAMPO MAGNÉTICO 1. Considere as seguintes afirmações: I. Suspendendo-se um ímã pelo seu centro de gravidade, seu pólo norte se orienta na direção do pólo norte geográfico da Terra e seu pólo sul se orienta

Leia mais

EELi08 Circuitos Elétricos II

EELi08 Circuitos Elétricos II Universidade Federal de Itajubá Campus Itabira Curso de Engenharia Elétrica EELi08 Circuitos Elétricos II 2º Semestre - 2017 Materiais e Circuitos Magnéticos Prof. Dr. Aurélio Luiz Magalhães Coelho duas

Leia mais

Em elétrica cada carga cria em torno de si um campo elétrico, de modo análogo o imã cria um campo magnético, porém num imã não existe um mono-pólo

Em elétrica cada carga cria em torno de si um campo elétrico, de modo análogo o imã cria um campo magnético, porém num imã não existe um mono-pólo Magnetismo Em elétrica cada carga cria em torno de si um campo elétrico, de modo análogo o imã cria um campo magnético, porém num imã não existe um mono-pólo assim sempre o imã tem a carga positiva e a

Leia mais

Lista de Exercícios 3 Corrente elétrica e campo magnético

Lista de Exercícios 3 Corrente elétrica e campo magnético Lista de Exercícios 3 Corrente elétrica e campo magnético Exercícios Sugeridos (16/04/2007) A numeração corresponde ao Livros Textos A e B. A22.5 Um próton desloca-se com velocidade v = (2i 4j + k) m/s

Leia mais