PARTIÇÃO DE GRAFOS EM CIRCUITOS FECHADOS

Tamanho: px
Começar a partir da página:

Download "PARTIÇÃO DE GRAFOS EM CIRCUITOS FECHADOS"

Transcrição

1 PARTIÇÃO DE GRAFOS EM CIRCUITOS FECHADOS Gilcina Guimarães Machado Universidade do Estado do Rio de Janeiro Escola Naval RESUMO Uma partição do conjunto de vértices em um grafo não orientado é definida de modo que a informação dada pelas relações de adjacências entre os vértices, a partir do penúltimo passo do algoritmo aqui denominado de Fase Grau 2 (FG2) remanescente, possa ser usada no estudo da existência ou não de circuitos hamiltonianos nos grafos. A partição mostra circuitos existentes no grafo. Palavras chave: grafos hamiltonianos, partição, adjacência. Abstract A vertex set partition in an indirect graph is defined in a way that information given by adjacency relations between vertices from algorithm, step before last, called here remaining degree two, can be used in a study of hamiltonian problems in a graph. The vertex set partition show circuits in graphs. Key words: hamiltonian graphs, partition, adjacency. [ 2261 ]

2 1. Introdução A nomenclatura e a notação aqui utilizadas são as de Harary (Harary, 1969). No presente texto entende-se que um grafo (não orientado ou simples) G (V, A) é uma estrutura onde V é um conjunto cujos elementos vi são denominados vértices; A é um conjunto de partes de V a dois elementos chamados de arestas; V = n é o número de vértices do grafo (ordem do grafo) e A = m corresponde ao número de arestas. Um grafo G (V1 V2, A) é bipartido se A for um conjunto da forma (v1, v2) onde v1 є V1 e v2 є V2, não existindo arestas unindo elementos de V1, ou de V2 entre si. Vértice adjacente ao vértice vi é todo vj a ele unido por uma aresta (que é então denominada aresta incidente a ambos os vértices). Se duas arestas diferentes são incidentes a um mesmo vértice então estas arestas são adjacentes. O grau de um vértice v, d(v), é o número de arestas incidentes a ele. Um caminho de um grafo G é uma seqüência alternada de vértices distintos e arestas (conseqüentemente também distintas); vo, l1,..., vi-1, li, vi, i = 1, 2,..., terminando em um vértice, cada aresta sendo incidente a dois vértices, o imediatamente anterior e o seguinte. Comprimento de um caminho é o número de arestas que o compõem. Um circuito é um caminho fechado, ou seja, no qual v0 = vi, i > 3. Um Circuito hamiltoniano (CH) é um circuito de comprimento igual a n, que percorre todos os vértices sem repeti-los. Um grafo hamiltoniano é um grafo que possui pelo menos um circuito hamiltoniano. Na busca de propriedades que permitam identificar se um grafo é ou não hamiltoniano desenvolvemos o algoritmo PDCL (Guimarães, 1992) que permite obter uma partição do grafo para observar suas partes em vez do todo, que apresenta alto grau de complexidade. A idéia principal é obter dois tipos de vértices, centrais e laterais. O tipo central tem garantido por qualquer um dos seus vértices adjacentes uma entrada e uma saída, o que permite a sua inclusão num percurso. O tipo lateral poderá ser incluído num percurso se e somente se dois vértices centrais o usarem como entrada e saída, ou se estiver ligado a outro vértice lateral que possua uma saída. Definimos uma partição V(X,Y), X Y=V, X Y=, onde X (cardinalidade igual a α) é formado pelos Vértices Centrais (VC) e Y (cardinalidade igual a β ) pelos Vértices Laterais (VL). Os vértices centrais e laterais ainda poderão ser classificados como isolados ou acoplados. São isolados aqueles que não possuem vértices adjacentes a outros do mesmo conjunto e acoplados em caso contrário. (Guimarães, 1992). Na partição a idéia principal é que um Circuito Hamiltoniano (CH) existente no grafo, quando atravessa todos os vértices, utiliza duas e somente duas arestas incidentes a cada vértice, as demais arestas não participam do CH. Em um desenho de G limitado exteriormente por este circuito as arestas não pertencentes ao CH ficariam no seu interior. O Processo de Determinação de vértices Centrais e Laterais (PDCL) seria assim desenvolvido: 1- Rotula-se o grafo em ordem não crescente dos graus dos vértices. 2- Retira-se o vértice de maior grau junto com as arestas a ele adjacentes e subtrai-se uma unidade do grau dos vértices restantes. 3- Repete-se o processo de retirada dos vértices enquanto existir um vértice de grau d 2. A partir da partição obtida os resultados possíveis de serem encontrados são: α < β; α = β; α > β Este procedimento, em muitos casos, permite que um grafo seja analisado quanto a existência ou não de CH usando observações contidas nas relações de adjacência.(guimarães e Boaventura, 1995). A partição obtida pelo PDCL fornece muito material para o avanço no estudo do problema hamiltoniano. Um destes estudos é a divisão de grafos em famílias utilizando a Partição Central-Lateral (PCL) em função do número de vértices (n), do grau máximo existente no grafo (Δ) e dos parâmetros obtidos na partição, α, β, ρ (número das arestas entre VC) e θ/2 (número das arestas entre VL). Esta abordagem identifica as partições que invertem os parâmetros. (Costa, 2000). Existem famílias que podem ser caracterizadas como totalmente hamiltonianas pelos resultados da literatura, enquanto em outras a configuração pode ser determinante para que [ 2262 ]

3 alguns grafos sejam hamiltonianos outros não. (Boaventura, 2003). 2. Objetivo No presente trabalho procuramos focalizar uma das últimas fases do PDCL, onde a escolha de VC reduz-se a vértices que permaneceram com grau 2, após a retirada das arestas incidentes nos vértices declarados centrais. Esta fase apresenta vértices centrais e laterais e vértices remanescentes com grau dois. Esta partição é composta de vértices que formam um circuito fechado e vértices isolados adjacentes a este circuito. A partição assim obtida permite ressaltar características dos grafos que são habitualmente de difícil visualização. Denominamos esta fase de Grau Dois Remanescente, e durante o desenvolvimento do trabalho denominaremos apenas de FASE GRAU DOIS (FG2). São utilizados como exemplos grafos regulares, não orientados, de grau 3, por apresentarem um menor número de arestas, o que permite atingir a FG2 mais rapidamente. 3. Fase Grau Dois Remanescente. A utilização do PDCL para a partição de um grafo X, regular e não orientado, finaliza quando os vértices possuem grau final 1 ou 0. A etapa focalizada neste estudo é anterior à final. Os vértices que não foram escolhidos como central, mas que ainda podem ser escolhidos como tal possuem grau remanescente 2. A denominação remanescente determina que o vértice originalmente não possui grau 2, este grau é resultante da perda de arestas para determinação dos vértices centrais iniciais. O grau 2 remanescente nos vértices mostra que eles são adjacentes aos centrais e laterais já definidos e ainda possuem dois outros vértices adjacentes. O algoritmo PDCL e FG2 são semelhantes na parte inicial. A parada para o primeiro seria quando não houvesse mais vértice com grau remanescente 2 e o segundo grau remanescente > 2. Para se determinar o grau de complexidade dos algoritmos é necessário definir exatamente sua aplicação porque o mesmo pode estar sendo utilizado apenas para obter os valores de α e β, pode ainda calcular os conjuntos X e Y, calcular o número de arestas isoladas e entre VC, determinar os vértices que formam circuitos e caminhos do grafo ou, sob certas condições, verificar se o grafo é ou não hamiltoniano. A avaliação do grau de complexidade do PDCL é assunto para um trabalho específico para todos os casos e quando se tiver definido o seu melhor uso. Na FG2 da partição de X, com n vértices, podemos definir três conjuntos de vértices: I C = {x IC : x IC X e é VC isolado}. I C = número de vértices de I C I L = {x IL : x IL X e é VL isolado}. I L = número de vértices de I L T = {x T : x T X e é vértice de grau 2 remanescente}. T = número de vértices de T I C + I L + T = n e I C 0 ; T 0 É fácil observar que o conjunto T de vértices forma um circuito fechado porque todos os vértices são de grau 2 e são adjacentes entre si. (Machado e Boaventura, 1996). A FG2 assim definida é mostrada nos exemplos seguintes. [ 2263 ]

4 Exemplo 1 (Grafo de Petersen) Figura 1 Grafo de Petersen Tabela 1 Vértices e adjacentes Vértice Vértices Adjacentes Posição na Fase Grau Dois do PDCL Quadro 1 PDCL na FG2 Grafo de Petersen X={1, 2, 3, 4, 5, 6, 7, 8, 9, 10} I C = {1, 2, 3}; I C = 3; I L = { 10 }; I L = 1 T = {4, 5, 6, 7, 8, 9} e T = 6; I C + I L + T = 10; I C I L T = X Todos os vértices que ainda podem ser incluídos no conjunto de vértices centrais possuem agora grau remanescente 2. São adjacentes entre si e formam um circuito fechado com 6 vértices. O circuito fechado formado pelos vértices de T possui os vértices de IC adjacentes. Os [ 2264 ]

5 vértices de IL são adjacentes somente aos de IC, isto é, não são adjacentes ao de T Figura 2 Grafo resultante da FG2 com os VC adjacentes É importante notar a estrutura formada pelos vértices 1, 2, 3 e10, onde os vértices adjacentes ao vértice 10, VL isolado (não é adjacente a outro VL) são todos VC isolados (não são adjacentes a outro VC). Chamaremos este conjunto de núcleo isolado. Não detalharemos esta estrutura porque não está no objetivo deste trabalho mas aparecerá em outros exemplos. Pode-se confirmar o que mostra o esquema inicial; as distâncias entre os vértices de IC, 1, 2 e 3, são todas de valores iguais. No caso teremos através do vértice 10. Vamos examinar a possibilidade de aumentar o tamanho do circuito obtido pela inserção de caminhos disjuntos em relação às arestas Figura 3 Caminhos entre os vértices. Os caminhos que não passam pelo vértice 10 são: Figura 4 Caminhos entre os vértices [ 2265 ]

6 Figura 5 - Caminhos entre os vértices. O grafo é não hamiltoniano. A inclusão do vértice 10 obriga o uso de apenas um caminho de comprimento 2. A possibilidade de usar 2 caminhos de comprimento 3 geraria um circuito de comprimento total 8. A possibilidade de usar 2 caminhos de comprimento 4 está descartada uma vez que estes caminhos 2 a 2 ou fecham circuito ou repetem, pelo menos, um vértice. Os caminhos que poderiam ser utilizados para formar um possível circuito hamiltoniano teriam valores; = 9. Os caminhos de comprimento máximo que este grafo admite são de comprimento 9. Os vértices podem alternar a sua inclusão nestes circuitos máximos. Exemplo 2. Tabela 2 Vértices e adjacentes Vértices Vértices Adjacentes Quadro 2 - PDCL na FG [ 2266 ]

7 X={1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11, 12, 13, 14, 15, 16, 17, 18, 19, 20} I C = {1, 2, 3, 4, 5, 6} ; I C = 6 ; I L = { 10, 18 } ; I L = 2 T = {7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20} e T = 12 ; I C + I L + T = 20 ; I C I L T = X Para facilitar a visualização das distâncias incluímos os vértices de IC e os de IL em um circuito fechado maior, destacando em vermelho o circuito fechado formado pelos vértices de T Figura 6 Circuito fechado da partição Os vértices 1, 2, 5 e 10 formam um núcleo e os vértices 3, 4, 6 e 18 formam outro núcleo. As mesmas construções do grafo anterior ocorrem neste grafo em cada núcleo. Este grafo é não hamiltoniano. Os circuitos fechados máximos possuem comprimento igual a 18. Os vértices incluídos dos núcleos se alternam nestes circuitos máximos. [ 2267 ]

8 Exemplo 3 Tabela 3 Vértices e adjacentes Vértices Vértices Adjacentes Quadro 3 - Partição Grau Dois Remanescente X={1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11, 12, 13, 14, 15, 16, 17, 18, 19, 20} I C = {1, 2, 3, 4, 5, 6} ; I C = 6 ; I L = { 10, 18 } ; I L = 2 T = {7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20} e T = 12 ; I C + I L + T = 20 ; I C I L T = X Para facilitar a visualização das distâncias incluímos os vértices de IC e os de IL em um circuito fechado maior, no caso circuito hamiltoniano, destacando o circuito fechado formado pelos vértices de T. [ 2268 ]

9 Figura 7 Circuito fechado da FG2 No exemplo atual os vértices de IC e de IL não formam núcleos isolados, como no exemplo anterior. Como estão contidos num circuito hamiltoniano estes vértices apresentam distâncias de comprimentos diferentes. Exemplo Figura 8 Grafo [ 2269 ]

10 Tabela 4 Vértices e adjacentes Vértice Vértices Adjacentes Quadro 4 - Fase Grau Dois Remanescente X={1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11, 12, 13, 14, 15, 16}; I C = {1, 2, 3, 4}; I C = 4; I L = φ; I L = 0 T = {5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16} e T = 12 ; I C + I L + T = 16; I C I L T = X O grafo é não hamiltoniano. Embora não se visualize o núcleo isolado ele está presente.se os vértices 10, 11 e 14 fossem rotulados 1, 2 e 3, mantendo a rotulação do 4 o núcleo ficaria visível. Neste caso os vértices não se alternam no circuito máximo, que é único. As distâncias entre os vértices de IC são também constantes. As menores distâncias entre os vértices 1, 2 e 3 medem 4. As menores distâncias destes ao vértice 4 medem Conclusão A partição denominada Fase Dois Remanescente permite a visualização de características dos grafos que impedem a formação de circuitos hamiltonianos, as quais são habitualmente difíceis de identificar. Fica visível que para a existência de circuitos hamiltonianos em grafos a consideração dos caminhos entre vértices centrais e laterais é fator importante. Saber que determinação de caminhos importa é bastante árduo, se feito por inspeção. A utilização do PDCL facilita a obtenção dos vértices que determinam distâncias iguais. Fica em aberto o problema de se obter com o PDCL uma partição conveniente. A obtenção da Fase Dois Remanescente não é garantida de se obter com qualquer rotulação dos vértices. [ 2270 ]

11 As características das diversas partições é que talvez possam determinar elementos que determinem se um grafo é ou não hamiltoniano. O algoritmo FG2 como está definido pode localizar os vértices de grau 2 que formam um circuito ou caminho de qualquer tamanho do grafo. REFERÊNCIAS. HARARY, F. Graph Theory, Addison-Wesley, Reading, Ma (1969). COSTA SERTÃ C. Desenvolvimentos no Estudo Estrutural em Grafos Não Orientados Ênfase a Questão da Hamiltoneidade. D. Sc., COPPE, Universidade Federal do Rio de Janeiro, BOAVENTURA NETTO, P. O. Grafos Teoria, Modelos, Algoritmos. Esitora Edgard Blucher Ltda, S. Paulo. GUIMARÃES MACHADO, G. Uma Teoria Estrutural para Análise Hamiltoniana em Grafos não Orientados, D. Sc., COPPE, Universidade Federal do Rio de Janeiro, GUIMARÃES MACHADO, G. e BOAVENTURA P. O. N. A Structural Way for the Study of Hamiltonian Problems, Investigation Operativa, Vol. 5, Nº 1, GUIMARÃES MACHADO, G. BOAVENTURA NETTO, P.O.. Orientação dos Vértices de Grafos.. In: VIII CLAIO -XXVIII SBPO -, 1996, Rio de Janeiro. Anais do VIII CLAIO XXVIII SBPO. [ 2271 ]

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Referências P. O. Boaventura Netto, Grafos: Teoria, Modelos e Algoritmos, São Paulo, E. Blucher 2001; R. J. Trudeau, Introduction to Graph Theory, New York, Dover Publications, 1993; Kaufmann,

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 18: Coloração de Arestas Preparado a partir do texto: Rangel, Socorro. Teoria

Leia mais

Teoria dos Grafos Introdu c ao

Teoria dos Grafos Introdu c ao Teoria dos Grafos Introdução Referências P. O. Boaventura Netto, Grafos: Teoria, Modelos e Algoritmos, São Paulo, E. Blucher 001; R. J. Trudeau, Introduction to Graph Theory, New York, Dover Publications,

Leia mais

Introdução a Grafos Letícia Rodrigues Bueno

Introdução a Grafos Letícia Rodrigues Bueno Introdução a Grafos Letícia Rodrigues Bueno UFABC Teoria dos Grafos - Motivação Objetivo: aprender a resolver problemas; Como: usando grafos para modelar os problemas; Grafos: ferramenta fundamental de

Leia mais

Teoria dos Grafos AULA 3

Teoria dos Grafos AULA 3 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br AULA 3 Trajetos, Caminhos, Circuitos, Grafos Conexos Preparado

Leia mais

Departamento de Engenharia de Produção UFPR 57

Departamento de Engenharia de Produção UFPR 57 Departamento de Engenharia de Produção UFPR 57 Introdução a Grafos Muitos problemas de otimização podem ser analisados utilizando-se uma estrutura denominada grafo ou rede. Problemas em redes aparecem

Leia mais

MATEMÁTICA DISCRETA. Patrícia Ribeiro 2018/2019. Departamento de Matemática, ESTSetúbal 1 / 47

MATEMÁTICA DISCRETA. Patrícia Ribeiro 2018/2019. Departamento de Matemática, ESTSetúbal 1 / 47 1 / 47 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 47 1 Combinatória 2 Aritmética Racional 3 3 / 47 Capítulo 3 4 / 47 não orientados Um grafo não orientado

Leia mais

Teoria dos Grafos Aula 2

Teoria dos Grafos Aula 2 Teoria dos Grafos Aula 2 Aula passada Logística, regras Objetivos Grafos, o que são? Formando pares Encontrando caminhos Aula de hoje Outro problema real Definições importantes Algumas propriedades Grafo

Leia mais

CAP4. ELEMENTOS DA TEORIA DE GRAFOS. Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E) , sendo:

CAP4. ELEMENTOS DA TEORIA DE GRAFOS. Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E) , sendo: Matemática Discreta ESTiG\IPB Cap4. Elementos da Teoria de Grafos pg 1 CAP4. ELEMENTOS DA TEORIA DE GRAFOS Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E), sendo: Exemplos

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 09: Representação de Grafos Preparado a partir do texto: Rangel, Socorro. Teoria

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 16: Grafos Planares. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 16: Grafos Planares. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 16: Grafos Planares Preparado a partir do texto: Rangel, Socorro. Teoria do

Leia mais

Planaridade AULA. ... META Introduzir o problema da planaridade de grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de:

Planaridade AULA. ... META Introduzir o problema da planaridade de grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Planaridade AULA META Introduzir o problema da planaridade de grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Distinguir grafo planar e plano; Determinar o dual de um grafo; Caracterizar

Leia mais

Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios

Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios 1 Conceitos 1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem

Leia mais

Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios

Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios 1 Conceitos 1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem

Leia mais

Teoria dos Grafos. Grafos Planares

Teoria dos Grafos. Grafos Planares Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Grafos Planares

Leia mais

x y Grafo Euleriano Figura 1

x y Grafo Euleriano Figura 1 Grafo Euleriano Um caminho simples ou um circuito simples é dito euleriano se ele contém todas as arestas de um grafo. Um grafo que contém um circuito euleriano é um grafo euleriano. Um grafo que não contém

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO. 5 a Lista de Exercícios

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO. 5 a Lista de Exercícios UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO MATEMÁTICA COMBINATÓRIA 5 a Lista de Exercícios 1. O grafo de intersecção de uma coleção de conjuntos A 1,..., A n é o grafo

Leia mais

Percursos em um grafo

Percursos em um grafo Percursos em um grafo Definição Um percurso ou cadeia é uma seqüência de arestas sucessivamente adjacentes, cada uma tendo uma extremidade adjacente à anterior e a outra a subsequente (à exceção da primeira

Leia mais

Teoria dos Grafos Aula 2

Teoria dos Grafos Aula 2 Teoria dos Grafos Aula 2 Aula passada Logística Objetivos Grafos, o que são? Formando pares Aula de hoje Mais problemas reais Definições importantes Algumas propriedades Objetivos da Disciplina Grafos

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Mais sobre grafos.. Cintura A cintura de um grafo é o comprimento do menor ciclo do grafo. Um grafo sem ciclos tem uma cintura de comprimento infinito. Diâmetro de um grafo O diâmetro

Leia mais

Pesquisa Operacional

Pesquisa Operacional Faculdade de Engenharia - Campus de Guaratinguetá Pesquisa Operacional Livro: Introdução à Pesquisa Operacional Capítulo 3 - Teoria dos Grafos Fernando Marins fmarins@feg.unesp.br Departamento de Produção

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A de Oliveira, Socorro Rangel, Silvio A de Araujo Departamento de Matemática Aplicada Capítulo 12: Grafos Hamiltonianos Preparado a partir do texto: Rangel, Socorro Teoria do

Leia mais

Pesquisa Operacional. Teoria dos Grafos

Pesquisa Operacional. Teoria dos Grafos Pesquisa Operacional Teoria dos Grafos 1 Sumário Introdução Histórico Aplicações de modelos em grafos Conceitos e Notação Representações de um grafo G Tipos de grafos Algoritmos Algoritmo de Djisktra Algoritmo

Leia mais

Grafo planar: Definição

Grafo planar: Definição Grafo planar Considere o problema de conectar três casas a cada uma de três infraestruturas (gás, água, energia) como mostrado na figura abaixo. É possível fazer essas ligações sem que elas se cruzem?

Leia mais

Percursos em um grafo

Percursos em um grafo Percursos em um grafo Definição Um percurso ou cadeia é uma seqüência de arestas sucessivamente adjacentes, cada uma tendo uma extremidade adjacente à anterior e a outra a subsequente (à exceção da primeira

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Representação Mostre que todo passeio de u até v contém um caminho de u até v. Considere um passeio de comprimento l de u até v. Se l = 0 então temos um passeio sem nenhuma aresta.

Leia mais

Capítulo 1 Conceitos e Resultados Básicos

Capítulo 1 Conceitos e Resultados Básicos Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko Capítulo 1 Conceitos e Resultados Básicos Um grafo é um par ordenado (V, A), onde V e A são conjuntos disjuntos, e cada elemento

Leia mais

Teoria dos Grafos. Cobertura, Coloração de Arestas, Emparelhamento

Teoria dos Grafos. Cobertura, Coloração de Arestas, Emparelhamento Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Cobertura, Coloração

Leia mais

O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste

O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste material e a resolução (por parte do aluno) de todos os

Leia mais

Módulo 2 OTIMIZAÇÃO DE REDES

Módulo 2 OTIMIZAÇÃO DE REDES Módulo 2 OTIMIZAÇÃO DE REDES Grafos e Redes Está contida na área de Pesquisa Operacional. Pode ser considerada como uma teoria baseada na interligação de pontos e linhas, utilizada principalmente na solução

Leia mais

76) 1.1 Sim 1.2 Não 1.3 Não

76) 1.1 Sim 1.2 Não 1.3 Não 6) 1.1 Sim 1.2 Não 1. Não 2.1 2.2 2.. Os grafos dos exercícios 2.1 e 2.2 são conexos, pois existe sempre uma sequência de arestas a unir quaisquer dois vértices. 4.1 Grafo I vértices: ; arestas: 2 Grafo

Leia mais

05 Grafos: ordenação topológica SCC0503 Algoritmos e Estruturas de Dados II

05 Grafos: ordenação topológica SCC0503 Algoritmos e Estruturas de Dados II 05 Grafos: ordenação topológica SCC0503 Algoritmos e Estruturas de Dados II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2011/1 Moacir Ponti Jr.

Leia mais

Módulo 3 OTIMIZAÇÃO DE REDES DE TRANSPORTES

Módulo 3 OTIMIZAÇÃO DE REDES DE TRANSPORTES Módulo 3 OTIMIZAÇÃO DE REDES DE TRANSPORTES Grafos e Redes Está contida na área de Pesquisa Operacional. Pode ser considerada como uma teoria baseada na interligação de pontos e linhas, utilizada principalmente

Leia mais

Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45

Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45 Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45 Introdução a Grafos Muitos problemas de otimização podem ser analisados utilizando-se uma estrutura denominada grafo ou rede. Problemas

Leia mais

Grafos Parte 1. Aleardo Manacero Jr.

Grafos Parte 1. Aleardo Manacero Jr. Grafos Parte 1 Aleardo Manacero Jr. Uma breve introdução Grafos são estruturas bastante versáteis para a representação de diversas formas de sistemas e/ou problemas Na realidade, árvores e listas podem

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Árvores Sabemos que com um ou dois vértices apenas uma árvore pode ser formada. Entretanto com três vértices podemos formar três árvores. Com quatro vértices temos quatro estrelas e doze

Leia mais

PESQUISA. Vulnerabilidade de Hedes. Identificação de Conjuntos de Pontos. Críticos 1. INTRODUÇÃO 2. CARACTERÍSTICAS DO MÉTODO

PESQUISA. Vulnerabilidade de Hedes. Identificação de Conjuntos de Pontos. Críticos 1. INTRODUÇÃO 2. CARACTERÍSTICAS DO MÉTODO Vulnerabilidade de Hedes. Identificação de Conjuntos de Pontos Críticos Vânia Barcellos Gouvêa.campos * Paulo Afonso Lopes da Silva ** 1. INTRODUÇÃO. edes são rep R.. resentações gráf ic as. com aplicações

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 5: Grafos Conexos. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 5: Grafos Conexos. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 5: Grafos Conexos Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,

Leia mais

ESTRUTURAS DE DADOS. prof. Alexandre César Muniz de Oliveira. 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8.

ESTRUTURAS DE DADOS. prof. Alexandre César Muniz de Oliveira. 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8. ESTRUTURAS DE DADOS prof. Alexandre César Muniz de Oliveira 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8. Grafos Sugestão bibliográfica: ESTRUTURAS DE DADOS USANDO C Aaron

Leia mais

A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto.

A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto. 6 - oloração de restas e Emparelhamentos onsidere o seguinte problema: Problema - o final do ano acadêmico, cada estudante deve fazer um exame oral com seus professores. Suponha que existam 4 estudantes

Leia mais

A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto.

A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto. 7 - Coloração de Arestas e Emparelhamentos Considere o seguinte problema: Problema - Ao final do ano acadêmico, cada estudante deve fazer um exame oral com seus professores. Suponha que existam 4 estudantes

Leia mais

14 Coloração de vértices Considere cada um dos grafos abaixo:

14 Coloração de vértices Considere cada um dos grafos abaixo: 14 Coloração de vértices Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual

Leia mais

Capítulo 2- Modelos de grafos.

Capítulo 2- Modelos de grafos. Capítulo 2- Modelos de grafos. 2.1- Introdução (pág. 8) [Vídeo 24] Grafo- é um esquema constituído por pontos (ou vértices) e por segmentos (ou arestas). (8) Exemplo 1(pág.8) Um grafo diz-se conexo se

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Isomorfismo Dois grafos G e G' são isomorfos, ou seja, apresentam as mesmas propriedades estruturais. se eles Definição: Dois grafos G e G' são isomorfos se existe uma função bijetora

Leia mais

GRAFOS Aula 04 Caminhos, Conexidade e Distância Max Pereira

GRAFOS Aula 04 Caminhos, Conexidade e Distância Max Pereira Ciência da Computação GRAFOS Aula 04 Caminhos, Conexidade e Distância Max Pereira Um grafo é dito conexo se for possível visitar qualquer vértice, partindo de um outro qualquer, passando pelas suas arestas.

Leia mais

Introdução à Teoria do Grafos Notas de aula. Socorro Rangel últimas atualizações: (2009), (2012)

Introdução à Teoria do Grafos Notas de aula. Socorro Rangel últimas atualizações: (2009), (2012) Campus de São José do Rio Preto Introdução à Teoria do Grafos Notas de aula Socorro Rangel (socorro@ibilce.unesp.br) últimas atualizações: (2009), (2012) Instituto de Biociências Letras e Ciências Exatas

Leia mais

CONCEITOS BÁSICOS EM GRAFOS

CONCEITOS BÁSICOS EM GRAFOS Um grafo (simples) G é formado por um conjunto de vértices, denotado por V(G), e um conjunto de arestas, denotado por E(G). Cada aresta é um par (não ordenado) de vértices distintos. Se xy é uma aresta,

Leia mais

Definições Básicas para Grafos

Definições Básicas para Grafos Definições Básicas para rafos RAFO Um grafo (V,A) é definido pelo par de conjuntos V e A, onde: V - conjunto não vazio: os vértices ou nodos do grafo; A - conjunto de pares ordenados a=(v,w), v e w V:

Leia mais

apenas os caminhos que passam só por vértices em C, exceto, talvez, o próprio v A Figura 1 a seguir ilustra o significado do conjunto C edovalordist.

apenas os caminhos que passam só por vértices em C, exceto, talvez, o próprio v A Figura 1 a seguir ilustra o significado do conjunto C edovalordist. CAMINHO DE CUSTO MÍNIMO Dados dois pontos A e B, em muitos problemas práticos fazemos 2 perguntas: 1. existe um caminho de A para B? ou 2. se existe mais de um caminho de A para B, qual deles é o mais

Leia mais

Processamento de Imagens usando Grafos (MAC6903)

Processamento de Imagens usando Grafos (MAC6903) Processamento de Imagens usando Grafos (MAC6903) Prof. Dr. Paulo A. V. de Miranda pmiranda@vision.ime.usp.br Instituto de Matemática e Estatística (IME), Universidade de São Paulo (USP) P.A.V. Miranda,

Leia mais

Capítulo 1. Aula Conectividade Caminhos

Capítulo 1. Aula Conectividade Caminhos Capítulo 1 Aula 7 1.1 Conectividade Muitos problemas podem ser modelados com caminhos formados ao percorrer as arestas dos grafos. Por exemplo, o problema de determinar se uma mensagem pode ser enviada

Leia mais

GRAFOS Aula 02 Formalização: definições Max Pereira

GRAFOS Aula 02 Formalização: definições Max Pereira Ciência da Computação GRAFOS Aula 02 : definições Max Pereira Um grafo G é um par ordenado G = (V, E) onde V é um conjunto finito e não vazio de elementos e E é um conjunto de subconjuntos de dois elementos

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilceunespbr, socorro@ibilceunespbr Grafos Hamiltonianos Preparado a partir do texto: Rangel, Socorro

Leia mais

Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 10: Introdução aos Grafos

Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 10: Introdução aos Grafos Estrutura de Dados e Algoritmos e Programação e Computadores II Aula 10: Introdução aos Grafos História O assunto que se constitui no marco inicial da teoria de grafos é na realidade um problema algorítmico.

Leia mais

TGR BCC Representação Computacional de Grafos. Prof. Ricardo José Pfitscher

TGR BCC Representação Computacional de Grafos. Prof. Ricardo José Pfitscher TGR BCC Representação Computacional de Grafos Prof. Ricardo José Pfitscher Cronograma Representação Matriz de djacências Lista de djacências Matriz de Incidências Representação Como podemos representar

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,

Leia mais

Processamento de Imagens usando Grafos (MAC6903)

Processamento de Imagens usando Grafos (MAC6903) Processamento de Imagens usando Grafos (MAC6903) Prof. Dr. Paulo A. V. de Miranda pmiranda@vision.ime.usp.br Instituto de Matemática e Estatística (IME), Universidade de São Paulo (USP) P.A.V. Miranda

Leia mais

Teoria dos Grafos AULA 1

Teoria dos Grafos AULA 1 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br AULA 1 Introdução, Conceitos Iniciais, Isomorfismo Preparado

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Automorfismo Um automorfismo de um grafo G é um isomorfismo de G para si próprio. Os automorfismos de G são as permutações de V(G) que podem ser aplicadas a ambas as linhas e colunas

Leia mais

ESTRUTURAS DISCRETAS (INF 1631) GRAFOS. 1. O que é um grafo? Defina um grafo orientado. Defina um grafo não-orientado.

ESTRUTURAS DISCRETAS (INF 1631) GRAFOS. 1. O que é um grafo? Defina um grafo orientado. Defina um grafo não-orientado. PUC-Rio Departamento de Informática Profs. Marcus Vinicius S. Poggi de Aragão Período: 0. Horário: as-feiras e as-feiras de - horas de maio de 0 ESTRUTURAS DISCRETAS (INF 6) a Lista de Exercícios Procure

Leia mais

Teoria dos Grafos AULA 1

Teoria dos Grafos AULA 1 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br AULA 1 Introdução,

Leia mais

Matemática Aplicada às Ciências Sociais- 11º ano (Versão: para o manual a partir de 2016/17)

Matemática Aplicada às Ciências Sociais- 11º ano (Versão: para o manual a partir de 2016/17) Matemática Aplicada às Ciências Sociais- 11º ano (Versão: para o manual a partir de 2016/17) Professor: Pedro Nóia Livro adotado: Matemática Aplicada às Ciências Sociais- 11º ano Elisabete Longo e Isabel

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Um passeio entre os nós i e j é uma seqüência alternada de nós e arestas que começa no nó i e termina no nó j. G 1 G 2 Um exemplo de passeio entre os nós 1 e 4 do grafo G 1 é (1,(1,3),3,(2,3),2,(1,2),1,(1,4),4).

Leia mais

Teoria dos Grafos. Árvores

Teoria dos Grafos.  Árvores Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Preparado a partir

Leia mais

Grafos IFRN. Prof. Robinson Alves

Grafos IFRN. Prof. Robinson Alves Grafos IFRN Prof. Robinson Alves Problema do Caixeiro Viajante Consiste em determinar o menor caminho, passando por todos os vértices uma única vez e retornando ao vértice de origem Métodos: Tentativa

Leia mais

Prova Didática Grafos: Árvores Geradoras e Caminhos Mínimos, Análise de Complexidade

Prova Didática Grafos: Árvores Geradoras e Caminhos Mínimos, Análise de Complexidade Prova Didática Grafos: Árvores Geradoras e Caminhos Mínimos, Análise de Complexidade Gustavo E.A.P.A. Batista 25 de janeiro de 2005 1 Contextualização 2 Caminhos Mínimos Caminhos Mínimos de uma Origem

Leia mais

UMA PARTIÇÃO DO CONJUNTO DOS GRAFOS CONEXOS DE ORDEM n EM CLASSES DE GRAFOS (a, b)-lineares

UMA PARTIÇÃO DO CONJUNTO DOS GRAFOS CONEXOS DE ORDEM n EM CLASSES DE GRAFOS (a, b)-lineares UMA PARTIÇÃO DO CONJUNTO DOS GRAFOS CONEXOS DE ORDEM n EM CLASSES DE GRAFOS (a, b)-lineares Patricia Erthal de Moraes Colégio Pedro II Campo de São Cristóvão, 77 - São Cristóvão -Rio de Janeiro, CEP: 9-44

Leia mais

Doutorado em Ciência da Computação. Algoritmos e Grafos. Raimundo Macêdo

Doutorado em Ciência da Computação. Algoritmos e Grafos. Raimundo Macêdo Doutorado em Ciência da Computação Algoritmos e Grafos Raimundo Macêdo LaSiD/DCC/UFBA Grau de um Vértice O grau d G (v) do vértice v de G é o número de arestas incidentes a v, cada laço sendo contado duas

Leia mais

Teoria dos Grafos. Árvores Geradoras

Teoria dos Grafos. Árvores Geradoras Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Preparado a partir

Leia mais

Planaridade UFES. Teoria dos Grafos (INF 5037)

Planaridade UFES. Teoria dos Grafos (INF 5037) Planaridade Planaridade Ideia intimamente ligada à noção de mapa, ou seja, uma representação de um conjunto de elementos (usualmente geográficos) dispostos sobre o plano A planaridade é um conceito associado

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Um passeio entre os nós i e j é uma seqüência alternada de nós e arestas que começa no nó i e termina no nó j. G 1 G 2 Um exemplo de passeio entre os nós 1 e 4 do grafo G 1 é (1,(1,3),3,(2,3),2,(1,2),1,(1,4),4).

Leia mais

Definição e Conceitos Básicos

Definição e Conceitos Básicos Definição e Conceitos Básicos Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes fhcnunes@yahoo.com.br 1 Conceitos Básicos Em grafos ocorrem dois tipos de elementos: Vértices ou nós;

Leia mais

Facebook. Um grafo é uma rede. Estrutura de dados fundamental em Informática, tal como listas e árvores.

Facebook. Um grafo é uma rede. Estrutura de dados fundamental em Informática, tal como listas e árvores. Grafos Introdução Grafos Introdução Fernando Lobo Algoritmos e Estrutura de Dados II Estrutura de dados fundamental em Informática, tal como listas e árvores. Há muitos algoritmos interessantes sobre grafos.

Leia mais

15 - Coloração Considere cada um dos grafos abaixo:

15 - Coloração Considere cada um dos grafos abaixo: 15 - Coloração Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual é o número

Leia mais

04 Grafos: caminhos e coloração SCC0503 Algoritmos e Estruturas de Dados II

04 Grafos: caminhos e coloração SCC0503 Algoritmos e Estruturas de Dados II 04 Grafos: caminhos e coloração SCC0503 Algoritmos e Estruturas de Dados II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2011/1 Moacir Ponti Jr.

Leia mais

Grafos IFRN. Prof.Robinson Alves

Grafos IFRN. Prof.Robinson Alves Grafos IFRN Prof.Robinson Alves Caminhos É uma seqüência de arestas onde o vértice final de uma aresta é o vértice inicial da próxima v c c3 c1 c6 c4 {c1,c,c4,c5,c6} {c,c3,c4,c5} {,v,,,v5} {v,,,v5,} c5

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Existem três companhias que devem abastecer com gás, eletricidade e água três prédios diferentes através de tubulações subterrâneas. Estas tubulações podem estar à mesma profundidade? Isto

Leia mais

MÓDULO 3 - PROBLEMAS DE COBERTURAS DE ARCOS E NÓS

MÓDULO 3 - PROBLEMAS DE COBERTURAS DE ARCOS E NÓS MÓULO 3 - PROBLEMAS E COBERTURAS E ARCOS E NÓS 1. CONCEITOS INICIAIS Área contida na Pesquisa Operacional. Pode ser considerada como uma teoria baseada na interligação de pontos e linhas, utilizada principalmente

Leia mais

Parte B Teoria dos Grafos

Parte B Teoria dos Grafos 45 Parte B Teoria dos Grafos B. Grafos e Subgrafos Um grafo G é uma tripla ordenada (V(G), E(G), ), constituindo de um conjunto não vazio V(G) de vértices, um conjunto disjunto E(G) das arestas e uma função

Leia mais

Aula 2 Definições, Conceitos Básicos e Representação Interna de Grafos. Teoria dos Grafos Prof.

Aula 2 Definições, Conceitos Básicos e Representação Interna de Grafos. Teoria dos Grafos Prof. Teoria dos Grafos Aula 2 Definições, Conceitos Básicos e Representação Interna de Grafos Jorge Figueiredo Aula 2-1 Definições Dois tipos de elementos: Vértices ou nós. Arestas. v3 v1 v2 v4 v5 v6 Jorge

Leia mais

Teoria da Computação. Complexidade computacional classes de problemas

Teoria da Computação. Complexidade computacional classes de problemas Teoria da Computação Complexidade computacional classes de problemas 1 Universo de problemas Problemas indecidíveis ou não-computáveis Não admitem algoritmos Problemas intratáveis Não admitem algoritmos

Leia mais

O uso da Teoria dos Grafos no Jogo Icosiano

O uso da Teoria dos Grafos no Jogo Icosiano O uso da Teoria dos Grafos no Jogo Icosiano Leandro Natal Coral 1, Rafael Spilere Marangoni 1, Kristian Madeira 2 1 Acadêmico do curso de Ciência da Computação Unidade Acadêmica de Ciências, Engenharias

Leia mais

MÓDULO 2 - OTIMIZAÇÃO DE REDES

MÓDULO 2 - OTIMIZAÇÃO DE REDES MÓUL - TIMIZÇÃ RS s problemas de otimização de redes podem ocorrer em várias áreas, mas geralmente são encontrados nas áreas de transportes e comunicações. Um problema típico de transporte consiste em

Leia mais

Teoria dos Grafos Caminhos. Profª. Alessandra Martins Coelho

Teoria dos Grafos Caminhos. Profª. Alessandra Martins Coelho Teoria dos Grafos Caminhos Profª. Alessandra Martins Coelho junho/2014 Conexidade Em grande parte de aplicações do modelo em grafos, as relações que envolvem os vértices formam uma estrutura contínua;

Leia mais

Doutorado em Ciência da Computação. Algoritmos e Grafos. Raimundo Macêdo LaSiD/DCC/UFBA

Doutorado em Ciência da Computação. Algoritmos e Grafos. Raimundo Macêdo LaSiD/DCC/UFBA Doutorado em Ciência da Computação Algoritmos e Grafos Raimundo Macêdo LaSiD/DCC/UFBA Grafo Completo Grafo simples cujos vértices são dois a dois adjacentes. Usa-se a notação K n para um grafo completo

Leia mais

OBSTRUÇÕES DE COGRAFOS-(K, L)

OBSTRUÇÕES DE COGRAFOS-(K, L) OBSTRUÇÕES DE COGRAFOS-(K, L) Raquel de Souza Francisco COPPE/Sistemas, Universidade Federal do Rio de Janeiro, RJ, 21945-970, Brasil raquelbr@cos.ufrj.br Sulamita Klein IM e COPPE/Sistemas, Universidade

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Árvores Algoritmo de Kruskal O algoritmo de Kruskal permite determinar a spanning tree de custo mínimo. Este custo corresponde à soma dos pesos (distância, tempo, qualidade,...) associados

Leia mais

Disciplina: Matemática Discreta Agostinho Iaqchan Ryokiti Homa

Disciplina: Matemática Discreta Agostinho Iaqchan Ryokiti Homa Disciplina: Matemática Discreta Agostinho Iaqchan Ryokiti Homa Aula -Grafos Uma figura vale por mil palavras A representação de dados e ou informações utilizando de recursos visuais é, em muitos casos,

Leia mais

Matemática Discreta. Aula 06: Teoria dos Grafos. Tópico 01: Grafos e suas Representações. Observação

Matemática Discreta. Aula 06: Teoria dos Grafos. Tópico 01: Grafos e suas Representações. Observação Aula 06: Teoria dos Grafos Tópico 01: Grafos e suas Representações Nesta aula nós passamos a estudar um outro assunto, mas que também tem muita aplicação na vida prática, a Teoria dos Grafos. Para esta

Leia mais

Introdução à Teoria de Grafos e Topologia em SIG. João Matos Departamento de Engenharia Civil e Arquitectura

Introdução à Teoria de Grafos e Topologia em SIG. João Matos Departamento de Engenharia Civil e Arquitectura Introdução à Teoria de Grafos e Topologia em SIG João Matos Departamento de Engenharia Civil e Arquitectura (Versão.0) Outubro 007 Motivação A teoria de grafos no contexto dos sistemas de informação geográfica

Leia mais

Cap. 2 Conceitos Básicos em Teoria dos Grafos

Cap. 2 Conceitos Básicos em Teoria dos Grafos Teoria dos Grafos e Aplicações 8 Cap. 2 Conceitos Básicos em Teoria dos Grafos 2.1 Grafo É uma noção simples, abstrata e intuitiva, usada para representar a idéia de alguma espécie de relação entre os

Leia mais

BCC204 - Teoria dos Grafos

BCC204 - Teoria dos Grafos BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal

Leia mais

BCC204 - Teoria dos Grafos

BCC204 - Teoria dos Grafos BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal

Leia mais

Pesquisa Operacional II. Professor João Soares de Mello

Pesquisa Operacional II. Professor João Soares de Mello Pesquisa Operacional II Professor João Soares de Mello http://www.uff.br/decisao/notas.htm Ementa Teoria dos grafos (pré-requisitos: PO I, Álgebra Linear) Programação não linear (pré-requisitos: PO I,

Leia mais

Processamento de Imagens usando Grafos (MAC6903)

Processamento de Imagens usando Grafos (MAC6903) Processamento de Imagens usando Grafos (MAC6903) Prof. Dr. Paulo A. V. de Miranda Instituto de Matemática e Estatística (IME), Universidade de São Paulo (USP) pmiranda@vision.ime.usp.br 1 / 20 Uma imagem

Leia mais

Transformações de Visualização 2D: Clipping. Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro

Transformações de Visualização 2D: Clipping. Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro Transformações de Visualização 2D: Clipping Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro 1 Clipping (recorte) Qualquer procedimento que identifica porções de uma figura que estão

Leia mais

PERCURSOS. André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré

PERCURSOS. André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré PERCURSOS André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré Serra 2011 Índice 1...O que é caminho e circuito 1.1...Caminho 1.2...Circuito 1.3...Classificação 2...Caminhos Eulerianos 2.1...Definição

Leia mais

03 Grafos: percurso, ponderação e caminhos SCC0503 Algoritmos e Estruturas de Dados II

03 Grafos: percurso, ponderação e caminhos SCC0503 Algoritmos e Estruturas de Dados II 03 Grafos: percurso, ponderação e caminhos SCC0503 Algoritmos e Estruturas de Dados II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2011/1 Moacir

Leia mais