Capítulo 6. Montar um PC sem entender sobre memórias

Tamanho: px
Começar a partir da página:

Download "Capítulo 6. Montar um PC sem entender sobre memórias"

Transcrição

1 Capítulo 6 Memórias Montar um PC sem entender sobre memórias Acredite, é possível montar um computador sabendo apenas o seguinte a respeito das memórias: Encaixe o módulo de memória no soquete apropriado. Fim. Existem PCs que foram montados por pessoas que sabem apenas isso. Quando o computador apresenta problemas de mau funcionamento, colocam a culpa no... Windows! Memórias são importantes Até um leigo sabe que a memória de um computador é um item importante da sua configuração. Computador com pouca memória é ruim, com muita memória é bom. Tem até aquela piada, meu computador não tem memória, tem uma vaga lembrança.... Brincadeiras à parte, este capítulo apresenta informações valiosas a respeito de memórias, para que você saiba escolher o melhor tipo de memória para o seu computador, e também para conhecer as diversas famílias de memórias existentes. Leitura e escrita Podemos dividir as memórias em duas grandes categorias: ROM e RAM. Em todos os computadores encontramos ambos os tipos. Cada um desses dois tipos é por sua vez, dividido em várias outras categorias. ROM ROM significa read only memory, ou seja, memória para apenas leitura. É um tipo de memória que, em uso normal, aceita apenas operações de leitura, não permitindo a realização de escritas. Outra característica da ROM é que seus dados não são perdidos quando ela é desligada. Ao ligarmos

2 6-2 Como montar, configurar e expandir seu PC novamente, os dados estarão lá, exatamente como foram deixados. Dizemos então que a ROM é uma memória não volátil. Alguns tipos de ROM aceitam operações de escrita, porém isto é feito através de programas apropriados, usando comandos de hardware especiais. Uma típica aplicação da ROM é o armazenamento do BIOS do PC, aquele programa que entra em ação assim que o ligamos. Este programa testa a memória, inicializa o hardware e inicia a carga do sistema operacional. RAM Significa random access memory, ou seja, memória de acesso aleatório. Este nome não dá uma boa idéia da finalidade deste tipo de memória, talvez fosse mais correto chamá-la de RWM (read and write memory, ou memória para leitura e escrita). Entretanto o nome RAM continua sendo utilizado por questão de tradição. Em operação normal, o computador precisa fazer não apenas o acesso a dados e instruções, através de leituras na memória, mas também guardar resultados, através de operações de escrita na memória. Além de permitir leituras e escritas, a RAM tem outra característica típica: trata-se de uma memória volátil, ou seja, seus dados são apagados quando é desligada. Por isso quando desligamos o computador e o ligamos novamente, é preciso carregar o sistema operacional. Resumindo, as principais características da ROM e da RAM são: ROM RAM Significado Read only memory Random access memory Faz leituras SIM SIM Faz escritas NÃO SIM Perde dados ao ser desligada NÃO SIM Em linhas gerais, essas são as características das memórias tipos ROM e RAM. Existem entretanto ROMs que permitem gravações, e RAM que não perdem dados, como veremos adiante. Encapsulamentos de ROMs Quase sempre você irá encontrar ROMs fabricadas com encapsulamento DIP cerâmico ou plástico, como vemos na figura 1.

3 Capítulo 6 - Memórias 6-3 Figura 6.1 ROM com encapsulamento DIP. O encapsulamento DIP (dual in-line package) cerâmico é mais utilizado pelas ROMs do tipo EEPROM. Essas ROMs possuem uma janela de vidro, através da qual os dados podem ser apagados através de raios ultra-violeta. Depois de apagadas, podem ser novamente gravadas. Em uso normal esta janela deve permanecer tampada por uma etiqueta. Portanto nunca retire a etiqueta da ROM, ela pode ser apagada por exposição prolongada à luz natural. Podemos ainda encontrar ROMs com outros encapsulamentos diferentes do DIP. Um encapsulamento relativamente fácil de encontrar é o PLCC (plastic leadless chip carrier). Figura 6.2 ROM com encapsulamento PLCC. Encapsulamento das RAMs Os chips de memória RAM também podem ser encontrados em diversos formatos, sendo que o mais comum é o encapsulamento SOJ (small outline package J-lead), mostrado na figura 3. Você encontrará com freqüência este

4 6-4 Como montar, configurar e expandir seu PC encapsulamento nos chips que formam os módulos de memória e nos que forma a memória de vídeo, encontrados em placas de vídeo. Figura 6.3 Chip de RAM com encapsulamento SOJ. Também é comum encontrar chips de RAM com encapsulamento QFP (quad flatpack). São usados por chips que formam a cache L2 em placas de CPU com cache externa, e nos chips que formam a memória de vídeo. Figura 6.4 Chip de RAM com encapsulamento QFP. Não confunda chip de memória com módulo de memória. Os chips de RAM com encapsulamento SOJ que mostramos na figura 3 são montados em pequenas placas chamadas módulos de memória, que serão apresentados mais adiante. Encapsulamento de módulos de memória Até o início dos anos 90, as memórias dos PCs usavam encapsulamento DIP e eram instaladas, chip por chip. Trabalho fácil para um técnico, mas uma tarefa bastante complexa para um usuário que nunca fez este tipo de trabalho. Os módulos de memória foram criados para facilitar a sua

5 Capítulo 6 - Memórias 6-5 instalação, não por parte do usuário, mas pela indústria eletrônica. É muito mais rápido conectar um módulo de memória que instalar um grande número de chips avulsos. Figura 6.5 Chip de memória com encapsulamento DIP e módulos de memória SIPP e SIMM. Os primeiros módulos de memória eram chamados SIPP (single inline pin package), e foram lançados em meados dos anos 80. Este módulo era uma pequena placa com chips de memória e terminais ( perninhas ) para encaixe no soquete apropriado. O processo de fabricação foi simplificado com a adoção dos módulos SIMM (single inline memory module). Ao invés de utilizar terminais de contato como o SIPP, esses módulos têm um conector na sua borda. O soquete para este tipo de módulo é um pouco mais complicado, porém o processo de fabricação dos módulos tornou-se mais simples, e sua instalação mais rápida. Módulos SIPP caíram em desuso no início dos anos 90, sendo substituídos pelo formato SIMM. Esses módulos forneciam 8 bits simultâneos e precisavam ser usados em grupos para formar o número total de bits exigidos pelo processador. Por exemplo, processadores 386 e 486 utilizam memórias de 32 bits, portanto os módulos SIMM eram usados em grupos de 4. Por exemplo, 4 módulos iguais, com 4 MB cada um, formavam um banco de 16 MB, com 32 bits. Os módulos SIMM usados até então tinham 30 contatos, portanto eram chamados de SIMM/30, ou módulos SIMM de 30 vias. Ainda eram bastante comuns em meados dos anos 90, mas já existiam na época, módulos SIMM de 72 vias (SIMM/72), que forneciam 32 bits simultâneos. Em placas de CPU 486, um único módulo SIMM/72 formava um banco de memória com 32 bits. Esses módulos, apesar de serem mais práticos que os SIMM/30, eram pouco utilizados, até o lançamento do processador Pentium. O Pentium trabalha com memórias de 64 bits, portanto seriam necessários 8 módulos SIMM/30 para formar um banco de memória. Isto tornaria a produção

6 6-6 Como montar, configurar e expandir seu PC complexa, além de ocupar uma grande área na placa de CPU apenas para os módulos de memória. Os fabricantes passaram então a adotar os módulos SIMM/72. Dois desses módulos eram suficientes para formar um banco de 64 bits. Já em 1996 era praticamente impossível encontrar à venda módulos SIMM/30, exceto no mercado de peças usadas. Figura 6.6 Módulos SIMM/30 e SIMM/72. Visando uma integração de componentes ainda maior, foram criados módulos que fornecem 64 bits simultâneos. Esses módulos são chamados DIMM/168 (dual inline memory module), e possuem 168 vias. Um único módulo DIMM/168 forma um banco de memória com 64 bits. É exatamente o número de bits utilizados pelos processadores modernos (Pentium III, Athlon, Duron, Celeron) e os não tão modernos, como K6, K6-2, K6-III, Pentium Pro, Pentium II, Pentium MMX, etc. Figura 6.7 Módulo DIMM/168. Se você precisar dar manutenção em uma placa de CPU Pentium produzida entre 1995 e 1997, tem grandes chances de encontrar um módulo COAST (Cache on a Stick). Este tipo de módulo era usado para formar a memória cache de algumas placas de CPU Pentium, e também de algumas placas de CPU 486 e 586 produzidas naquela época.

7 Capítulo 6 - Memórias 6-7 Figura 6.8 Módulo COAST. A figura 9 mostra os principais módulos de memória descritos aqui. Figura 6.9 Módulos de memória. Dois novos tipos de memória prometem ser comuns nos computadores avançados, a partir de São as memórias RAMBUS (RDRAM) e as memórias DDR SDRAM. Memórias RAMBUS são em geral apresentadas com o encapsulamento RIMM de 184 vias (figura 10). Este tipo de módulo é muito parecido com os demais apresentados até aqui, exceto pelo fato de poder ter uma chapa metálica cobrindo seus chips. Esta chapa atua como um dissipador de calor. Esses módulos têm tamanho similar ao dos módulos DIMM/168, cerca de 13 centímetros. Entretanto não existe risco de conexão em um soquete errado, já que as duas fendas existentes do conector só se ajustam aos soquetes apropriados. Figura 6.10 Módulo RIMM/184.

8 6-8 Como montar, configurar e expandir seu PC Também bastante parecidos são os módulos DIMM/184, utilizado pelas memórias DDR SDRAM. A medida é similar à dos módulos DIMM/168 e RIMM/184, mas esses módulos também possuem um chanfro característico que impede o seu encaixe em um soquete errado. Figura 6.11 Módulo DIMM/184. Módulos DIMM/168, DIMM/184 e RIMM/184 têm larguras semelhantes (13,3 cm), mas diferenças bastante sutis. A forma mais fácil de reconhecer a diferença é através dos chanfros existentes no seu conector. O DIMM/184 é o único que possui um único chanfro, enquanto o DIMM/168 e o RIMM/184 possuem dois chanfros. Os dois chanfros do DIMM/168 dividem os contatos do conector em três grupos, enquanto os dois chanfros do RIMM/184 ficam mais próximos do centro, mas não existem contatos entre os dois chanfros do RIMM/184. Uma outra diferença: os módulos DIMM/168 possuem um chanfro em forma de semi-circunferência em cada lateral. Os módulos DIMM/184 possuem dois chanfros em cada lateral. Memórias RAM Até agora abordamos os encapsulamentos usados pelos módulos de memória. Vamos agora apresentar, do ponto de vista eletrônico, os principais tipos de memória RAM. Não confunda tipo com formato. Memórias com formatos (encapsulamentos) iguais podem ser de tipos eletronicamente diferentes, portanto devemos tomar cuidado para não utilizar memórias inválidas, iludidos por formatos aparentemente corretos. RAMs estáticas e dinâmicas RAMs podem ser divididas em duas grandes categorias: RAMs estáticas (SRAM) e RAMs dinâmicas (DRAM). A DRAM é a memória usada em larga escala nos PCs. Quando dizemos que um PC possui, por exemplo, 128 MB, tratam-se de 128 MB de DRAM. São memórias baratas e compactas, o que é um grande atrativo. Por outro lado, são relativamente lentas, o que é uma grande desvantagem. Por esta razão, os PCs utilizam em conjunto com a DRAM, uma memória especial, mais veloz, chamada cache, que serve para acelerar o desempenho da DRAM. Há poucos anos, a chamada cache L2

9 Capítulo 6 - Memórias 6-9 era formada por chips de SRAM, localizados na placa de CPU. Atualmente a cache L2 faz parte do núcleo dos processadores modernos. A DRAM por sua vez pode ser subdividida em outras categorias, sendo as principais: DRAM FPM DRAM EDO DRAM SDRAM DDR SDRAM RDRAM Em termos cronológicos, a DRAM foi usada do final dos anos 70 até o final dos anos 80. Em meados dos anos 80 surgiu a FPM DRAM, bastante utilizada até meados dos anos 90. Passaram então a ser comuns as memórias EDO DRAM, que por sua vez foram substituídas pela SDRAM a partir de A partir de 2000, a SDRAM começou a dar lugar à DDR SDRAM e à RDRAM. Memórias SRAM existem desde os anos 60, e memórias DRAM desde os anos 70. Ao contrário do que o nome sugere, a DRAM não é caracterizada pela rapidez, e sim pelo baixo custo, aliado à alta capacidade, em comparação com a SRAM. A alta capacidade é devida ao fato das suas células de memória serem mais simples. Com células mais simples, é possível criar chips com maior número de células de memória. Em compensação, o mecanismo de acesso às suas células de memória é mais complicado. Na RAM estática, basta fornecer o endereço e o comando (leitura, por exemplo), e depois de um certo tempo (tempo de acesso), os dados estarão presentes nas suas saídas. Da mesma forma, nas operações de escrita, basta fornecer ao chip o valor a ser armazenado e o endereço onde deve ser feito este armazenamento, acompanhado do comando de gravação. Passado o tempo apropriado (tempo de acesso), os dados estarão gravados.

10 6-10 Como montar, configurar e expandir seu PC Figura 6.12 Diagrama de uma SRAM. Como dissemos, o mecanismo de acesso às células da DRAM é bem mais complexo. Suas células de memória são organizadas em uma matriz, formada por linhas e colunas. Por exemplo, uma DRAM com 1 Mbit é formada por uma matriz quadrada, com 1024 linhas e 1024 colunas. Para acessar uma dessas células de memória, é preciso primeiro fornecer à DRAM o endereço da linha, seguindo de um sinal chamado RAS (Row Address Strobe). Serve para indicar que o endereço da linha está pronto. A seguir deve ser fornecido à memória o endereço da coluna, seguido do sinal CAS (Collumn Address Strobe). Passado mais um pequeno tempo, o dado daquela célula de memória cujos números da linha e coluna foram fornecidos, estará presente e pronto para ser lido pelo processador ou pelo chipset. Figura 6.13 Diagrama de uma DRAM. Note que os processadores não enxergam a memória desta forma, não estão preparados para gerar sinais RAS e CAS, nem para dividir o endereço em linha e coluna. O processador simplesmente indica o endereço de memória que deseja acessar, e a seguir envia um comando de leitura ou

11 Capítulo 6 - Memórias 6-11 escrita. Cabe ao chipset converter os sinais de acesso à memória vindos do processador, em sinais compatíveis para a DRAM. Esta é a função de uma parte do chipset chamada Controlador de DRAM. Figura 6.14 O Chipset é encarregado de controlar o acesso à DRAM. O trabalho completo do chipset (controlador de DRAM) para obter um dado proveniente da DRAM é resumido na seguinte seqüência: 1) Chipset recebe do processador, o endereço da célula a ser acessada 2) Chipset desmembra o endereço em duas partes: linha e coluna 3) Chipset envia à DRAM, o endereço da linha 4) Chipset envia à DRAM o sinal RAS 5) Chipset envia à DRAM o endereço da coluna 6) Chipset envia à DRAM o sinal CAS 7) A DRAM acessa o dado armazenado nesta célula e o entrega ao chipset 8) Chipset obtém o dado e o encaminha para o processador Cada uma dessas micro-etapas leva um pequeno tempo para ser executada. O tempo total necessário para que o processador receba o dado solicitado da memória é igual à soma desses tempos. É preciso que você entenda bem este mecanismo para que possa compreender as memórias mais novas. FPM DRAM Essas memórias foram usadas nos PCs antigos, em praticamente todos os PCs 386, 486 e 586 e nos primeiros PCs Pentium. No passado eram encontradas no encapsulamento DIP, depois foram produzidas em módulos SIPP e SIMM/30. É correto dizer que todos os módulos SIPP e SIMM eram formados por chips de FPM DRAM. Chips de FPM DRAM também foram utilizados em módulos SIMM/72, mas não é correto dizer que todo módulo SIMM/72 é do tipo FPM DRAM. Era comum encontrar módulos SIMM/72 tanto com FPM DRAM como com EDO DRAM.

12 6-12 Como montar, configurar e expandir seu PC Memórias FPM DRAM são capazes de operar no chamado Fast Page Mode. A idéia é muito simples. A maioria dos acessos à memória são feitos em células consecutivas. Considere por exemplo um grupo de 4 acessos às posições consectivas mostradas na figura 15. Figura 6.15 Quatro células de memória consecutivas. Os endereços dessas 4 células consecutivas são: Linha 277, coluna 320 Linha 277, coluna 321 Linha 277, coluna 322 Linha 277, coluna 323 Lembre-se que cada linha é acompanhada de um sinal RAS, e cada coluna é acompanhada de um sinal CAS. Ora, quando tomamos posições consecutivas de memória, as linhas são as mesmas (desde que cada grupo comece em um endereço múltiplo de 4, o que pode ser facilmente arranjado), e o que varia é apenas a coluna. Seria então uma perda de tempo repetir no segundo, terceiro e quarto acessos, o número da linha. Basta indicar o número da coluna. O chamado Fast Page Mode tem como principal característica, o acesso a várias colunas de uma mesma linha, bastando que sejam fornecidos os endereços das colunas, seguidos do sinal CAS, sem a necessidade de repetir o número da linha. O acesso à primeira posição de memória de um grupo é feito pelo mesmo mecanismo já explicado para as DRAMs convencionais:

13 Capítulo 6 - Memórias ) Chipset recebe do processador, o endereço da célula a ser acessada 2) Chipset desmembra o endereço em duas partes: linha e coluna 3) Chipset envia à DRAM, o endereço da linha 4) Chipset envia à DRAM o sinal RAS 5) Chipset envia à DRAM o endereço da coluna 6) Chipset envia à DRAM o sinal CAS 7) A DRAM acessa o dado armazenado nesta célula e o entrega ao chipset 8) Chipset obtém o dado e o encaminha para o processador Os acessos seguintes são mais rápidos porque exigem menos etapas: não é preciso fornecer o sinal RAS nem o endereço da linha: 5) Chipset envia à DRAM o endereço da próxima coluna 6) Chipset envia à DRAM o sinal CAS 7) A DRAM acessa o dado armazenado nesta célula e o entrega ao chipset 8) Chipset obtém o dado e o encaminha para o processador Digamos que o tempo total para realizar as 8 etapas (1 a 8) do acesso à primeira célula seja 100 ns, e que para cada um dos três acessos seguintes, o tempo das etapas (5 a 8) seja de 40 ns. Se a DRAM não fosse do tipo FPM, todos os acessos seriam iguais ao primeiro, e o tempo total seria de , ou seja, 400 ns. Com a FPM DRAM, o tempo total seria , ou seja, 220 ns, bem mais rápido. Poderíamos a princípio pensar que o chipset cronometra 100 ns para o primeiro acesso, e depois 40 ns para cada um dos acessos seguintes. É mais ou menos isso o que ocorre, entretanto o chipset não conta o tempo em ns. Sua base de tempo é o ciclo de clock, a sua menor unidade de tempo. A duração de um ciclo de clock depende do clock utilizado pelo chipset, que em geral é o mesmo clock externo do processador: Clock Período Clock Período 33 MHz 30 ns 95 MHz 10,5 ns 40 MHz 25 ns 100 MHz 10 ns 50 MHz 20 ns 133 MHz 7,5 ns 60 MHz 16,6 ns 166 MHz 6 ns 66 MHz 15 ns 200 MHz 5 ns 75 MHz 13,3 ns 266 MHz 3,75 ns 83 MHz 12 ns 400 MHz 2,5 ns De um modo geral, para obter o valor do período, dado em ns, basta dividir 1000 pelo número de MHz. Considere por exemplo um Pentium-200, operando com clock externo de 66 MHz, ou seja, ciclos de 15 ns. Todas as

14 6-14 Como montar, configurar e expandir seu PC suas operações são feitas em múltiplos de 15 ns, ou seja, 15 ns é a sua unidade básica de tempo. Aquela FPM DRAM que precisa operar com a temporização 100/40/40/40, será controlada pelo chipset com a temporização São 7x15 = 105 ns para o primeiro acesso e 3x15 = 45 ns para cada um dos acessos seguintes. EDO DRAM Bastante comum a partir de 1995, a EDO (Extended Data Out) DRAM é obtida a partir de um melhoramento de engenharia nas memórias FPM DRAM. A idéia é bastante simples. Após completar um ciclo de leitura e fornecer os dados lidos, pode dar início a um novo ciclo de leitura, mas mantendo em suas saídas, os dados da leitura anterior. O resultado é uma economia de tempo, o que equivale a um aumento de velocidade. É suportada por todas as placas de CPU Pentium, a partir das que apresentam o chipset i430fx. As primeiras placas de CPU Pentium II também as suportavam, porém essas memórias caíram em desuso, sendo logo substituídas pela SDRAM tão logo o Pentium II se tornou comum (1998). Módulos de memória EDO DRAM utilizaram muito o encapsulamento SIMM/72 (assim como a FPM DRAM). Também é possível encontrar módulos de memória EDO DRAM usando o encapsulamento DIMM/168, porém são mais raras nesta versão. Memórias EDO DRAM são capazes de realizar seus acessos utilizando ciclos menores (ou seja, mais rápidos) que as memórias FPM DRAM similares. Tomando uma FPM DRAM e uma EDO DRAM, ambas com 60 ns de tempo de acesso, a FPM pode estar operando com a temporização , enquanto a EDO DRAM usa , ou dependendo da memória, até Tomando o clock externo de 66 MHz, ou seja, períodos de 15 ns, a FPM DRAM demoraria um total de 16 ciclos (240 ns) para fazer o que a EDO DRAM precisa de apenas 12 ciclos (180 ns) para fazer. Neste exemplo, a EDO DRAM mostrou ser 33% mais rápida, apesar de ambas usarem o mesmo tempo de acesso. SDRAM Esta é a DRAM síncrona (Synchronous DRAM), muito utilizada nas placas de CPU produzidas entre 1997 e A principal diferença em relação às DRAMs dos tipos EDO e FPM é que seu funcionamento é sincronizado com o do chipset (e normalmente também com o processador), através de um clock. Por exemplo, em um processador com clock externo de 133 MHz, o chipset também opera a 133 MHz, assim como a SDRAM.

15 Capítulo 6 - Memórias 6-15 A SDRAM é mais veloz que a EDO DRAM, é suportada por todas as placas de CPU produzidas a partir de meados de 1997, e seus módulos usam o encapsulamento DIMM/168. Internamente não existe diferença entre as células de memória DRAM comum, da FPM DRAM, da EDO DRAM e da SDRAM. A diferença está na forma como os dados dessas células são acessados. Uma SDRAM realiza suas transferências usando temporizações como x O primeiro acesso é o mais demorado, mas os acessos seguintes ocorrem em apenas um ciclo. Essas memórias usam um velho truque para permitir acessos em um único ciclo. Este truque é utilizado pelas placas de vídeo gráfico, desde os anos 80. Dentro de um chip de memória SDRAM, existem 4 bancos de memória independentes. Quando são acessadas, as células de mesmos endereços em cada um dos 4 bancos internos do chip são acessadas. Terminado o primeiro acesso (digamos que este primeiro acesso demore 5 ciclos, portanto a memória estaria operando com a temporização ), o dado do primeiro banco poderá ser transmitido ao chipset e ao processador, e os três dados dos outros três bancos poderão ser transmitidos imediatamente depois, sem ter que esperar pelo seu tempo de acesso tradicional. A demora está em chegar aos dados desejados. Uma vez acessados, podem ser rapidamente transmitidos. Portanto, 4 circuitos lentos operando em conjunto, apresentam o mesmo resultado de um circuito rápido. Se a idéia parece complicada, façamos uma comparação bem simples. Vá a uma loja de suprimentos de informática e peça um cartucho de tinta preta para a sua impressora. Quando o vendedor trouxer o cartucho, peça um com tinta amarela. Quando trouxer o segundo cartucho, peça um de tinta cyan, por último um de tinta magenta. Digamos que o vendedor tenha demorado 20 segundos para buscar cada cartucho. Como os cartuchos de todas as cores estão todos na mesma prateleira, seria mais rápido pedir os quatro ao mesmo tempo. O vendedor demoraria os mesmos 20 segundos para chegar ao primeiro cartucho, mas imediatamente poderia pegar os outros três (já acessados ), economizando bastante tempo. Como vemos, a SDRAM não é um tipo de memória que usa uma nova tecnologia de fabricação extremamente mais veloz. É apenas uma nova forma de organizar as células de memória fazendo acessos simultâneos, para que a transferência dos dados seja mais rápida. Truques semelhantes são utilizados por memórias mais avançadas, como a DDR SDRAM e a RDRAM, como veremos mais adiante.

16 6-16 Como montar, configurar e expandir seu PC DDR SDRAM Apesar de envolver um grande esforço de engenharia na sua implementação, a idéia da DDR (Double Data Rate) SDRAM é bastante simples. Ao invés de uma única SDRAM, coloque duas iguais, lado a lado. Quando uma for acessada, a outra também será. Cada SDRAM poderá entregar um dado a cada pulso de clock. Como temos duas memórias em paralelo, o conjunto poderá entregar dois dados a cada pulso de clock. O resultado é uma taxa de transferência duas vezes maior. Agora, ao invés de utilizar dois chips SDRAM iguais, lado a lado, constrói-se um único chip com os circuitos equivalentes aos das duas SDRAMs, e adiciona-se a ele, os circuitos necessários para fazer a transmissão dupla a cada pulso de clock. O chip resultante é uma DDR SDRAM. Figura 6.16 Operação da SDRAM e da DDR SDRAM. A figura 16 mostra a diferença, do ponto de vista externo, entre a SDRAM e a DDR SDRAM. Os períodos de clock são representados por T0, T1, T2 e T3. A SDRAM fornece um dado a cada período de clock, e o instante da subida deste clock (transição de 0 para 1 ) indica que o dado está pronto para ser lido. Na DDR SDRAM, utilizando períodos iguais, cada transição de subida ou de descida indica a presença de um dado pronto. Portanto são dois dados a cada clock. As memórias DDR SDRAM recebem nomes de acordo com o clock que trabalham, e também com a taxa de transferência. Por exemplo, uma SDRAM que opera com 100 MHz realiza 200 milhões de transferências por segundo, portanto é chamada de DDR200. Como se tratam de transferências de 64 bits (8 bytes), os 200 milhões de transferências resultam em 1,6 bilhões de bytes por segundo. Aqui comete-se mais uma vez, uma imprecisão típica de fabricantes de memórias e de discos rígidos: confundir bilhão com giga.

17 Capítulo 6 - Memórias 6-17 Como sabemos, 1 giga vale 1024 x 1024 x 1024, ou seja, 1.073, Entretanto, para não criar confusão, consideraremos nesta discussão sobre taxas de transferência de memórias, um mega como sendo igual a um milhão, e 1 giga como sendo 1 bilhão. Portanto diríamos que a taxa de transferência de uma DDR200 é 1,6 GB/s. Devido a esta taxa, essas memórias também são chamadas de PC1600. A tabela que se segue mostra os diversos tipos de DDR, com seus clocks e suas taxas de transferência. Tipo Clock Taxa de transferência DDR200 ou PC MHz 1,6 GB/s DDR266 ou PC MHz 2,1 GB/s DDR300 ou PC MHz 2,4 GB/s DDR333 ou PC MHz 2,7 GB/s DDR400 ou PC MHz 3,2 GB/s DDR800 ou PC MHz 6,4 GB/s OBS: Não confunda os termos PC66, PC100 e PC133, usados pela SDRAM, com os termos PC1600 e superiores, usados pela DDR SDRAM. Na DDR SDRAM, o número representa a taxa de transferência máxima, medida em MB/s, enquanto na SDRAM, o número indica a freqüência de operação. Uma SDRAM PC100, por exemplo, fornece 800 MB/s (já que trabalha com 64 bits = 8 bytes em cada acesso), portanto tem a metade do desempenho de uma DDR SDRAM padrão PC1600. A figura 17 mostra mais uma vez a diferença entre um módulo DIMM/168, usado pelas memórias SDRAM, e um módulo DIMM/184, usado pelas memórias DDR SDRAM.

18 6-18 Como montar, configurar e expandir seu PC Figura 6.17 Módulos DIMM/168 (SDRAM) e DIMM/184 (DDR SDRAM). RDRAM A RDRAM utiliza um processo similar ao da SDRAM para aumentar a taxa de transferência. Como vimos, cada chip SDRAM possui no seu interior, quatro bancos que são acessados simultaneamente, e depois transferidos rapidamente para o chipset e para o processador. Nas memórias RDRAM, é usado um número ainda maior de bancos para obter uma taxa de transferência ainda mais elevada. São 16 ou 32 bancos, dependendo dos chips. As células de memória usadas nesses bancos, assim como ocorre nos demais tipos de DRAM apresentados aqui, não são muito diferentes das células usadas nas DRAMs convencionais, exceto pela sua voltagem e por uma pequena redução no tempo de acesso. Cada uma dessas células são tão lentas quanto as encontradas nas memórias FPM DRAM de 60 ns, por exemplo, usadas em meados dos anos 90. A grande diferença é que essas memórias modernas utilizam muitas células trabalhando em paralelo, visando obter mais bits de uma só vez, e assim transferi-los mais rapidamente para o processador. Um típico chip de memória RDRAM opera com dados de 16 bits. Também são comuns os chips de 18 bits. Os dois bits adicionais são usados como paridade, e servem para implementar mecanismos de detecção e correção de erros, como mostraremos mais adiante neste capítulo. Para simplificar a discussão, consideremos apenas os chips de 16 bits. A maioria das DRAMs atuais operam com 300 ou 400 MHz. Alguns fabricantes oferecem freqüências intermediárias, como 333 ou 350 MHz. Também para simplificar nossa explicação, consideremos os chips de 400 MHz. Assim como a DDR SDRAM, a RDRAM também realiza duas

19 Capítulo 6 - Memórias 6-19 transferências por cada ciclo de clock, portanto tudo se passa como se a operação fosse em 800 MHz. Esses 800 milhões de transferências por segundo, sendo cada uma de 16 bits (2 bytes), resultam na taxa de transferência de 1,6 GB/s aqui estamos fazendo como os fabricantes, considerando por simplicidade, 1 GB como sendo igual a 1 bilhão de bytes. Note que esta taxa é bem maior que a exigida pela maioria dos processadores: Processador bits clock Banda Pentium III MHz 800 MB/s Pentium III B MHz 1,07 GB/s Athlon MHz 1,6 GB/s Athlon MHz 2,13 GB/s Pentium MHz 3,2 GB/s Um único canal de memória RDRAM oferece uma taxa de transferência suficiente para atender à maioria dos processadores, exceto os mais avançados. O Pentium 4, por exemplo, com seu barramento de 400 MHz e 64 bits, exige 3,2 GB/s, o dobro da taxa de transferência da RDRAM. Portanto nas placas de CPU para Pentium 4, são utilizados dois canais de RDRAM com 1,6 GB/s cada um, totalizando os 3,2 GB/s necessários. Um Athlon com barramento externo de 200 MHz poderia ser plenamente atendido por um canal RDRAM de 1,6 GB/s, mas o mesmo não ocorre com as novas versões, que usam o clock externo de 266 MHz. Seriam necessários dois canais de RDRAM, ou então o uso de uma RDRAM mais veloz, ou então utilizar RDRAMs de 532 MHz, ao invés dos modelos de 400 MHz. Na verdade não é o que ocorre. A AMD é uma das responsáveis pelo desenvolvimento da DDR SDRAM, e essas são as memórias usadas nas placas de CPU para os modelos mais avançados do Athlon. Figura 6.18 O Pentium 4 necessita de dois canais de RDRAM. Os processadores modernos operam com 64 bits simultâneos, enquanto a RDRAM fornece apenas 16. Cabe ao chipset, que faz a ligação entre o processador e a memória, obter 4 grupos consecutivos de 16 bits vindos da

20 6-20 Como montar, configurar e expandir seu PC RDRAM, formando os 64 bits exigidos pelo processador. Nas placas de CPU para Pentium 4, são dois canais de 16 bits, ambos a 800 MHz (lembre-se que são na verdade 400 MHz, mas com duas transferências por cada clock). Juntos formam 32 bits por 800 MHz. O chipset faz a composição para 64 bits e 400 MHz, exatamente como exige o Pentium 4. A incrível velocidade de 800 MHz não existe entre as células de memória da RDRAM. Esta velocidade existe apenas nos circuitos de entrada e saída. Para fornecer nas suas saídas, 16 bits a 800 MHz, os circuitos internos da RDRAM buscam 128 bits simultâneos (8 vezes mais), na taxa de 100 MHz (8 vezes mais devagar). Esses 128 bits que chegam aos circuitos de saída a cada 10 ns (100 MHz) são transferidos em grupos de 16, tomando 1.25 ns para cada grupo (800 MHz). Portanto a RDRAM é rápida apenas do ponto de vista externo. Internamente é uma memória mais lenta, de apenas 100 MHz, mas que fornece um número de bits simultâneos muito grande. A própria operação interna em 100 MHz (ciclos de 10 ns) também é uma dificuldade para as células de memória, que necessitam de no mínimo 60 ns para encontrar os dados. Este aumento é por sua vez feito pelo acesso simultâneo a um grande número de bits. Os bancos de células existentes no interior da DRAM operam na verdade com clock de 12,5 MHz (ciclo de 80 ns), mas fornecem 1024 bits (128 bytes) simultâneos. Note que 128 bytes x 12,5 MHz são exatamente 1,6 GB/s. Essas células de memória operam portanto em uma freqüência baixa, mas com um elevado número de bits simultâneos, que uma vez acessados, são transmitidos em altíssima velocidade, em grupos de 16. É muito difícil tecnologicamente, fazer as células de DRAM serem mais rápidas. Veja a evolução nos seus tempos de acesso ao longo das últimas décadas: Ano Tempo de acesso Bits do barramento Processador ns 8 bits 5 MHz ns 16 bits 12 MHz ns 32 bits 25 MHz ns 64 bits 100 MHz ns 64 bits 1000 MHz Neste período de 20 anos, as memórias tornaram-se 5 vezes mais rápidas, enquanto o clock dos processadores aumentou 200 vezes. Para compensar esta desigualdade, os processadores passaram a utilizar barramentos com mais bits. Um barramento de 64 bits com memórias de 50 ns é aproximadamente 40 vezes mais rápido que um barramento de 8 bits e 250

21 Capítulo 6 - Memórias 6-21 ns. Ainda assim este aumento de 40 vezes não aumentou tanto quanto o clock dos processadores. A situação é ainda pior quando consideramos que o aumento do desempenho dos processadores foi muito maior que o simples aumento de clock. Uma forma de solucionar o problema seria aumentar mais ainda a largura dos barramentos, passando a 128 ou 256 bits, mas isto tornaria os projetos de placas extremamente complexo devido ao grande número de trilhas de circuito. A solução mais simples e que foi realmente adotada, foi aumentar o número de bits do barramento interno das memórias. A RDRAM, por exemplo, busca 1024 bits simultâneos. Uma vez acessados, esses bits são transmitidos em alta velocidade, por um barramento externo que continua com 64 bits, porém com clock elevadíssimo. Figura 6.19 Estrutura interna de uma RDRAM. A figura 19 mostra a estrutura interna de um chip de RDRAM. A parte mais importante, e que ocupa a maior parte dos circuitos, são os bancos de DRAM em seu interior. Dependendo do chip, podem ser 16 ou 32 bancos. Esses bancos fazem acessos simultâneos a grupos de 1024 bits a cada período de 80 ns, enviando-os às saídas em grupos de 128 bits a cada 10 ns, que por sua vez são enviados para o barramento externo, em grupos de 16 bits a cada 1,25 ns. Memórias ROM A ROM (Read Only Memory, ou memória de apenas leitura) tem duas características principais. A primeira, trata-se de uma memória não volátil, ou seja, que não perde seus dados quando é desligada. Por isso é a memória

22 6-22 Como montar, configurar e expandir seu PC ideal para armazenar o BIOS, que precisa entrar em execução assim que o computador é ligado. A segunda característica, seu próprio nome já diz. É usada apenas para operações de leitura, não permitindo gravações. A maioria das ROMs utiliza o encapsulamento DIP (Dual In-line Package). O usuário nem mesmo precisa se preocupar com a instalação das ROMs. Já vêm instaladas e prontas para funcionar. As ROMs mais comuns são as que armazenam o BIOS da placa de CPU e o BIOS da placa VGA. Shadow RAM As ROMs são extremamente lentas para os padrões atuais de velocidade das memórias. Enquanto as DRAMs modernas apresentam tempos de acesso inferiores a 15 ns (PC66), as ROMs têm tempos de acesso de 100 ns ou mais. Uma outra limitação dos chips de ROM é que normalmente fornecem apenas 8 bits de cada vez. Os processadores modernos precisam ler 64 bits de cada vez, portanto os dados das ROMs precisam ser agrupados de 8 em 8, até formar 64 bits, para só então serem liberados para o processador. Como resultado do elevado tempo de acesso e dos seus singelos 8 bits, as ROMs usadas nos PCs são cerca de 100 vezes mais lentas que as RAMs. Existem ROMs rápidas, porém são muito caras. Seria também possível agrupar 8 ROMs para formar um grupo de 64 bits, mas esta é também uma solução bastante cara para o problema da sua lentidão. Felizmente existe uma técnica bastante simples e econômica para a solução deste problema, técnica esta utilizada desde o tempo dos PCs 286: a Shadow RAM. A técnica consiste em, logo no início do processo de boot, copiar o conteúdo da ROM (que armazena o BIOS da placa de CPU) para uma área da RAM. Feita esta cópia, a área de RAM que recebeu a cópia dos dados da ROM tem suas operações de escrita desabilitadas. Isto faz com que o comportamento seja similar ao de uma ROM (Read Only). Finalmente, esta área de RAM é mapeada sobre o mesmo endereço antes ocupado pela ROM, ao mesmo tempo em que a ROM é desabilitada. A partir daí passa a vigorar a cópia da ROM, feita sobre a RAM. A técnica da shadow RAM é utilizada para acelerar o BIOS da placa de CPU, o BIOS da placa de vídeo e outros BIOS eventualmente existentes em placas de expansão. A habilitação da shadow RAM é feita através do CMOS Setup. ROM, PROM, EPROM As ROMs são encontradas em diversas modalidades. As principais diferenças dizem respeito a como os dados originais são armazenados. Em

23 Capítulo 6 - Memórias 6-23 uso normal, a ROM aceita apenas operações de leitura, e não de escrita, mas antes disso, é preciso que alguém (normalmente o fabricante) armazene os seus dados. A ROM é o tipo mais simples. Seus dados são gravados durante o processo de fabricação do chip. Um fabricante de placas de CPU, por exemplo, entrega ao fabricante de memórias, o conteúdo a ser gravado nas ROMs. A partir deste conteúdo, o fabricante de memórias produz uma matriz, com a qual serão construídos milhares de chips. Normalmente só vale a pena utilizar ROMs quando se tem certeza de que seus dados não precisarão ser alterados, e também quando são produzidas no mínimo peças iguais. Nessas condições, o custo de fabricação de cada chip é bastante baixo. A PROM (Programable ROM) é um tipo de memória ROM, com uma diferença: pode ser programada em laboratório, através de um gravador especial. Este tipo de gravação é feito através da queima de microscópicos elementos, que são como pequenos fusíveis, feitos de material semicondutor. Uma PROM nova vem em estado virgem, ou seja, com todos os seus fusíveis intactos. O processo de gravação faz a queima seletiva desses fusíveis, a fim de representar os bits desejados. Este processo é irreversível. Uma vez queimada, ou seja, programada, uma PROM não pode mais ser modificada. No passado, as PROMs eram usadas em laboratório, durante o desenvolvimento de produtos que seriam posteriormente produzidos em larga escala, utilizando ROMs. Hoje existem métodos mais eficientes, mas as PROMs ainda são bastante utilizadas quando é necessário criar circuitos de alta velocidade. A EPROM ou UV-EPROM (Eraseable PROM, ou Ultra Violet Eraseable PROM) é uma ROM programável, que pode ser reaproveitada. Seus dados podem ser apagados através de um feixe de luz ultra violeta de alta intensidade. As EPROMs possuem uma janela de vidro, através da qual podem incidir os raios ultra violeta usados no processo de apagamento. Esses raios são obtidos em um aparelho especial chamado apagador de EPROMs, que consiste basicamente em uma caixa plástica com uma lâmpada ultra violeta. Devido ao seu baixo custo em comparação com as PROMs, as EPROMs foram muito utilizadas pela indústria de informática, para gravação de BIOS, geradores de caracteres e outros dados fixos. Um pequeno fabricante que produz apenas algumas centenas de unidades de um produto não tem escala de produção suficiente para utilizar ROMs, que precisam ser produzidas aos

24 6-24 Como montar, configurar e expandir seu PC milhares. Ao invés disso utilizam EPROMs, que mesmo sendo mais caras, podem ser utilizadas em pequenas quantidades. Flash ROM Desde os anos 80 existe no mercado um tipo especial de ROM, que pode ser programada e apagada eletricamente: a EEPROM ou E 2 PROM (Eletrically Eraseable Programable ROM). Essas memórias são antecessoras das atuais Flash ROMs, que têm a mesma característica. São ROMs que podem ser regravadas através da aplicação de voltagens de programação especiais. Em uso normal, esta voltagem de programação não chega ao chip, e seus dados permanecem inalteráveis. Este tipo especial de ROM tem sido utilizado nas placas de CPU a partir de meados dos anos 90 para armazenar o seu BIOS. Pelo fato de serem alteráveis, permitem realizar atualizações do BIOS, através de programas especiais que ativam os seus circuitos de gravação. Este programa é fornecido pelo fabricante da placa de CPU. Figura 6.20 O BIOS da placa de CPU é armazenado em uma Flash ROM. As Flash ROMs também foram muito utilizadas para armazenar o BIOS do modem. Este termo é errado, o correto é dizer o firmware do modem. Trata-de de um software que é executado pelo processador (DSP, ou processador de sinais digitais) existentes no modem. Este software possui, entre outros módulos, os protocolos de comunicação. Logo que surgiram os primeiros modems de 56k bps, dois protocolos de fabricantes diferentes competiam para ser o padrão do mercado: o X2 e o K56Flex. Nenhum fabricante de modem tinha certeza sobre qual o protocolo seria adotado como padrão mundial, por isso passaram a escolher um deles e armazená-lo em uma Flash ROM no modem. Uma vez que fosse adotado o padrão definitivo, o novo protocolo poderia ser gravado nesta Flash ROM. No início de 1998 foi finalmente estabelecido o padrão V.90, e os fabricantes de modems passaram a oferecer através dos seus sites, um programa de atualização para o novo protocolo, a ser gravado na Flash ROM.

25 Capítulo 6 - Memórias 6-25 Figura 6.21 Flash ROM de um modem. SPD Serial Presence Detect Este é um recurso que possibilita ao BIOS identificar corretamente as características dos módulos de memória, e desta forma configurar o chipset para realizar o acesso da forma mais eficiente. Foi introduzido nos módulos de memória SDRAM e mantido nos módulos de DDR SDRAM e RDRAM. É implementado através de um minúsculo chip de memória EEPROM existente nos módulos, onde estão armazenadas todas as suas características. Normalmente este chip tem 8 terminais e fica localizado na parte direita do módulo, como mostra a figura 22. Figura 6.22 O chip SPD de um módulo de SDRAM. Antes de existir o SPD, o BIOS precisava determinar através de contagem, a quantidade de memória instalada. Vários parâmetros relacionados com a temporização de acesso às memórias deviam ser obrigatoriamente programados no BIOS. Como existem módulos com características bem diferentes, os BIOS precisavam utilizar temporizações longas, compatíveis com maior variedade de módulos, e desta forma o desempenho não era otimizado. Com as memórias atuais, suas características são corretamente

26 6-26 Como montar, configurar e expandir seu PC detectadas através do SPD, e o BIOS pode programar o chipset para obter o máximo desempenho possível para as memórias instaladas. A seguir apresentamos alguns dos diversos parâmetros armazenados na EEPROM SPD: Alguns parâmetros armazenados Capacidade do módulo Número de bits Tempo de acesso Tipo da memória: SDRAM, DDR SDRAM, RDRAM Número de bancos Voltagem Detecção e correção de erros na memória Todos os chips de memória estão sujeitos a erros. A probabilidade da ocorrência de erros é muito pequena, mas dependendo da aplicação, o erro pode ser tolerado ou não. Se um computador usado exclusivamente para jogos apresentar um erro por ano, isto não causará problema algum. Se um computador usado no monitoramento de uma planta de energia atômica, a taxa de um erro a cada 10 anos seria catastrófica. Existem mecanismos para detectar erros, e outros que permitem ainda corrigir o erro encontrado. Paridade A paridade é um recurso que serve para aumentar a confiabilidade das memórias DRAM (isto se aplica a qualquer tipo de DRAM: RDRAM, DDR, SDRAM, EDO e FPM). Nos anos 80, as DRAMs eram muito suscetíveis a erros, e a técnica da paridade foi amplamente utilizada com o objetivo de detectar eventuais erros na memória. Com o passar dos anos, as memórias DRAM foram aperfeiçoadas e tornaram-se mais confiáveis, fazendo com que o uso da paridade pudesse ser dispensado, pelo menos nas aplicações menos críticas. Ainda assim, computadores que necessitam de alta confiabilidade continuam utilizando módulos de memória com paridade para aplicar um outro método mais eficiente para correção de erros, conhecido como ECC Error Correction Code. A paridade nos PCs consiste em adicionar a cada grupo de 8 bits, um nono bit, chamado de bit de paridade. Este bit funciona como um dígito verificador, e permite detectar a maior parte dos erros na memória. Módulos SIMM/72 com paridade operam com 36 bits ao invés de 32, e módulos DIMM/168 (SDRAM) e DIMM/184 (DDR) com paridade operam com 72

27 Capítulo 6 - Memórias 6-27 bits ao invés de 64. Módulos RDRAM com paridade utilizam 18 bits, ao invés de 16. A paridade que já foi tão importante há alguns anos atrás, caiu de importância pelo fato das memórias terem se tornado mais confiáveis. Inclusive muitos chipsets para PCs de baixo custo não fazem checagem de paridade, nem usam ECC. Os bits de paridade não são acessíveis ao processador. São usados por dois circuitos existentes no chipset: circuito gerador de paridade e circuito checador de paridade. O circuito gerador de paridade escreve o bit de paridade de cada grupo de 8 bits nas operações de escrita na memória. O circuito testador de paridade verifica a paridade em cada grupo de 8 bits lido da memória. Vejamos como funciona o bit de paridade e como é feita a detecção de erros na memória. Para simplificar a explicação, tomaremos apenas um grupo de 8 bits, mais um bit de paridade. Nas placas de CPU modernas, este mesmo circuito aparece repetido 8 vezes, completando assim 64 bits, ou 72 contando com os bits de paridade. Figura 6.23 Geração do bit de paridade. A figura 23 mostra como se procede uma operação de escrita na memória, com o uso do bit de paridade. O circuito gerador de paridade recebe o valor que o processador coloca na memória e "conta" quantos bits "1" estão sendo escritos. A partir dessa "conta", escreve um bit de paridade de tal forma que, ao considerar o conjunto de 9 bits, o número total de bits "1" será sempre ímpar. Portanto, o circuito gerador de paridade garante que em cada grupo de 9 bits da memória existirá sempre um número ímpar de bits "1".

28 6-28 Como montar, configurar e expandir seu PC Figura 6.24 Checagem da paridade. Vejamos agora como funciona a operação de leitura da memória. Nesse caso, entra em jogo o circuito testador de paridade. Em cada operação de leitura, este circuito recebe os 8 bits que o processador está lendo e mais o bit de paridade, formando um total de 9 bits, e "conta" o número de bits "1" que existem neste conjunto. Se tudo correr bem, deverá existir obrigatoriamente um número ímpar de bits "1". Caso não exista um número ímpar de bits "1", significa que ocorreu um erro na memória. Este circuito gerará o que chamamos de interrupção do processador, que imediatamente suspenderá o processamento e apresentará uma mensagem de erro. Sob o Windows, este será um daqueles erros do tipo tela azul. Será preciso resetar o computador. Desta forma, o erro não será propagado, evitando que sejam causados danos aos dados. Vejamos com detalhe como se procede esta detecção de erro. Suponha que o processador escreve na memória, um byte com valor binário O circuito gerador de paridade, ao encontrar neste valor dois bits "1" gerará um bit de paridade igual a 1. Suponha que depois deste dado estar armazenado na memória, o segundo bit da direita para a esquerda transforma-se em "1", devido a um erro na memória. Ficará então armazenado o valor e o bit de paridade será 1. Quando o processador ler este valor, o circuito testador de paridade encontrará um total de 4 bits "1" no grupo de 9 bits, o que caracteriza um erro na memória. O circuito de paridade não é capaz de detectar um erro em que existem dois bits simultaneamente errados no mesmo grupo de 8 bits. Entretanto, o erro em um único bit é o mais comum. A probabilidade de existirem dois bits errados é milhares de vezes menor que a de existir apenas um errado. A paridade é a técnica mais simples para detectar erros na memória, mas é muito eficaz.

29 Capítulo 6 - Memórias 6-29 Caso seja detectado um erro na memória, o usuário deve providenciar sua manutenção. Será necessário substituir o módulo de memória defeituoso. ECC Uma outra técnica mais eficiente tem sido utilizada para detectar e corrigir erros na memória. Trata-se do ECC, e tem sido utilizada em placas de CPU de alta confiabilidade, como as usadas em servidores. Para cada grupo de 64 bits, 8 bits adicionais são usados para detecção e correção de erros. Por isso, dizemos que os módulos DIMM/168 de 72 bits não são ditos com paridade, e sim, com ECC. Qualquer bit armazenado na memória apresenta uma pequena probabilidade de erro. Dentro de uma célula de memória, a probabilidade de ocorrer erro em apenas um de seus bits é muito maior que a probabilidade de ocorrerem erros simultâneos, ou seja, em dois ou mais bits. Cálculos de probabilidade podem ser feitos para mostrar que, sendo muito pequena a probabilidade de um bit apresentar falha, temos: Tipo de falha Probabilidade Falha em um bit isolado p Falha em 1 bits dentro de um grupo de 8 bits 8p Falha em 2 bits simultâneos em um grupo de 8 bits 28p 2 Falha em 3 bits simultâneos em um grupo de 8 bits 56p 3 Para simplificar os cálculos, suponha um chip de memória de baixíssima confiabilidade, com probabilidade de 1 em 1000 (p=0,001) de falha. As probabilidades de falhas em grupos de 1, 2 e 3 bits seriam: Tipo de falha Probabilidade Falha em um bit isolado 0,001 Falha em 1 bits dentro de um grupo de 8 bits 0,008 Falha em 2 bits simultâneos em um grupo de 8 bits 0, Falha em 3 bits simultâneos em um grupo de 8 bits 0, Comparando esses números, vemos que a probabilidade de dois bits falharem simultaneamente (0,008) é 285 vezes maior que a probabilidade de falharem dois bits simultaneamente. A chance de falharem 3 bits ao mesmo tempo é vezes menor que a de falhar apenas um bit. Na prática esta diferença é ainda maior, portanto todos os mecanismos de detecção e correção de erros são voltados a resolver problemas causados por erros do tipo single bit.

30 6-30 Como montar, configurar e expandir seu PC As falhas nas células de memória são causadas por bombardeamento de partículas alfa e raios cósmicos. Não só as memórias, chips em geral e os seres vivos são continuamente bombardeados por essas radiações, porém em intensidades baixíssimas e inofensivas. Periodicamente ocorrem tempestades eletromagnéticas, que são explosões solares que emitem grande quantidade de partículas alfa. Aparelhos eletrônicos podem ser afetados nessas ocasiões, através de raríssimos mas reais, erros nos bits armazenados nas suas células de memória. No início dos anos 80, as células de DRAM eram muito sensíveis, e podiam apresentar em média, um erro a cada 30 horas. Note que este tempo médio entre falhas (MTBF) é menor, quanto maior é o número de células de memória. Nos PCs atuais, o MTBF de um bit é bem pequeno, mas quando levamos em conta memórias de 256 MB e superiores, comuns em servidores, chegamos a MTBFs que variam entre 1 mês e 1 ano. Portanto é real a probabilidade de ocorrência de um erro em um dos seus bits, em períodos razoavelmente pequenos, principalmente quando levamos em conta que um servidor fica ligado 24 horas por dia. Não quer dizer que é preciso ficar ligado um mês para o erro ocorrer. Em um grupo de 256 MB, o erro pode acontecer depois de um ano, em outro pode ser depois alguns meses ou semanas, em outro pode ocorrer até no primeiro dia de uso. É tudo estatístico, um MTBF de um mês significa que se tomarmos vários computadores e marcarmos o tempo transcorrido até aparecer o primeiro erro, a média será de um mês ou mais. Esses erros não são permanentes, são apenas uma troca de bit (0 se transforma em 1 ou 1 se transforma em 0). Se o bit errado for detectado e corrigido, esta célula de memória continuará funcionando normalmente. Códigos de detecção e correção de erros são bastante utilizados em todos os tipos de armazenamento de dados, como: Memória RAM Disco rígido Disquetes CD-ROM Fitas magnéticas Sempre que as informações são guardadas em discos rígidos, disquetes e outros meios de armazenamento, são adicionados códigos para futura checagem de erros, o que aumenta a sua confiabilidade. Memórias RAM são bastante confiáveis, mas nas aplicações em que é necessária uma

SRAM Static RAM. E/L Escrita Leitura. FPM DRAM Fast Page Mode EDO DRAM Extended Data Output SDRAM Synchronous DDR SDRAM Double Data Rate RDRAM Rambus

SRAM Static RAM. E/L Escrita Leitura. FPM DRAM Fast Page Mode EDO DRAM Extended Data Output SDRAM Synchronous DDR SDRAM Double Data Rate RDRAM Rambus TIPOS DE MEMÓRIA RAM Random Access Memory E/L Escrita Leitura SRAM Static RAM DRAM Dynamic RAM FPM DRAM Fast Page Mode EDO DRAM Extended Data Output SDRAM Synchronous DDR SDRAM Double Data Rate RDRAM Rambus

Leia mais

E.E.E.P. Dr. Solon Tavares Introdução à Informática e Sistemas Operacionais Prof. Henrique Cordeiro. Memória

E.E.E.P. Dr. Solon Tavares Introdução à Informática e Sistemas Operacionais Prof. Henrique Cordeiro. Memória E.E.E.P. Dr. Solon Tavares Introdução à Informática e Sistemas Operacionais Prof. Henrique Cordeiro Memória As memórias são as responsáveis pelo armazenamento das informações no O computador possui basicamente

Leia mais

Laboratório de Hardware

Laboratório de Hardware Laboratório de Hardware Prof. Marcel Santos Silva RAM e ROM CARACTERÍSTICAS MEMÓRIA ROM MEMÓRIA RAM Nomenclatura Read Only Memory Random Access Memory Nome / Significado Memória somente Leitura Memória

Leia mais

Função Principal da Memória

Função Principal da Memória Memórias Slide 2 Função Principal da Memória Armazenar dados. Armazenar os programas para serem executados pelo processador. Slide 3 Memória x Processador x HD Placa Mãe: Controlador de Memória Slide 4

Leia mais

Memória é um dispositivo capaz de armazenar informação. Logo, podemos dividir dos dispositivos que podem armazenar dados em Quatro tipos:

Memória é um dispositivo capaz de armazenar informação. Logo, podemos dividir dos dispositivos que podem armazenar dados em Quatro tipos: Memória Memória é um dispositivo capaz de armazenar informação Logo, podemos dividir dos dispositivos que podem armazenar dados em Quatro tipos: Memória Principal ROM RAM Memória Secundária Disco rígidos,

Leia mais

RAM e ROM. Laboratório de Hardware. Memórias. Memórias. Memórias. Memórias. Memórias. Memória ROM. Memória ROM. Memória ROM. Memória RAM.

RAM e ROM. Laboratório de Hardware. Memórias. Memórias. Memórias. Memórias. Memórias. Memória ROM. Memória ROM. Memória ROM. Memória RAM. RAM e ROM Laboratório de Hardware Prof. Marcel Santos Silva CARACTERÍSTICAS MEMÓRIA ROM MEMÓRIA RAM Nomenclatura Read Only Memory RandomAccess Memory Nome / Significado omente Leitura Memória de acesso

Leia mais

Memórias Row Address Strobe Column Address Strobe

Memórias Row Address Strobe Column Address Strobe um chip de memória é um exército de clones, formado por um brutal número de células idênticas, organizadas na forma de linhas e colunas, de forma similar a uma planilha eletrônica. O chip de memória em

Leia mais

SSC0112 Organização de Computadores Digitais I

SSC0112 Organização de Computadores Digitais I SSC0112 Organização de Computadores Digitais I 23ª Aula Hierarquia de memória Profa. Sarita Mazzini Bruschi sarita@icmc.usp.br 1 Memória Memória Todo componente capaz de armazenar bits de informação Características

Leia mais

Hardware e Manutenção de Micros

Hardware e Manutenção de Micros Hardware e Manutenção de Micros Cooler de CPU Memórias Tipos Tecnologias de construção Características Produzido por Márcio Jusilho Cooler de CPU É um conjunto do dissipação térmica do processador. O cooler

Leia mais

Hardware Básico. Memórias. Professor: Wanderson Dantas

Hardware Básico. Memórias. Professor: Wanderson Dantas Hardware Básico Memórias Professor: Wanderson Dantas As Memórias As Memórias são os componentes onde ficam armazenados os dados e programas em forma de sinais digitais (nível lógico 0 e 1), elas trabalham

Leia mais

Kbyte: Mbyte: Gbytes:

Kbyte: Mbyte: Gbytes: MEMÓRIA PRINCIPAL MEMÓRIA PRINCIPAL O computador possui dispositivos que permitem armazenar dados, instruções e resultados. A esses dispositivos dá-se o nome de memórias, existem dois tipos de memórias:

Leia mais

Memória. Christian César de Azevedo

Memória. Christian César de Azevedo Memória Christian César de Azevedo Memórias do computador Memória 2 Memória ROM Na memória ROM estão escritos três programas: BIOS: responsável por ensinar o processador a manipular os dispositivos básicos

Leia mais

Visão geral do sistema de memória de computadores

Visão geral do sistema de memória de computadores Visão geral do sistema de memória de computadores 1 Capacidade da memória Humana Pesquisas concluem que o armazenamento de informações na memória humana se dá a uma taxa de aproximadamente 2 bits por segundo

Leia mais

Memória. Prof. Alexandre Beletti Cap. 4 Monteiro, Cap. 2 Tanenbaum, Cap. 5 Stallings, Cap. 3 - Weber. Introdução (Weber)

Memória. Prof. Alexandre Beletti Cap. 4 Monteiro, Cap. 2 Tanenbaum, Cap. 5 Stallings, Cap. 3 - Weber. Introdução (Weber) Memória Prof. Alexandre Beletti Cap. 4 Monteiro, Cap. 2 Tanenbaum, Cap. 5 Stallings, Cap. 3 - Weber Introdução (Weber) A memória está divida em palavras Cada palavra é identificada por um endereço O conteúdo

Leia mais

William Stallings Arquitetura e Organização de Computadores 8 a Edição. Capítulo 5 Memória interna

William Stallings Arquitetura e Organização de Computadores 8 a Edição. Capítulo 5 Memória interna William Stallings Arquitetura e Organização de Computadores 8 a Edição Capítulo 5 Memória interna Os textos nestas caixas foram adicionados pelo Prof. Joubert slide 1 Tipos de memória de semicondutor slide

Leia mais

Faculdade de Tecnologia Senac GTI Modulo I Organização de Computadores

Faculdade de Tecnologia Senac GTI Modulo I Organização de Computadores Faculdade de Tecnologia Senac GTI Modulo I Organização de Computadores Alunos Alex Ari Jânio Ramon Victor Professor Elias Ferreira Memória Principal *Também chamadas de memória real, são memórias que o

Leia mais

INFORMÁTICA MEMÓRIAS. Prof. MSc. Glécio Rodrigues de Albuquerque

INFORMÁTICA MEMÓRIAS. Prof. MSc. Glécio Rodrigues de Albuquerque INFORMÁTICA MEMÓRIAS de Albuquerque Ementa Conceitos de Hardware e Software Dispositivos de Entrada e Saída Processadores e Memórias Componentes das janelas Paint e WordPad Arquivos e pastas Teclas de

Leia mais

16ª AULA OBJETIVOS: MEMÓRIAS EVOLUÇÃO FREQÜÊNCIA TECNOLOGIA BARRAMENTO TEMPO/ACESSO ARMAZENAMENTO BANCO DE MEMÓRIA APOSTILA PÁGINA: 176 A 186.

16ª AULA OBJETIVOS: MEMÓRIAS EVOLUÇÃO FREQÜÊNCIA TECNOLOGIA BARRAMENTO TEMPO/ACESSO ARMAZENAMENTO BANCO DE MEMÓRIA APOSTILA PÁGINA: 176 A 186. HARDWARE Montagem e Manutenção de Computadores Instrutor: Luiz Henrique Goulart 16ª AULA OBJETIVOS: MEMÓRIAS EVOLUÇÃO FREQÜÊNCIA TECNOLOGIA BARRAMENTO TEMPO/ACESSO ARMAZENAMENTO BANCO DE MEMÓRIA APOSTILA

Leia mais

Memórias. IFRN -Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte 17/01/2013

Memórias. IFRN -Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte 17/01/2013 Aula 05 Memórias Memórias Em um computador, as memórias desempenham um papel tão importante quanto o da CPU. Uma CPU veloz só terá eficiência se a memória for também veloz e relativamente grande. Assim,

Leia mais

Arquitetura de Computadores

Arquitetura de Computadores Arquitetura de Computadores Aula 03 Prof. Dr. Saulo Amui 1/16 2/16 Memórias Memória A memória é a capacidade de adquirir (aquisição), armazenar (consolidação) e recuperar (evocar) informações disponíveis,

Leia mais

Os computadores necessitam de uma memória principal, cujo papel primordial é armazenar dados e programas que estejam a ser utilizados no momento.

Os computadores necessitam de uma memória principal, cujo papel primordial é armazenar dados e programas que estejam a ser utilizados no momento. Memórias Os computadores necessitam de uma memória principal, cujo papel primordial é armazenar dados e programas que estejam a ser utilizados no momento. O computador, além da memória principal, necessita

Leia mais

Programador/a de Informática

Programador/a de Informática 481040 - Programador/a de Informática UFCD - 0770 Dispositivos e periféricos Sessão 4 SUMÁRIO Memórias Primárias RAM ROM Cache Comunicam diretamente com o processador; Armazenam pequenas quantidades de

Leia mais

Organização e Arquitetura de Computadores I

Organização e Arquitetura de Computadores I Organização e Arquitetura de Computadores I Memória Interna Slide 1 Memória Em informática, memória são todos os dispositivos que permitem a um computador guardar dados, temporariamente ou permanentemente.

Leia mais

HARDWARE COMPONENTES BÁSICOS E FUNCIONAMENTO. Wagner de Oliveira

HARDWARE COMPONENTES BÁSICOS E FUNCIONAMENTO. Wagner de Oliveira HARDWARE COMPONENTES BÁSICOS E FUNCIONAMENTO Wagner de Oliveira SUMÁRIO Hardware Definição de Computador Computador Digital Componentes Básicos CPU Processador Memória Barramento Unidades de Entrada e

Leia mais

Sistema de Memórias COMPUTADOR CONTROLE ENTRADA VIA DE DADOS SAÍDA PROCESSADOR MEMÓRIA S E TO R R EC RE CEI TA S T EM S E TO R C A RNE S

Sistema de Memórias COMPUTADOR CONTROLE ENTRADA VIA DE DADOS SAÍDA PROCESSADOR MEMÓRIA S E TO R R EC RE CEI TA S T EM S E TO R C A RNE S Sistema de Memórias COMPUTADOR S E TO R R EC EIT AS 0 16 32 RE CEI TA S 4 8 12 20 24 28 36 40 44 CONTROLE S E TO R T EM PER OS VIA DE DADOS ENTRADA 0 48 52 64 68 80 84 1 56 72 88 2 3 60 76 92 4 S E TO

Leia mais

Microprocessadores II - ELE 1084

Microprocessadores II - ELE 1084 Microprocessadores II - ELE 1084 Faça um esboço dos bancos de memória de um computador hipotético com 32 bits de dados e 24 bits de endereços, com um total de 8 MB de memória RAM de 8 bits ( 8 CI s com

Leia mais

Microprocessadores II - ELE 1084

Microprocessadores II - ELE 1084 Microprocessadores II - ELE 1084 Faça um esboço dos bancos de memória de um computador hipotético com 32 bits de dados e 24 bits de endereços, com um total de 8 MB de memória RAM de 8 bits ( 8 CI s com

Leia mais

ORGANIZAÇÃO DE COMPUTADORES

ORGANIZAÇÃO DE COMPUTADORES Organização de Computadores ORGANIZAÇÃO DE COMPUTADORES Curso: Tecnologia em Gestão da Tecnologia da Informação Ano: 2011 Definição São dispositivos que permitem armazenamento de dados, seja temporários

Leia mais

DIFERENÇA DE VELOCIDADE entre UCP e MP

DIFERENÇA DE VELOCIDADE entre UCP e MP MEMÓRIA CACHE 1 2 DIFERENÇA DE VELOCIDADE entre UCP e MP A MP (mais lenta) transfere bits para UCP (mais rápida) em uma velocidade inferior a que a mesma pode suportar. Isto acarreta a necessidade de se

Leia mais

Circuitos Lógicos Aula 26

Circuitos Lógicos Aula 26 Circuitos Lógicos Aula 26 Aula passada Mais adição Circuito com maior largura Subtração Mais ULA Aula de hoje Memória Funcionamento e arquitetura ROM, RAM e variações Processador Intel Memória Memória:

Leia mais

MEMÓRIA. Prof. Elton Profa. Joice

MEMÓRIA. Prof. Elton Profa. Joice MEMÓRIA Prof. Elton Profa. Joice Mémória A memória contém tanto as variáveis (dados) como as instruções (programas) utilizadas para o acesso rápido dos dados, que são armazenados em um circuito integrado.

Leia mais

Arquitetura de Computadores. Aula 8 Memória Principal

Arquitetura de Computadores. Aula 8 Memória Principal Arquitetura de Computadores Aula 8 Memória Principal Prof. Dr. Eng. Fred Sauer http://www.fredsauer.com.br fsauer@gmail.com 1 Memória RAM 2 MEMÓRIA PRINCIPAL - MP 3 MEMÓRIA PRINCIPAL (RAM) S U M Á R I

Leia mais

Aula 03. Componentes Básicos de um Computador, Dispositivos de Entrada e Saída, Dispositivos de Armazenamento de Dados, Periféricos.

Aula 03. Componentes Básicos de um Computador, Dispositivos de Entrada e Saída, Dispositivos de Armazenamento de Dados, Periféricos. Aula 03 Componentes Básicos de um Computador, Dispositivos de Entrada e Saída, Dispositivos de Armazenamento de Dados, Periféricos. Máquina de Von Neuman Memória Entrada Unidade Central de Processamento

Leia mais

Universidade de São Paulo

Universidade de São Paulo Universidade de São Paulo Organização de Computadores Dr. Jorge Luiz e Silva Cap 2 Memória Secundária Memória Principal Memória Secundária - Armazenam informações que precisam ser transferidas para a Memória

Leia mais

Memórias RAM e ROM. Adriano J. Holanda 9/5/2017. [Introdução à Organização de Computadores]

Memórias RAM e ROM. Adriano J. Holanda 9/5/2017. [Introdução à Organização de Computadores] Memórias RAM e ROM [Introdução à Organização de Computadores] Adriano J Holanda 9/5/2017 Memória de acesso aleatório RAM Random Access Memory Armazenamento temporário de programas em execução e dados;

Leia mais

MEMÓRIAS EM UM SISTEMA COMPUTACIONAL

MEMÓRIAS EM UM SISTEMA COMPUTACIONAL MEMÓRIAS EM UM SISTEMA COMPUTACIONAL 1 MEMÓRIA CACHE 2 3 DIFERENÇA DE VELOCIDADE entre UCP e MP A MP (mais lenta) transfere bits para UCP (mais rápida) em uma velocidade inferior a que a mesma pode suportar.

Leia mais

Memórias. Alberto Felipe Friderichs Barros

Memórias. Alberto Felipe Friderichs Barros Memórias Alberto Felipe Friderichs Barros Memória Todo computador é dotado de uma quantidade de memória, que pode variar de máquina para máquina, a qual se constitui de um conjunto de circuitos capazes

Leia mais

Capítulo 9 M E M Ó R I A

Capítulo 9 M E M Ó R I A Capítulo 9 M E M Ó R I A ROM Read Only Memory (Memória Apenas de Leitura) É uma memória que não permite a alteração ou remoção dos dados nela gravados, os quais são impressos em uma única ocasião. Um DVD

Leia mais

Prof. Benito Piropo Da-Rin. Arquitetura, Organização e Hardware de Computadores - Prof. B. Piropo

Prof. Benito Piropo Da-Rin. Arquitetura, Organização e Hardware de Computadores - Prof. B. Piropo Prof. Benito Piropo Da-Rin Usadas predominantemente na MP devido às suas características: Permitem acesso apenas através do endereço. Ocupam pouco espaço. Grande quantidade de bits podem ser armazenados

Leia mais

Introdução à Informática

Introdução à Informática Introdução à Informática Curso Técnico em Informática SUMÁRIO MEMÓRIAS... 3 MEÓRIA PERMANENTE (ROM)... 3 BIOS... 3 POST... 3 SETUP... 3 ATUALIZAÇÃO DA FASHROM... 4 MEMÓRIA VOLÁTIL (RAM)... 4 SRAM... 5

Leia mais

MICROPROCESSADORES TIPOS DE MEMÓRIAS

MICROPROCESSADORES TIPOS DE MEMÓRIAS MICROPROCESSADORES TIPOS DE MEMÓRIAS Roteiro ROTEIRO Introdução; Tipos; RAM s; ROM s; Barramentos; Modo de Escrita; Modo de Leitura; INTRODUÇÃO Por que existem diversos tipos diferentes de memória? TIPOS

Leia mais

FUNDAMENTOS DE ARQUITETURAS DE COMPUTADORES MEMÓRIA PRINCIPAL CAPÍTULO 4. Cristina Boeres

FUNDAMENTOS DE ARQUITETURAS DE COMPUTADORES MEMÓRIA PRINCIPAL CAPÍTULO 4. Cristina Boeres FUNDAMENTOS DE ARQUITETURAS DE COMPUTADORES MEMÓRIA PRINCIPAL CAPÍTULO 4 Cristina Boeres Memória! É um dos componentes de um sistema de computação! Sua função é armazenar informações que são ou serão manipuladas

Leia mais

Técnico de Eletrónica, Automação e Computadores. Sistemas Digitais. Módulo 5 Memórias

Técnico de Eletrónica, Automação e Computadores. Sistemas Digitais. Módulo 5 Memórias Curso: Disciplina: Técnico de Eletrónica, Automação e Computadores Sistemas Digitais Ano/ Turma: 2ºA Módulo 5 Memórias 1. Principais tipos de memória e identificação das suas células básicas constituintes.

Leia mais

O Interior do Micro. Observe os computadores: Fonte:

O Interior do Micro. Observe os computadores: Fonte: O Interior do Micro Observe os computadores: Fonte: http://www.laercio.com.br 1 Interior do Micro O Interior do PC Componentes 1 2 3 4 - Placa mãe - Placa de vídeo - Processador Memória 5 Disco Rígido

Leia mais

Embora seja brutalmente mais rápida que o HD e outros periféricos, a memória RAM continua sendo muito mais lenta que o processador.

Embora seja brutalmente mais rápida que o HD e outros periféricos, a memória RAM continua sendo muito mais lenta que o processador. Memória RAM Embora seja brutalmente mais rápida que o HD e outros periféricos, a memória RAM continua sendo muito mais lenta que o processador. O uso de caches diminui a perda de desempenho, reduzindo

Leia mais

Memória. Arquitetura de Computadores I. DCC-IM/UFRJ Prof. Gabriel P. Silva

Memória. Arquitetura de Computadores I. DCC-IM/UFRJ Prof. Gabriel P. Silva Memória Arquitetura de Computadores I DCC-IM/UFRJ Prof. Gabriel P. Silva Representação das Informações A abreviação utilizada para o byte é o B maiúsculo e para o bit é o b minúsculo. Abaixo estão os multiplicadores

Leia mais

SUBSISTEMA DE MEMÓRIA FELIPE G. TORRES

SUBSISTEMA DE MEMÓRIA FELIPE G. TORRES Tecnologia da informação e comunicação SUBSISTEMA DE MEMÓRIA FELIPE G. TORRES MEMÓRIA INTERNA OU PRINCIPAL Nos primeiros computadores, a forma mais comum de armazenamento de acesso aleatório para a memória

Leia mais

DEFINIÇÃO É TODO AQUELE DISPOSITIVO CAPAZ DE ARMAZENAR INFORMAÇÃO. A

DEFINIÇÃO É TODO AQUELE DISPOSITIVO CAPAZ DE ARMAZENAR INFORMAÇÃO. A U E S C Memória DEFINIÇÃO É TODO AQUELE DISPOSITIVO CAPAZ DE ARMAZENAR INFORMAÇÃO. A Hierarquia de Memória Em um Sistema de computação existem vários tipos de memória que interligam-se de forma bem estrutura

Leia mais

ELETRÔNICA DIGITAL II

ELETRÔNICA DIGITAL II ELETRÔNICA DIGITAL II Parte 7 Armazenamento e Memória Digital Professor Dr. Michael Klug 1 Definição Dispositivo capaz de armazenar informação Capacitor (transistor+capacitor), flip-flop, registradores

Leia mais

Hardware. Componentes Básicos e Funcionamento

Hardware. Componentes Básicos e Funcionamento 1 Hardware 2 2 Componentes Básicos e Funcionamento 1 Hardware 3 Conjunto de dispositivos elétricos/eletrônicos que englobam a CPU, a memória e os dispositivos de entrada/saída de um sistema de computador

Leia mais

Adriano J. Holanda FAFRAM. 4 e 11 de maio de 2012

Adriano J. Holanda FAFRAM. 4 e 11 de maio de 2012 Memória Adriano J. Holanda FAFRAM 4 e 11 de maio de 2012 Trilha Introdução Hierarquia da memória Memórias RAM Memória ROM Introdução Arquitetura de Von Neumann Memória Aritmética Controle E/S Unidade central

Leia mais

Técnicas de Manutenção de Computadores

Técnicas de Manutenção de Computadores Técnicas de Manutenção de Computadores Professor: Luiz Claudio Ferreira de Souza Memória Ram RAM é a sigla para Random Access Memory (memória de acesso aleatório). Este tipo de memória permite tanto a

Leia mais

Memória. Na Memória ROM da PL de CPU são gravados três programas, que são escritos pela AMI, AWARD ou PHOENIX. 50% dos micros utilizam a AMI

Memória. Na Memória ROM da PL de CPU são gravados três programas, que são escritos pela AMI, AWARD ou PHOENIX. 50% dos micros utilizam a AMI Memória É um conjunto de Circuitos Eletrônicos, onde o Computador utilizar para armazenar ou ler informações já gravadas. (Operação de Leitura e Escrita). No PC encontramos dos Tipos de Memória que São:

Leia mais

COMPUTADOR. Adão de Melo Neto

COMPUTADOR. Adão de Melo Neto COMPUTADOR Adão de Melo Neto 1 COMPUTADOR COMPUTADOR Barramento de Endereços: Determina qual a posição de memória que irá ser lida ou escrita (unidirecional). Barramento de Endereços: Transporta o dados

Leia mais

Conector ATX principal

Conector ATX principal Placa Mãe Também denominada mainboard ou motherboard, é uma placa de circuito impresso eletrônico. É considerado o elemento mais importante de um computador, pois tem como função permitir que o processador

Leia mais

Arquitetura de Computadores Memória Principal

Arquitetura de Computadores Memória Principal Arquitetura de Computadores Memória Principal Memória Principal A Memória Principal é a memória que, na sua concepção original, guardaria tanto os programas em execução quanto os dados utilizados por estes

Leia mais

Organização Básica de Computadores

Organização Básica de Computadores EEPROM (ou E2PROM) - Electrically Programmable Read Only Memory Erasable Memória apenas de leitura, programável e eletronicamente alterável. Também chamada EAROM (Electrically Alterable ROM). EPROM apagável

Leia mais

Curso Técnico de Nível Médio

Curso Técnico de Nível Médio Curso Técnico de Nível Médio Disciplina: Informática Básica 2. Hardware: Componentes Básicos e Funcionamento Prof. Ronaldo Componentes de um Sistema de Computador HARDWARE: unidade

Leia mais

Arquitetura de Computadores. Memórias

Arquitetura de Computadores. Memórias Arquitetura de Computadores Memórias Relembrando Arquitetura de Von Neuman Memória Acesso por palavra Programas são armazenados aqui Controlador de memoria Dispositivos de entrada Dispositivos de saída

Leia mais

INFORMÁTICA BÁSICA HARDWARE: COMPONENTES BÁSICOS E FUNCIONAMENTO.

INFORMÁTICA BÁSICA HARDWARE: COMPONENTES BÁSICOS E FUNCIONAMENTO. INFORMÁTICA BÁSICA HARDWARE: COMPONENTES BÁSICOS E FUNCIONAMENTO isabeladamke@hotmail.com Componentes de um Sistema de Computador HARDWARE: unidade responsável pelo processamento dos dados, ou seja, o

Leia mais

Sequência 17 Organização e Hierarquia de Memória

Sequência 17 Organização e Hierarquia de Memória Arquitetura de Computadores Os cincos componentes clássicos do computador Sequência 17 Organização e Hierarquia de Memória Seq.17 Memórias - conceitos 1 Seq.17 Memórias - conceitos 2 Memória A memória

Leia mais

Capítulo. Placas de CPU. ATX domina o mercado

Capítulo. Placas de CPU. ATX domina o mercado Capítulo 3 Placas de CPU ATX domina o mercado As placas de CPU modernas utilizam o padrão ATX. Modelos mais antigos utilizam o padrão AT (ou Baby AT). Existem ainda muitos modelos que usam o chamado Micro

Leia mais

Arquitetura e Funcionamento do Computador

Arquitetura e Funcionamento do Computador Arquitetura e Funcionamento do Computador Memória É todo componente capaz de ARMAZENAR informações. Memórias Digitais Memórias: são componentes responsáveis por armazenar dados e programas (instruções)

Leia mais

Memória [11] Manutenção de. Prof.: Ari Oliveira

Memória [11] Manutenção de. Prof.: Ari Oliveira Manutenção de Prof.: Ari Oliveira Conheça o seu PC: Memória RAM Disponível em: http://olhardigital.uol.com.br/video/conheca-o-seu-pc-memoria-ram/28771 Fonte: http://olhardigital.uol.com.br/video/conheca-o-seu-pc-memoria-ram/28771

Leia mais

HARDWARE. Givanaldo Rocha

HARDWARE. Givanaldo Rocha HARDWARE Givanaldo Rocha givanaldo.rocha@ifrn.edu.br http://docente.ifrn.edu.br/givanaldorocha Componentes Básicos e Funcionamento Hardware Conjunto de dispositivos elétricos/eletrônicos que englobam a

Leia mais

Conceitos sobre Computadores

Conceitos sobre Computadores Conceitos sobre Computadores Prof. UNESP - São José do Rio Preto Linguagem Computacional Neste tópico veremos: Os Componentes físicos dos computadores O hardware: principais partes dos computadores atuais.

Leia mais

Conceitos e Gerenciamento de Memória

Conceitos e Gerenciamento de Memória Conceitos e Gerenciamento de Memória Introdução Num sistema computacional, temos diferentes tipos de memórias, para diferentes finalidades, que se interligam de forma estruturada e que formam o subsistema

Leia mais

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES MEMÓRIA E BARRAMENTOS DE SISTEMA. Prof. Dr. Daniel Caetano

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES MEMÓRIA E BARRAMENTOS DE SISTEMA. Prof. Dr. Daniel Caetano ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES MEMÓRIA E BARRAMENTOS DE SISTEMA Prof. Dr. Daniel Caetano 202 - Objetivos Compreender o que é a memória e sua hierarquia Compreender os diferentes tipos de memória

Leia mais

for Information Interchange. 6 Memória:

for Information Interchange. 6 Memória: 6 Memória: 6.1 Representação de Memória: Toda a informação com a qual um sistema computacional trabalha está, em algum nível, armazenada em um sistema de memória, guardando os dados em caráter temporário

Leia mais

Memória Interna. Prof. Leonardo Barreto Campos 1

Memória Interna. Prof. Leonardo Barreto Campos 1 Memória Interna Prof. Leonardo Barreto Campos 1 Sumário Introdução; Sistema de Memória de Computadores; Hierarquia de Memória; Memória Principal de Semicondutores; Memória Cache; Organizações das Memórias

Leia mais

Memórias. Prof. André Luiz

Memórias. Prof. André Luiz Memórias Prof. André Luiz Memória - Conceito Memória é a capacidade de adquirir (aquisição), armazenar (consolidação) e recuperar informações. Nos sistemas de processamento de dados podemos simplesmente

Leia mais

SSC512 Elementos de Lógica Digital. Memórias. GE4 Bio

SSC512 Elementos de Lógica Digital. Memórias. GE4 Bio Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação Elementos de Memórias GE4 Bio GE4Bio Grupo de Estudos em Sinais Biológicos Prof.Dr. Danilo

Leia mais

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES MEMÓRIA E BARRAMENTOS DE SISTEMA. Prof. Dr. Daniel Caetano

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES MEMÓRIA E BARRAMENTOS DE SISTEMA. Prof. Dr. Daniel Caetano ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES MEMÓRIA E BARRAMENTOS DE SISTEMA Prof. Dr. Daniel Caetano 2-2 Visão Geral 2 3 4 5 5 5 O que é a Memória Hierarquia de Memória Tipos de Memória Acesso à Memória

Leia mais

Universidade Federal do ABC

Universidade Federal do ABC Universidade Federal do ABC Eletrônica Digital Aula 13: Dispositivos de Memória TOCCI, Sistemas Digitais, Sec. 12.1 12.9 http://sites.google.com/site/eletdigi/ Dispositivos de Memória Memórias conhecidas

Leia mais

PLACA MÃE COMPONENTES BÁSICOS BIOS

PLACA MÃE COMPONENTES BÁSICOS BIOS PLACA MÃE COMPONENTES BÁSICOS BIOS COMPONENTES BÁSICOS BARRAMENTO FREQÜÊNCIA GERADOR DE CLOCK MEMÓRIA ROM FIRMWARE BIOS POST SETUP CMOS RTC BATERIA CHIPSET MEMÓRIA SL SLOTS DE EXPANSÃO CACHE SOQUETES PARA

Leia mais

ARQUITETURA DE COMPUTADORES

ARQUITETURA DE COMPUTADORES ARQUITETURA DE COMPUTADORES Aula 05: Memória Principal MEMÓRIA PRINCIPAL Elementos de uma memória principal (célula, bloco, tamanho total); Cálculo dos elementos de memória (tamanho dos barramentos de

Leia mais

COMPUTADOR. Adão de Melo Neto

COMPUTADOR. Adão de Melo Neto COMPUTADOR Adão de Melo Neto 1 PROGRAMA É um conjunto de instruções LINGUAGEM BINÁRIA INTRODUÇÃO Os caracteres inteligíveis não são A, B, +, 0, etc., mas apenas zero(0) e um (1). É uma linguagem de comunicação

Leia mais

http://www.ic.uff.br/~debora/fac! 1 Capítulo 4 Livro do Mário Monteiro Introdução Hierarquia de memória Memória Principal Organização Operações de leitura e escrita Capacidade 2 Componente de um sistema

Leia mais

ORGANIZAÇÃO DE COMPUTADORES CAPÍTULO4: MEMÓRIAPRINCIPAL

ORGANIZAÇÃO DE COMPUTADORES CAPÍTULO4: MEMÓRIAPRINCIPAL ORGANIZAÇÃO DE COMPUTADORES CAPÍTULO4: MEMÓRIAPRINCIPAL MEMÓRIA Componente de um sistema de computação cuja função é armazenar informações que são manipuladas pelo sistema para que possam ser recuperadas

Leia mais

Conceitos sobre Computadores

Conceitos sobre Computadores Conceitos sobre Computadores Prof. Adriano Mauro Cansian Prof. Leandro Alves Neves UNESP - São José do Rio Preto Linguagem Computacional Neste tópico veremos: Os Componentes físicos dos computadores O

Leia mais

Entender a diferença de velocidade UCP/MP e o conceito de localidade.

Entender a diferença de velocidade UCP/MP e o conceito de localidade. 1 2 O objetivo é detalhar os conceitos e técnicas que norteiam a fabricação e o uso de memórias cache. Entender a diferença de velocidade UCP/MP. Entender o conceito de localidade. 3 Entender a diferença

Leia mais

FACULDADE PITÁGORAS PRONATEC

FACULDADE PITÁGORAS PRONATEC FACULDADE PITÁGORAS PRONATEC DISCIPLINA: ARQUITETURA DE COMPUTADORES Prof. Ms. Carlos José Giudice dos Santos carlos@oficinadapesquisa.com.br www.oficinadapesquisa.com.br Objetivos Ao final desta apostila,

Leia mais

Eletrônica Digital. Memórias Semicondutoras PROF. EDUARDO G. BERTOGNA UTFPR / DAELN

Eletrônica Digital. Memórias Semicondutoras PROF. EDUARDO G. BERTOGNA UTFPR / DAELN Eletrônica Digital Memórias Semicondutoras PROF. EDUARDO G. BERTOGNA UTFPR / DAELN Memórias Semicondutoras Os circuitos de memória estão presentes em sistemas computacionais como element de armazenamento

Leia mais

Componentes de Hardware. Alberto Felipe FriderichsBarros

Componentes de Hardware. Alberto Felipe FriderichsBarros Componentes de Hardware Alberto Felipe FriderichsBarros Configuração A configuração de um computador é, nada mais, que a receita do computador, ou seja, a listagem dos equipamentos que o formam. Qual das

Leia mais

Aula 06 SISTEMAS DE MEMÓRIAS

Aula 06 SISTEMAS DE MEMÓRIAS Aula 06 SISTEMAS DE MEMÓRIAS Sistemas de memórias Uma memória é um dispositivo que permite um computador armazenar dados temporariamente ou permanentemente. Sabemos que todos os computadores possuem memória.

Leia mais

MEMÓRIAS PAPEL FOTOGRAFIA FITA PERFURADA DISPOSITIVOS MAGNÉTICOS DISPOSITIVOS ÓPTICOS DISPOSTIVOS DE ESTADO SÓLIDO

MEMÓRIAS PAPEL FOTOGRAFIA FITA PERFURADA DISPOSITIVOS MAGNÉTICOS DISPOSITIVOS ÓPTICOS DISPOSTIVOS DE ESTADO SÓLIDO MEMÓRIAS MEIOS: PAPEL FOTOGRAFIA FITA PERFURADA DISPOSITIVOS MAGNÉTICOS DISPOSITIVOS ÓPTICOS DISPOSTIVOS DE ESTADO SÓLIDO TÉCNICAS: IMPRESSÃO CARGAS ELÉTRICAS MODIFICAÇÃO DE ÍNDICES ÓPTICOS DE SUPERFÍCIES

Leia mais

MEMÓRIA INTRODUÇÃO A INFORMÁTICA VINÍCIUS PÁDUA

MEMÓRIA INTRODUÇÃO A INFORMÁTICA VINÍCIUS PÁDUA MEMÓRIA INTRODUÇÃO A INFORMÁTICA VINÍCIUS PÁDUA MEMÓRIA O que são as memórias? Armazenamento Instruções de um programa em execução Dados iniciais dos programas Resultados finais a serem transmitidos a

Leia mais

Arquitetura de Computadores

Arquitetura de Computadores Arquitetura de Computadores AULA 4 Organização de Sistemas de Computadores s Bits Sumário de Ordem de Bytes Conceitos Básicos Secundária Códigos de Correção de Erros Prof. Edilberto M. Silva Edilberto

Leia mais

Manutenção de Microcomputadores I

Manutenção de Microcomputadores I Manutenção de Microcomputadores I Aula03 Memórias Introdução Hardware que auxilia no processamento dos dadospelaucp. Hierarquia dos diferentes tipos de Memórias Tipos Registradores: pequenos dispositivos

Leia mais

Na segunda aula vamos falar sobre o Processador, funcionamento e seus tipos.

Na segunda aula vamos falar sobre o Processador, funcionamento e seus tipos. AULA 2 Na segunda aula vamos falar sobre o Processador, funcionamento e seus tipos. 1. PROCESSADOR O Processador (CPU) é um chip normalmente que serve para realizar todas as tarefas feitas pelo computador..

Leia mais

Níveis de memória. Diferentes velocidades de acesso. Memória Cache. Memórias Auxiliar e Auxiliar-Backup

Níveis de memória. Diferentes velocidades de acesso. Memória Cache. Memórias Auxiliar e Auxiliar-Backup Memória Níveis de memória Diferentes velocidades de acesso Pequeno Alto(a) Cache RAM Auxiliar Auxiliar-Backup Memória Cache altíssima velocidade de acesso acelerar o processo de busca de informações na

Leia mais

MEMÓRIAS SEMICONDUTORAS

MEMÓRIAS SEMICONDUTORAS MEMÓRIAS SEMICONDUTORAS Em um sistema computacional subentende-se memória como qualquer dispositivo capaz de armazenar dados, mesmo temporariamente. Atualmente, os métodos de armazenamento de informação

Leia mais

CURSO TÉCNICO EM MANUTENÇÃO E SUPORTE EM INFORMÁTICA - 2º P Manutenção e Suporte de Hardware I

CURSO TÉCNICO EM MANUTENÇÃO E SUPORTE EM INFORMÁTICA - 2º P Manutenção e Suporte de Hardware I CURSO TÉCNICO EM MANUTENÇÃO E SUPORTE EM INFORMÁTICA - 2º P Manutenção e Suporte de Hardware I Professor: Orlando Filho Graduação: Sistemas de Informação professor@orlandofilho.com Memória (RAM) Todo computador

Leia mais

ü Capítulo 4 Livro do Mário Monteiro ü Introdução ü Hierarquia de memória ü Memória Principal ü Memória principal ü Memória cache

ü Capítulo 4 Livro do Mário Monteiro ü Introdução ü Hierarquia de memória ü Memória Principal ü Memória principal ü Memória cache Departamento de Ciência da Computação - UFF Principal Profa. Débora Christina Muchaluat Saade debora@midiacom.uff.br Principal ü Capítulo 4 Livro do Mário Monteiro ü Introdução ü Hierarquia de memória

Leia mais

SSC0112 Organização de Computadores Digitais I

SSC0112 Organização de Computadores Digitais I SSC0112 Organização de Computadores Digitais I 17ª Aula Hierarquia de memória Profa. Sarita Mazzini Bruschi sarita@icmc.usp.br 1 Memória Memória Todo componente capaz de armazenar bits de informação Características

Leia mais

Aula 05 PLACAS DE EXPANSÃO. IDENTIFICAÇÃO, INSTALAÇÃO, CONFIGURAÇÃO E MANUTENÇÃO.

Aula 05 PLACAS DE EXPANSÃO. IDENTIFICAÇÃO, INSTALAÇÃO, CONFIGURAÇÃO E MANUTENÇÃO. Aula 05 PLACAS DE EXPANSÃO. IDENTIFICAÇÃO, INSTALAÇÃO, CONFIGURAÇÃO E MANUTENÇÃO. Arquitetura dos PCs Placa Mãe!!! Placa mãe Identificação da Placa Mãe Fabricante: GIGABYTE Modelo: GA-G41MT-S2P 286, 386,

Leia mais

Organização e Arquitetura de Computadores I

Organização e Arquitetura de Computadores I Organização e Arquitetura de Computadores I Entrada e Saída Slide 1 Entrada e Saída Dispositivos Externos E/S Programada Organização e Arquitetura de Computadores I Sumário E/S Dirigida por Interrupção

Leia mais

SUMÁRIO SUMÁRIO SUMÁRIO. Memória 11/5/2010. Componentes Básicos do Computador. Instituto Federal do Pará - IFPA. Memória

SUMÁRIO SUMÁRIO SUMÁRIO. Memória 11/5/2010. Componentes Básicos do Computador. Instituto Federal do Pará - IFPA. Memória Instituto Federal do Pará - IFPA Ricardo José Cabeça de Souza ricardo.souza@ifpa.edu.br 2010 Atualização em Hardware Manutenção de Microcomputadores Hierarquia de s Principal Comunicação CPU Velocidade

Leia mais

Como os Processadores Funcionam

Como os Processadores Funcionam clubedohardware.com.br Por Gabriel Torres Editor executivo do Clube do Hardware Introdução Apesar de cada microprocessador ter seu próprio desenho interno, todos os microprocessadores compartilham do mesmo

Leia mais

ORGANIZAÇÃO DE COMPUTADORES MEMÓRIA. Prof. Dr. Daniel Caetano

ORGANIZAÇÃO DE COMPUTADORES MEMÓRIA. Prof. Dr. Daniel Caetano ORGANIZAÇÃO DE COMPUTADORES MEMÓRIA Prof. Dr. Daniel Caetano 2014-1 Objetivos Compreender o que é a memória e sua hierarquia Compreender os diferentes tipos de memória Entender como é feito o acesso à

Leia mais