dados de rotina com filtro, 2011

Tamanho: px
Começar a partir da página:

Download "dados de rotina com filtro, 2011"

Transcrição

1 ddos de rotin com filtro, 2011 ddos de rotin com filtro, 2011, vist d instlção / foto ricrdo bsbum performnce d curdori curdori dniel mttos (rj) pço ds rtes (SP)

2 detlhe: crimbos imgem do folder / fotos tirds por funcionários do pço / montgem mrgit leisner e yifth peled

3 muito fl, n rte contemporâne. uito l, n r rigo, não colocr o dedo no b uis fl Benjmin com destque ição que nos lev o utoc miores informções no verso ito fl, n rte contemporâ compreensão pr lém ds qu por que não inventr um plvr? durção em berto um pequen etiquet é um um pequen etiquet por que você tem medo de mim? mplindo compreensão pr lém ds ddos de rotin com filtro não o no perigo, dedo colocr burco disposição o pr trblho com destque no miores verso informções lém pelos são ds rtists prentds pr que por não inventr plvr? um como memóri rquitetur conquêncis s em berto durção deite cnsr, rtist desmistificndo do figur pequen etiquet um burco rte contemporâne no... muito fl, n um é rte contemporâne. n fl, muito fl dos Benjmin brinquedos quis etiquet pequen um um pequen etiquet de nós nos repetição lev etern que pr tornr o nos utoconhecimento nhores contemporâne, por n que muito você rte fl, de cr dedo burco medo o tem no mim? compreensão pe pr mplindo lém es prentds rtists gostri b verso pelos de no...eu que compreensão no pr lém ds prentds rtists não pelos mplindo entr plvr? um no informções verso com filtro não ddos de perigo, rotin não que inventr plvr? um disposição pr o trblho berto destqu com como rquitetur em berto durção informç miores do um um etiquet pequen etiquet figur do inventr que rtist por não é tção um memóri como rquitetur rte... muito fl, durção berto em n contemporâne um um etiquet pequ é um pequen figur n desmistificndo replntção do rtist contemporâne. você tem medo fl, de mim? que uito por fl, rte contemporâne é um rte etiquet um pequen... muito pr fl muito lém ds Benjmin prentds um fl, pelos rtists pequen n rte etiquet contemporâne. mplindo um compreensão pequen rinquedos Benjmin um brinquedos dos pequen etiquet quis quis fl dos nos você tornr tem nhores medo de de nós mim? nós por que por você tem que medo de colocr etern mim? o ddos repertição de dedo rotin que com no filtro nos bur lev o etern utoconhecimento repetição pr que nos nos tornr lev nhores o de utoconhecimento perigo, pr não n fl, rte contemporâne, rte muito contemporâne, muito compreensão pr lém ds fl, prentds pelos com rtists mplindo...eu destque gostri de brçr um rquiteto disposição pr o trblho prentds pelos rtists...eu gostri de brçr um rquiteto mplindo compreens mplindo compreensão pr lém ds mplindo compreensão pr lém prentds pelos rtists cn mri vem vondo miores informções no verso inventr um plvr? rotin com filtro ddos de por que não deite mri vem vondo cnsr, durção em berto memóri como rquitetur disposição pr o trblho rtist um pequen etiquet ddos de rotin com filtro desmistificndo figur do é um... muito fl, n rte contemporâne memóri como disposição pr o trblho rquitetur rte contemporâne. um pequen etiquet muito fl, n figur do rtist brinquedos dos quis fl Benjmin um pequen etiquet desmistificndo etern repetição que nos lev o utoconhecimento pr nos tornr nhores de nós por que você tem medo de mim? fl, n rte contemporâne, rte contemporâne... muito fl, n muito rquiteto fl, n rte muito mplindo compreensão pr lém ds prentds pelos rtists...eu gostri de brçr um pr lém ds mplindo compreensão um brinquedos dos quis fl Benjmin filtro ddos de nos rotin torn etern repertição que nos lev o utoconhecimento pr contemporâne, muito fl, n rte memóri como rquitetur lém ds prentds pelos mplindo disposição pr o trblho compreensão pr figur do rtist desmistificndo contemporâne... muito fl, n rte como rquitetur memóri muito rtist desmistificndo fl, n figur rte do contemporâne. fl, n rte contemporâne... muito dos pequen fl etiquet brinquedos Benjmin quis um nhores muito de nós contemporâne. tornr rte nos n pr fl, utoconhecimento dos o brinquedos lev etiquet nos pequen que um repertição Benjmin etern fl quis fl, nós muito de nhores tornr nos pr utoconhecimento o lev nos que contemporâne, repetição rte etern n rte n fl, rquiteto um muito brçr contemporâne, de de gostri gostri...eu...eu rtists rtists pelos pelos prentds prentds ds ds lém lém pr pr compreensão compreensão mplindo mplindo br burco no dedo o colocr não perigo, destque com verso no informções miores plvr? um inventr não que por não perigo, burco no dedo o colocr berto em durção com destque etiquet pequen um informções miores verso no um é por plvr? um inventr não que etiquet pequen um durção berto em mim? de medo tem você que por etiquet pequen um um é rtists pelos prentds ds lém pr compreensão mplindo um etiquet pequen filtro com rotin de ddos que por mim? de medo tem você trblho o pr disposição lém pr compreensão mplindo rtists pelos prentds ds ddos filtro com rotin de rquitetur como memóri disposição trblho o pr rtist do figur desmistificndo contemporâne rte n fl,... muito como memóri rquitetur etiquet pequen um Benjmin fl quis dos brinquedos nós de nhores tornr nos pr utoconhecimento o lev nos que repetição etern figur desmistificndo rtist do contemporâne, rte n fl, muito rquiteto um brçr de gostri...eu rtists pelos prentds ds lém pr compreensão mplindo contemporâne rte n fl,... muito contemporâne. rte n fl, muito etiquet pequen um Benjmin fl quis dos brinquedos nós de nhores tornr nos pr utoconhecimento o lev nos que repetição etern contemporâne, rte n fl, muito rquiteto um brçr de gostri...eu rtists pelos prentds ds lém pr compreensão mplindo este projeto foi relizdo em prceri com o rtist yifth peled (sc/sp) à convite d curdor dniel mttos que reuniu três dupls de rtists e propôs à ests dupls que produzism prtiturs de performnce pr rem prentds pel rtist-curdor n bertur d exposição. cd dupl foi destindo tmbém um espço físico no espço expositivo. noss propost prtiu, inicilmente, d ofert d prenç funcionários do pço que, dirimente dempenhm ções nquele espço. por exemplo: o gurd que li permnece; em pé ou cminhndo, zelndo com u olhr pel integridde ds obrs, recepcionist que encontr junto à entrd e tmbém equipe do tor eductivo que tu diretmente junto o público. prtir dess elementos que, junto com s obrs rticulm o espço simbólico de um exposição, elbormos um conjunto de prtiturs ndo: - um ddo pr montr e, - um série de 4 crimbos dus pequens câmers de vigilânci form coplds à um estrutur tipo cpcete, ndo que s imgens cptds por estes dispositivos erm trnsmitids e projetds em tempo rel em um pinel próximo à entrd. dest mesm superfície de projeção, sim dus estruturs de mdeir, lgo entre um prteleir e um mes, sobre s quis estvm os impressos, tesours e col. ddo pr recortr e montr, 2011, impresso em ppel couche, A4 durção em berto...miores informções no verso... minh pele está mis qudrd pr você eu gostrí de brçr um rquiteto... brinquedos dos quis fl Benjmin de preferênci misturr xo com religião...perigo, não colocr o dedo no burco... mplindo compreensão pr lém ds prentds pelos rtists... entrd é por li... não funcionr procure um cs lotéric......desmistificndo figur do rtist... não funcionr procure um cs lotéric minh pele está mis qudrd pr você......memóri como rquitetur instável......um pequen etiquet... ddos de rotin com filtro...um pequen etiquet......impondo sus obrs o público......pens um... ndinh, nd, ndão performnce d curdori n flt de pergunt, questione o vigi perigo, não colocr o dedo no burco não nos responsbilizmos pels conquêncis...muito fl, n rte contemporâne... etern repetição que nos lev o utoconhecimento pr nos tornr nhores de nós mesmo mplindo compreensão pr lém ds prentds pelos rtists eu gostri de brçr um rqui...educ o educdor...

4 ddos de rotin com filtro, 2011, vist d instlção / foto ricrdo bsbum

5 ddos de rotin com filtro, 2011, vist d instlção / performnce dniell mttos / fotos ricrdo bsbum

!!!!!! Este programa foi desenvolvido pelo Departamento dos ministérios da Criança a partir das propostas de textos das palestras para os adultos.!

!!!!!! Este programa foi desenvolvido pelo Departamento dos ministérios da Criança a partir das propostas de textos das palestras para os adultos.! Este progrm foi desenvolvido pelo Deprtmento dos ministérios d Crinç prtir ds proposts de textos ds plestrs pr os dultos. Nots importntes pr o Monitor: Sempre que ler um texto bíblico, fç-o com Bíbli bert.

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

3º Ciclo do Ensino Básico

3º Ciclo do Ensino Básico ESCOLA SECUNDÁRIA COM 3º CICLO DO ENSINO BÁSICO DE AMORA - ANO LETIVO 2014/2015 DEPARTAMENTO DE EXPRESSÕES GRUPO 600 Plnificção Anul Educção Visul 8º Ano 3º Ciclo do Ensino Básico Domínio Objetivos Geris

Leia mais

FUNCIONAL ENTORNO ELEMENTOS DE ENTORNO, CONSIDERANDO OS ATRIBUTOS DO LUGAR - MASSAS TOPOGRAFIA #8. fonte imagem: Google Earth

FUNCIONAL ENTORNO ELEMENTOS DE ENTORNO, CONSIDERANDO OS ATRIBUTOS DO LUGAR - MASSAS TOPOGRAFIA #8. fonte imagem: Google Earth FUNCIONL ENTORNO IDENTIFICR RELÇÃO DO EDIFÍCIO COM OS ELEMENTOS DE ENTORNO, CONSIDERNDO OS TRIBUTOS DO LUGR - MSSS EDIFICDS, RELÇÕES DE PROXIMIDDE, DIÁLOGO, INTEGRÇÃO OU UTONOMI O ENTORNO D CSH #9 É COMPOSTO

Leia mais

Aprimorando os Conhecimentos de Mecânica Lista 7 Grandezas Cinemáticas I

Aprimorando os Conhecimentos de Mecânica Lista 7 Grandezas Cinemáticas I Aprimorndo os Conhecimentos de Mecânic List 7 Grndezs Cinemátics I 1. (PUCCAMP-98) Num birro, onde todos os qurteirões são qudrdos e s rus prlels distm 100m um d outr, um trnseunte fz o percurso de P Q

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

CD MOSTRA-ME TUA GLÓRIA - 1. ELE REINARÁ INTR: E B/E C#m B E/G# A9 E B A E B A IGUAL A TI JESUS OUTRO NÃO HÁ E B A CHEIO DE GLÓRIA E PODER

CD MOSTRA-ME TUA GLÓRIA - 1. ELE REINARÁ INTR: E B/E C#m B E/G# A9 E B A E B A IGUAL A TI JESUS OUTRO NÃO HÁ E B A CHEIO DE GLÓRIA E PODER CD MOSTR-ME TU LÓRI - 1. ELE REINRÁ INTR: E B/E C#m B E/# 9 E B E B IUL TI JESUS OUTRO NÃO HÁ E B CHEIO DE LÓRI E PODER C#m7 B E/# TEU REINDO NÃO VI TER FIM E B E B COM TEU OLHR DE FOO VENS PR REINR E

Leia mais

Convocatòri a 2015. Pàg. 2 / 4. c) por ruas muito ruidosas. (0, 5punts)

Convocatòri a 2015. Pàg. 2 / 4. c) por ruas muito ruidosas. (0, 5punts) Convoctòri Aferru un etiquet identifictiv v999999999 de codi de brres Portuguès (més grns de 25 nys) Model 1 Not 1ª Not 2ª Aferru l cpçler d exmen un cop cbt l exercici TEXTO Um clássico lisboet O elétrico

Leia mais

SALÃO INTERNACIONAL DO MÓVEL - MILÃO 2015. artchitectours

SALÃO INTERNACIONAL DO MÓVEL - MILÃO 2015. artchitectours SALÃO INTERNACIONAL DO MÓVEL - MILÃO 2015 rtchitectours SALONE INTERNAZIONALE DEL MOBILE DI MILANO 2015 A Feir de Móveis de Milão é mior feir do gênero no mundo. A exposição present o mis recente em mobiliário

Leia mais

Acoplamento. Tipos de acoplamento. Acoplamento por dados. Acoplamento por imagem. Exemplo. É o grau de dependência entre dois módulos.

Acoplamento. Tipos de acoplamento. Acoplamento por dados. Acoplamento por imagem. Exemplo. É o grau de dependência entre dois módulos. Acoplmento É o gru de dependênci entre dois módulos. Objetivo: minimizr o coplmento grndes sistems devem ser segmentdos em módulos simples A qulidde do projeto será vlid pelo gru de modulrizção do sistem.

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO COLÉGIO MILITA DE BELO HOIZONTE CONCUSO DE ADMISSÃO 6 / 7 POVA DE MATEMÁTICA 1ª SÉIE DO ENSINO MÉDIO CONFEÊNCIA: Chefe d Sucomissão de Mtemátic Chefe d COC Dir Ens CPO / CMBH CONCUSO DE ADMISSÃO À 1ª SÉIE

Leia mais

Quantidade de oxigênio no sistema

Quantidade de oxigênio no sistema EEIMVR-UFF Refino dos Aços I 1ª Verificção Junho 29 1. 1 kg de ferro puro são colocdos em um forno, mntido 16 o C. A entrd de oxigênio no sistem é controld e relizd lentmente, de modo ir umentndo pressão

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

Aula 4: Autômatos Finitos 2. 4.1 Autômatos Finitos Não-Determinísticos

Aula 4: Autômatos Finitos 2. 4.1 Autômatos Finitos Não-Determinísticos Teori d Computção Primeiro Semestre, 25 Aul 4: Autômtos Finitos 2 DAINF-UTFPR Prof. Ricrdo Dutr d Silv 4. Autômtos Finitos Não-Determinísticos Autômtos Finitos Não-Determinísticos (NFA) são um generlizção

Leia mais

Patrocinadores. Introdução κρυπτω + γραφικος. Introdução. Criptografia simétrica. SEC06 PKI: Mitos e Realidades

Patrocinadores. Introdução κρυπτω + γραφικος. Introdução. Criptografia simétrica. SEC06 PKI: Mitos e Realidades Microsoft TechDys 2005 Lisbo Microsoft TechDys 2005 Aprender, Prtilhr, Experimentr SEC06 PKI: Mitos e Reliddes Fernndo Crdoso, CISA IS Security Tem Leder PrRede Ptrocindores Introdução κρυπτω + γραφικος

Leia mais

Regras. Resumo do Jogo Resumo do Jogo. Conteúdo. Conteúdo. Objetivo FRENTE do Jogo

Regras. Resumo do Jogo Resumo do Jogo. Conteúdo. Conteúdo. Objetivo FRENTE do Jogo Resumo do Jogo Resumo do Jogo Regrs -Qundo for seu turno, você deve jogr um de sus crts no «ponto n linh do tempo» que estej correto. -Se você jogr crt corretmente, terá um crt menos à su frente. -Se você

Leia mais

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C GRITO temátic tensivo V. ercícios 0) ) 40 b) 0) 0) ) elo Teorem de Tles, temos: 8 40 5 b) elo Teorem de Tles, temos: 4 7 prtir do Teorem de Tles, temos: 4 0 48 0 4,8 48, 48 6 : 9 6, + 4,8 + 9,8 prtir do

Leia mais

São possíveis ladrilhamentos com um único molde na forma de qualquer quadrilátero, de alguns tipos de pentágonos irregulares, etc.

São possíveis ladrilhamentos com um único molde na forma de qualquer quadrilátero, de alguns tipos de pentágonos irregulares, etc. LADRILHAMENTOS Elvi Mureb Sllum Mtemtec-IME-USP A rte do ldrilhmento consiste no preenchimento do plno, por moldes, sem superposição ou burcos. El existe desde que o homem começou usr pedrs pr cobrir o

Leia mais

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES posti De Mtemátic GEOMETRI: REVISÃO DO ENSINO FUNDMENTL, PRISMS E PIRÂMIDES posti de Mtemátic (por Sérgio Le Jr.) GEOMETRI 1. REVISÃO DO ENSINO FUNDMENTL 1. 1. Reções métrics de um triânguo retânguo. Pr

Leia mais

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff NOTA Tipo de Avlição: Mteril de Apoio Disciplin: Mtemátic Turm: Aulão + Professor (): Jefferson Cruz Dt: 24/05/2014 DICAS do Jeff Olhr s lterntivs ntes de resolver s questões, principlmente em questões

Leia mais

Data Tema Objetivos Atividades Recursos

Data Tema Objetivos Atividades Recursos Plno Anul de Atividdes do Pré-Escolr Dt Tem Objetivos Atividdes Recursos Setembro Integrção /dptção ds crinçs -Promover integrção/ (re) dptção ds crinçs á creche; -Proporcionr um mbiente que permit às

Leia mais

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2 Resolução ds tividdes complementres Mtemátic M Função Logrítmic p. (UFSM-RS) Sejm log, log 6 e log z, então z é igul : ) b) c) e) 6 d) log log 6 6 log z z z z (UFMT) A mgnitude de um terremoto é medid

Leia mais

CÂMARA MUNICIPAL DE FERREIRA DO ZÊZERE

CÂMARA MUNICIPAL DE FERREIRA DO ZÊZERE CAPITULO I VENDA DE LOTES DE TERRENO PARA FINS INDUSTRIAIS ARTIGO l. A lienção, trvés de vend, reliz-se por negocição direct com os concorrentes sendo o preço d vend fixo, por metro qudrdo, pr um ou mis

Leia mais

McAfee Email Gateway Blade Server

McAfee Email Gateway Blade Server Gui de início rápido Revisão B McAfee Emil Gtewy Blde Server versão 7.x Esse gui de início rápido serve como um roteiro ásico pr instlção do servidor lde do McAfee Emil Gtewy. Pr oter instruções detlhds

Leia mais

Canguru Matemático sem Fronteiras 2010

Canguru Matemático sem Fronteiras 2010 Cnguru Mtemático sem Fronteirs 2010 Durção: 1h30min Destintários: lunos do 9 Ano de Escolridde Nome: Turm: Não podes usr clculdor. Há pens um respost correct em cd questão. As questões estão grupds em

Leia mais

1ª Feira de Negócios

1ª Feira de Negócios www.slomotobrsil.com.br 1ª Feir de Negócios Brsil 2 0 1 7 26 28 de Jneiro RIOCENTRO RIO DE JANEIRO BRASIL Apoio Institucionl 1ª Feir de Negócios Brsil Em jneiro de 2017, Promotor de Eventos Rio Pln relizrá

Leia mais

Nível 7ªe 8ªséries (8º e 9º anos) do Ensino Fundamental

Nível 7ªe 8ªséries (8º e 9º anos) do Ensino Fundamental Nível 7ªe 8ªséries (8º e 9º nos) do Ensino Fundmentl 2ªFASE 20 de outubro de 2007 2 Prbéns pelo seu desempenho n 1ª Fse d OBMEP. É com grnde stisfção que contmos gor com su prticipção n 2ª Fse. Desejmos

Leia mais

Como cheguei a este livro?

Como cheguei a este livro? O meu livro é: Escol Básic 2,3/S de vle de Cmbr An Ptríci Tvres Nº3 10ºF 2007/2008 Como cheguei este livro? Qundo comecei pensr no que queri ler, cheguei à conclusão de que não tinh idei nenhum. Então

Leia mais

Internação WEB BR Distribuidora v20130701.docx. Manual de Internação

Internação WEB BR Distribuidora v20130701.docx. Manual de Internação Mnul de Internção ÍNDICE CARO CREDENCIADO, LEIA COM ATENÇÃO.... 3 FATURAMENTO... 3 PROBLEMAS DE CADASTRO... 3 PENDÊNCIA DO ATENDIMENTO... 3 ACESSANDO O MEDLINK WEB... 4 ADMINISTRAÇÃO DE USUÁRIOS... 5 CRIANDO

Leia mais

ARA UMA EDUCAÇÃO P OBAL CIDADANIA GL CIDAC

ARA UMA EDUCAÇÃO P OBAL CIDADANIA GL CIDAC l o i c r e t I o t s e f i M M U R P O Ã Ç L C U B O ED L G I N D CID CIDC Este Mifesto foi relizdo com o poio ficeiro d Uião Europei, ms o coteúdo é pes d resposbilidde dos utores, e ão pode ser tomdo

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

Analisadores Sintáticos. Análise Recursiva com Retrocesso. Análise Recursiva Preditiva. Análise Recursiva Preditiva 05/04/2010

Analisadores Sintáticos. Análise Recursiva com Retrocesso. Análise Recursiva Preditiva. Análise Recursiva Preditiva 05/04/2010 Anlisdores intáticos Análise Descendente (Top-down) Anlisdores sintáticos descendentes: Recursivo com retrocesso (bcktrcking) Recursivo preditivo Tbulr preditivo Análise Redutiv (Bottom-up) Anlisdores

Leia mais

TEMA CENTRAL: A interface do cuidado de enfermagem com as políticas de atenção ao idoso.

TEMA CENTRAL: A interface do cuidado de enfermagem com as políticas de atenção ao idoso. TERMO DE ADESÃO A POLITICA DE INSCRIÇÃO NOS EVENTOS DA ASSOCIAÇÃO BRASILEIRA DE ENFERMAGEM 9ª. JORNADA BRASILEIRA DE ENFERMAGEM GERIÁTRICA E GERONTOLÓGICA TEMA CENTRAL: A interfce do cuiddo de enfermgem

Leia mais

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário. Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod

Leia mais

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 01 1 Fse Prof. Mri Antôni Gouvei. QUESTÃO 83. Em 010, o Instituto Brsileiro de Geogrfi e Esttístic (IBGE) relizou o último censo populcionl brsileiro, que mostrou

Leia mais

07 AVALIAÇÃO DO EFEITO DO TRATAMENTO DE

07 AVALIAÇÃO DO EFEITO DO TRATAMENTO DE 07 AVALIAÇÃO DO EFEITO DO TRATAMENTO DE SEMENTES NA QUALIDADE FISIOLOGICA DA SEMENTE E A EFICIENCIA NO CONTROLE DE PRAGAS INICIAIS NA CULTURA DA SOJA Objetivo Este trblho tem como objetivo vlir o efeito

Leia mais

Área de Conhecimento ARTES. Período de Execução. Matrícula. Telefone. (84) 8112-2985 / ramal: 6210

Área de Conhecimento ARTES. Período de Execução. Matrícula. Telefone. (84) 8112-2985 / ramal: 6210 INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE PRÓ-REITORIA DE EXTENSÃO PROGRAMA DE APOIO INSTITUCIONAL À EXTENSÃO PROJETOS DE EXTENSÃO EDITAL 01/014-PROEX/IFRN Os cmpos sombredos

Leia mais

NESSE MANUAL SERÃO SOLUCIONADAS AS SEGUINTES DÚVIDAS DE USO:

NESSE MANUAL SERÃO SOLUCIONADAS AS SEGUINTES DÚVIDAS DE USO: NESSE MANUAL SERÃO SOLUCIONADAS AS SEGUINTES DÚVIDAS DE USO: PG COMO CRIAR UM NOVO MODELO DE CARTA NO MALA DIRETA 1 COMO CRIAR UM GRUPO DE CARTAS NA MALA DIRETA 2 COMO REMOVER UM GRUPO DE CARTAS NA MALA

Leia mais

1 Computação 2008-2009 (2.º Semestre): Documentos para consulta no exame N.º. Nome completo: Curso: Foto:

1 Computação 2008-2009 (2.º Semestre): Documentos para consulta no exame N.º. Nome completo: Curso: Foto: 1 N.º Nome completo: Curso: Foto: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Leia mais

Índice. Estilo, Moda e Melhores Amigas. Segredos de Beleza. Paraíso dos Penteados

Índice. Estilo, Moda e Melhores Amigas. Segredos de Beleza. Paraíso dos Penteados Índice 6 Superdics pr melhor noite de sempre! 8 Convid s tus migs 10 Prepr tudo! Segredos de Belez 14 Rosto rdinte 16 Olhos brilhntes 18 Mãos com TTIC 20 A loucur d mnicur! 22 Unhs rtístics 24 Pés perfeitos

Leia mais

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$ 81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como

Leia mais

Agora imagine pegar essas ondas com seus amigos

Agora imagine pegar essas ondas com seus amigos s v i d l M Com GABRIEL PASTORI Com certez você já sonhou com esse lugr... Agor imgine pegr esss onds com seus migos em um bot trip e um profissionl pr dr dics de surf... de do i Fer 9 1 9 0 UTubro O A

Leia mais

Pronto para uma câmera digital de primeira com CCD de 6,0 mega pixels?! G-Shot P6533 G-Shot P6533 G-Shot P6533 G-Shot P6533

Pronto para uma câmera digital de primeira com CCD de 6,0 mega pixels?! G-Shot P6533 G-Shot P6533 G-Shot P6533 G-Shot P6533 Pronto pr um câmer digitl de primeir com CCD de 6,0 meg piels?! A Genius gor nunci um câmer digitl de estilo único em su fmíli G-Shot: G-Shot P6533. Em um cbmento vermelho etrordinário, est DSC epress

Leia mais

Vamos Subir Nova Voz

Vamos Subir Nova Voz c c Vamos Subir Nova Voz 2 Letra e Música: Lucas Pimentel Arr: Henoch Thomas 2 5 2 to Eu-pos tem - po te-nho ou vi - do a pro- 2 g g 8 mes - sa de que vi - rás pra res -ga -tar os fi-lhos Teus Nem sem-pre

Leia mais

Descobrir Matemática com a Música realizado na Casa da Música em Outubro 2007

Descobrir Matemática com a Música realizado na Casa da Música em Outubro 2007 Descorir Mtemátic com Músic relizdo n Cs d Músic em Outuro 2007 O conceito principl deste workshop é o de simetri - se de todos os pdrões, n rte, n ciênci, n nturez, e portnto tmém nos pdrões musicis -

Leia mais

Disciplina: Português Período: 1º. Equipe - 3 ano - turmas: 31, 32 e 33.

Disciplina: Português Período: 1º. Equipe - 3 ano - turmas: 31, 32 e 33. Disciplina: Português Período: 1º Unidade 1 Eu me comunico Linguagem : formal e informal Variação regional de vocabulário Usando diferentes linguagens Ortografia: L e U,A/AI; E/I; O/OU; Usando diferentes

Leia mais

Solução da prova da 1 fase OBMEP 2013 Nível 1

Solução da prova da 1 fase OBMEP 2013 Nível 1 Solução d prov d fse OBMEP 0 Nível QUESTÃO Qundo brir fit métric, Don Céli verá o trecho d fit representdo n figur; mnch cinzent corresponde à porção d fit que estv em volt d cintur de Mrt. A medid d cintur

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

TÓPICOS. Determinantes de 1ª e 2ª ordem. Submatriz. Menor. Cofactor. Expansão em cofactores. Determinante de ordem n. Propriedades dos determinantes.

TÓPICOS. Determinantes de 1ª e 2ª ordem. Submatriz. Menor. Cofactor. Expansão em cofactores. Determinante de ordem n. Propriedades dos determinantes. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo os problems presentdos n bibliogrfi,

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

======================== ˆ_ ˆ«

======================== ˆ_ ˆ« Noss fest com Mri (Miss pr os simpes e pequenos, inspirdo em Jo 2,112) ( Liturgi I Puus) 1) eebremos n egri (bertur) Rgtime & c m m.. _ m m.. _ e e bre mos n_ e gri, nos s fes t com M ri : & _.. _ º....

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

Equivalência Estrutural

Equivalência Estrutural Equivlênci Estruturl Jefferson Elert Simões sedo nos rtigos: Structurl Equivlence of Individuls in Socil Networks (Lorrin & White, 1971) Structurl Equivlence: Mening nd Definition, Computtion nd ppliction

Leia mais

Uso Racional de Energia Elétrica em Residências e Condomínios

Uso Racional de Energia Elétrica em Residências e Condomínios Uso Rcionl de Energi Elétric em Residêncis e Condomínios Css Verifique s Condições ds Instlções : Dimensionmento; Execução; Mnutenção; Conservção. Css Verifique os Hábitos de consumo : Form pessol de utilizção

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

Linguagens Regulares e Autômatos de Estados Finitos. Linguagens Formais. Linguagens Formais (cont.) Um Modelo Fraco de Computação

Linguagens Regulares e Autômatos de Estados Finitos. Linguagens Formais. Linguagens Formais (cont.) Um Modelo Fraco de Computação LFA - PARTE 1 Lingugens Regulres e Autômtos de Estdos Finitos Um Modelo Frco de Computção João Luís Grci Ros LFA-FEC-PUC-Cmpins 2002 R. Gregory Tylor: http://strse.cs.trincoll.edu/~rtylor/thcomp/ 1 Lingugens

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

INCERTEZA. Notas complementares. Preferências de loterias espaço de escolhas é composto por loterias

INCERTEZA. Notas complementares. Preferências de loterias espaço de escolhas é composto por loterias PPGE/FRGS - Prof. Sno Porto Junor 9/0/005 INCERTEZA Nots complementres Preferêncs de loters espço de escolhs é composto por loters Pessos otém utldde de oters e não de Apples As preferêncs sore ens são

Leia mais

O Teorema de Pitágoras

O Teorema de Pitágoras A UUL AL A O Teorem de Pitágors Com jud de um pr de esqudros, desene dois triânguos retânguos de mesmo tmno. Represente num dees tur retiv à ipotenus, omo mostr figur d direit: Pr pensr I II III Reortndo

Leia mais

XEROX BOLETIM DE SEGURANÇA XRX07-001

XEROX BOLETIM DE SEGURANÇA XRX07-001 XEROX BOLETIM DE SEGURANÇA XRX07-001 XEROX Boletim de Segurnç XRX07-001 Há vulnerbiliddes n ESS/Controldor de Rede que, se forem explords, podem permitir execução remot de softwre rbitrário, flsificção

Leia mais

COLÉGIO SANTO IVO Educação Infantil - Ensino Fundamental - Ensino Médio

COLÉGIO SANTO IVO Educação Infantil - Ensino Fundamental - Ensino Médio COLÉGIO SANTO IO Educção Infntil - Ensino Fundmentl - Ensino Médio Roteiro de Estudo pr Avlição do 3ºTrimestre - 015 Disciplin: Mtemátic e Geometri Série: 1ª Série EM Profª Cristin Nvl Orientção de Estudo:

Leia mais

Ac esse o sit e w w w. d e ca c lu b.c om.br / es t u dos 2 0 1 5 e f a ç a s u a insc riçã o cl ica nd o e m Pa r t i c i p e :

Ac esse o sit e w w w. d e ca c lu b.c om.br / es t u dos 2 0 1 5 e f a ç a s u a insc riçã o cl ica nd o e m Pa r t i c i p e : INSCRIÇÕES ABERTAS ATÉ 13 DE JULH DE 2015! Ac esse o sit e w w w. d e ca c lu b.c om.br / es t u dos 2 0 1 5 e f a ç a s u a insc riçã o cl ica nd o e m Pa r t i c i p e : Caso vo cê nunca t e nh a pa

Leia mais

LFS - Canaletas de PVC UFS - Caixas de Tomada para Piso

LFS - Canaletas de PVC UFS - Caixas de Tomada para Piso Ctálogo LFS - UFS LFS - Cnlets de PVC UFS - Cixs de Tomd pr Piso fique conectdo. pense oo. Linh LFS Cnlets de PVC Com lto pdrão estético, s cnlets OBO vlorizm o miente, lém de oferecerem possiilidde de

Leia mais

Resumo Executivo. Violência contra a mulher

Resumo Executivo. Violência contra a mulher S T U L s R E K Q F zs B x f b w s X R e R y P Z K O q u A r G J M e z YLU E p z P c o Resumo Executivo iolênci contr mulher estudo revel predominânci de viés policilesco n cobertur noticios do tem Estudo

Leia mais

6.1 Recursos de Curto Prazo ADMINISTRAÇÃO DO CAPITAL DE GIRO. Capital de giro. Capital circulante. Recursos aplicados em ativos circulantes (ativos

6.1 Recursos de Curto Prazo ADMINISTRAÇÃO DO CAPITAL DE GIRO. Capital de giro. Capital circulante. Recursos aplicados em ativos circulantes (ativos ADMINISTRAÇÃO DO CAPITAL DE GIRO 6.1 Recursos de curto przo 6.2 Administrção de disponibiliddes 6.3 Administrção de estoques 6.4 Administrção de conts 6.1 Recursos de Curto Przo Administrção Finnceir e

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

Escola SENAI Theobaldo De Nigris

Escola SENAI Theobaldo De Nigris Escol SENAI Theobldo De Nigris Conteúdos borddos nos cursos de Preservção 2011 1) CURSO ASSISTENTE DE CONSERVAÇÃO PREVENTIVA (362h) I Étic e históri n conservção (72h): 1. Étic e históri d Conservção/Resturo

Leia mais

Manual de instalação. Aquecedor de reserva de monobloco de baixa temperatura Daikin Altherma EKMBUHCA3V3 EKMBUHCA9W1. Manual de instalação

Manual de instalação. Aquecedor de reserva de monobloco de baixa temperatura Daikin Altherma EKMBUHCA3V3 EKMBUHCA9W1. Manual de instalação Aquecedor de reserv de monoloco de ix tempertur Dikin EKMBUHCAV EKMBUHCA9W Portugues Índice Índice Acerc d documentção. Acerc deste documento... Acerc d cix. Aquecedor de reserv..... Pr retirr os cessórios

Leia mais

Vem aí, novo curso no Icesp/Promove

Vem aí, novo curso no Icesp/Promove Aem n S Informe Icesp Semnl Ano IV nº 49 11/04/2014 Vem í, novo curso no Icesp/Promove A prtir do segundo semestre de 2014, o ICESP Promove de Brsíli brirá inscrições pr o curso de Tecnologi em Construção

Leia mais

Comportamento de RISCO

Comportamento de RISCO Comportmento de RISCO SEXO e um responsilidde Aprtment203/1016YA FCRISKY Cred Progrm Ncionl De Lut Contr SIDA Poe seguinte list por ordem, do comportmento mis seguro pr o mis rriscdo c d Ter vários prceiros

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

Rolamentos com uma fileira de esferas de contato oblíquo

Rolamentos com uma fileira de esferas de contato oblíquo Rolmentos com um fileir de esfers de contto oblíquo Rolmentos com um fileir de esfers de contto oblíquo 232 Definições e ptidões 232 Séries 233 Vrintes 233 Tolerâncis e jogos 234 Elementos de cálculo 236

Leia mais

push (c) pop () retorna-se c topo b a topo Figura 10.1: Funcionamento da pilha.

push (c) pop () retorna-se c topo b a topo Figura 10.1: Funcionamento da pilha. 11. Pilhs W. Celes e J. L. Rngel Um ds estruturs de ddos mis simples é pilh. Possivelmente por ess rzão, é estrutur de ddos mis utilizd em progrmção, sendo inclusive implementd diretmente pelo hrdwre d

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x).

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x). Eensivo V. Eercícios ) D y = log ( + ) Pr = : y = log ( + ) y = log y = Noe que o gráfico pss pel origem. Porno, únic lerniv possível é D. ) M + = log B B M + = log B B M + = log + log B B Como M = log

Leia mais

Sequência didática para o 1º ano

Sequência didática para o 1º ano Prefeitur Municipl de Curitib Secretri Municipl d Educção Deprtmento de Ensino Fundmentl Núcleo Regionl d Educção CIC Sequênci didátic pr o 1º no DON RNH DON RNH SUBIU PEL PREDE VEIO CHUV FORTE E DERRUBOU

Leia mais

Técnica de conexões pneumáticas Programa complementar Parafusos obturadores e apoio. Catálogo impresso

Técnica de conexões pneumáticas Programa complementar Parafusos obturadores e apoio. Catálogo impresso Técnic de conexões pneumátics Progrm complementr Prfusos obturdores e poio Ctálogo impresso 2 Técnic de conexões pneumátics Progrm complementr Prfusos obturdores e poio Peç em cruz, cônic rosc intern,

Leia mais

os corpos? Contato direto F/L 2 Gravitacional, centrífuga ou eletromagnética F/L 3

os corpos? Contato direto F/L 2 Gravitacional, centrífuga ou eletromagnética F/L 3 Universidde Federl de Algos Centro de Tecnologi Curso de Engenri Civil Disciplin: Mecânic dos Sólidos 1 Código: ECIV018 Professor: Edurdo Nobre Lges Forçs Distribuíds: Centro de Grvidde, Centro de Mss

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares.

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares. NOME: ANO: º Nº: PROFESSOR(A): An Luiz Ozores DATA: REVISÃO List Geometri Anlític Algums definições y Equções d ret: by c 0, y mb, y y0 m( 0) e p q Posições de dus rets: Dds s rets r : y mr br e s y ms

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

PALACETE BOLONHA Uma promessa de amor PASSAGEM BOLONHA ACESSO SOCIAL. 18,50 m SOBE SOBE SOBE ESCADA A - EM FERRO/METAL E MÁRMORE

PALACETE BOLONHA Uma promessa de amor PASSAGEM BOLONHA ACESSO SOCIAL. 18,50 m SOBE SOBE SOBE ESCADA A - EM FERRO/METAL E MÁRMORE Uma promessa de amor MOBILIÁRIO E EQUIPMENTOS PRINCIPIS: "VIL BOLONH" º CS/Nº CS,0 m MONT CRG CESSO DE PSSGEM BOLONH,0 m 0 CESSO 0 B DE CESSO,0 m POSTE REDE ELÉTRIC VENID GOVERNDOR JOSÉ MLCHER (NTIG SÃO

Leia mais

Nível. Ensino Médio. 2ªFASE 20 de outubro de 2007

Nível. Ensino Médio. 2ªFASE 20 de outubro de 2007 Ensino Médio 2ªFASE 20 de outubro de 2007 Nível 3 Prbéns pelo seu desempenho n 1ª Fse d OBMEP. É com grnde stisfção que contmos gor com su prticipção n 2ª Fse. Desejmos que você fç um bo prov e que el

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Teori d Computção Professor : ndr de Amo Revisão de Grmátics Livres do Contexto (1) 1. Fzer o exercicio 2.3 d págin 128 do livro texto

Leia mais

O NÚMERO DE OURO E SUAS

O NÚMERO DE OURO E SUAS N. 0, Setembro 010 Ano 01 Edson de OLIVEIRA Thigo Emnuel FERREIRA n. 0 O NÚMERO DE OURO E SUAS MANIFESTAÇÕES NA NATUREZA E NA ARTE p. 64-81 Instituto de Engenhri Arquitetur e Design INSEAD Centro Universitário

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais.

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais. EXPOENTE 2 3 = 8 RESULTADO BASE Podeos entender potencição coo u ultiplicção de ftores iguis. A Bse será o ftor que se repetirá O expoente indic qunts vezes bse vi ser ultiplicd por el es. 2 5 = 2. 2.

Leia mais

PROJETO DE CONSTRUÇÃO DE FOSSA BIODISGESTORA

PROJETO DE CONSTRUÇÃO DE FOSSA BIODISGESTORA PROJETO DE CONSTRUÇÃO DE FOSSA BIODISGESTORA Acdêmicos: Adenilton Sntos Moreir 123 RESUMO Este rtigo present um projeto de foss biodigestor, que será executdo pelo utor do mesmo, su principl finlidde é

Leia mais

FLEXÃO E TENSÕES NORMAIS.

FLEXÃO E TENSÕES NORMAIS. LIST N3 FLEXÃO E TENSÕES NORMIS. Nos problems que se seguem, desprer o peso próprio (p.p.) d estrutur, menos qundo dito explicitmente o contrário. FÓRMUL GERL D FLEXÃO,: eixos centris principis M G N M

Leia mais

Classificação Periódica dos Elementos

Classificação Periódica dos Elementos Classificação Periódica dos Elementos 1 2 3 1 Massa atômica relativa. A incerteza no último dígito é 1, exceto quando indicado entre parênteses. Os valores com * referemse Número Atômico 18 ao isótopo

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVET VETIBULAR 00 Fse Prof. Mri Antôni Gouvei. Q-7 Um utomóvel, modelo flex, consome litros de gsolin pr percorrer 7km. Qundo se opt pelo uso do álcool, o utomóvel consome 7 litros

Leia mais

Capítulo 3. Autómatos e respectivas linguagens

Capítulo 3. Autómatos e respectivas linguagens Cpítulo 3. Neste estudo, os utómtos serão considerdos principlmente como dispositivos de ceitção d lingugem, e respectiv estrutur intern será discutid pens n medid em que se relcione com lingugem ceite.

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2 LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se

Leia mais