PEA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS I CONDUTORES E DISPOSITIVOS DE PROTEÇÃO (CDP_EA)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "PEA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS I CONDUTORES E DISPOSITIVOS DE PROTEÇÃO (CDP_EA)"

Transcrição

1 PEA 40 - LAORAÓRO DE NSALAÇÕES ELÉRCAS CONDUORES E DSPOSVOS DE PROEÇÃO (CDP_EA) RELAÓRO - NOA... Grupo: Professor:...Daa:... Objeivo:..... MPORANE: Em odas as medições, o amperímero de alicae deverá ser colocado no cabo de 6 mm (cabo mais grosso), e não no fio de,5 mm. O fio de,5 mm alcança emperauras mais elevadas, podendo causar o derreimeno da capa amarela de proeção do alicae.. Curva eórica de aquecimeno de um fio isolado ao ar livre. - Dados Diâmero exerno do uor D =,4 mm Diâmero exerno do fio D fio =,7 mm emperaura máxima de operação(pvc) _max = 70 C Resisividade ôhmica do cobre a 0C 0C = 0,074 mm /m Resisividade érmica do isolane iso = 6,0 Cm/W Capacidade érmica específica do cobre c = 3, J/Cm 3 Capacidade érmica específica do isolane c iso =, J/Cm 3 Consanes da geomeria da insalação para E = 3,94 um fio isolado ao ar livre (abela EC) g = 0,60 z = 0,

2 . - Calcular - Resisência ôhmica do uor à emperaura máxima de operação S R D.( )... mm o 0 C ( max ).[ 0, ( max 0)]... / m S - Resisência érmica do isolane (Figura ) R iso - Resisência érmica do ar (Figura ) amb iso Dfio ln... Cm / W D C z h E... 3 ( 0. D ) R o fio g s sup. iso amb ar... 5 C ( valor adoado) 3 o 0 o s Cm W Dfio h / R iso R a amb sup amb s Figura - Resisências érmicas S = elevação de emperaura da superfície da isolação sobre o ambiene (C); h = coeficiene de dissipação de calor. - Capacidade érmica do uor Q 0 6 c S...J/ Cm

3 - Capacidade érmica da isolação o Qiso ciso Siso 0 ciso ( D fio D )... J / Cm Expressão final da curva eórica de aquecimeno A curva de aquecimeno do uor é dada por: ( ) ( ) amb R ( Riso Rar) [ e ( RisoRar) ( Q Qiso) ] ou ( ) amb A e () em que A R R iso R ar... R R Q Q... iso ar iso.4 - Correne admissível em regime conínuo Para um inervalo de empo suficienemene grande ( ), resula da Eq (): A _ max amb adm_ con _ () adm _ con _... A. Curva erimenal de aquecimeno de um fio isolado ao ar livre. - Execue a monagem represenada na Figura. 3

4 VARAC RANS- FORMADOR FO 0 00 % MEDDOR DE EMPERAURA 0-0 V 0-3 V 0-00 A AMPERÍMERO DE ALCAE Figura - Monagem erimenal. - Levane a curva de emperaura de um fio isolado ao ar livre impondo o valor adm_con_ (Eq. ()). Preencha a primeira coluna da abela. AENÇÃO: Devido ao aumeno de resisência do uor e à baixa ensão fornecida pelo ransformador, a correne irá diminuindo paulainamene. Manenha a correne consane no valor especificado, ajusando o conrole do variac ao longo do empo. abela - Curvas de aquecimenode um fio isolado ao ar livre empo emperaura (C) (s) Experimenal eórica

5 .3 - Uilizando a ressão obida em.3 (Eq. ()), preencha a segunda coluna da abela..4 - Deermine erimenalmene a correne admissível em regime conínuo do fio (ajuse a correne aé que a emperaura se esablize em 70 C). adm_con_e =...A Compare adm_con_e com adm_con_ e comene Esime o valor da consane A a parir da correne admissível obida em.4. A _ max amb adm_ con_ e A Esime o valor da consane de empo, a parir da curva erimenal de aquecimeno (primeira coluna da abela ). N: em 4 consanes de empo, a elevação de emperaura ainge 98,7% de seu valor de regime. Para deerminar a consane de empo, escolha o insane 4 al que: ( 4 ) 0,987, amb amb em que indica o valor de regime na curva erimenal de aquecimeno. 5

6 (4 )... C 4... s 4... s 4 3. Correne admissível em regime cíclico de carga 3. - Considere o regime cíclico de carga represenado na Figura 3. () = 60 s = 30 s adm_ciclo Figura 3 - Ciclo de carga 3. - Calcule o valor da correne admissível no regime da Figura 3 ( adm_ciclo ), uilizando os parâmeros obidos erimenalmene (A e ). Para ano, admia que no insane final do período em que a correne é aplicada ( ), a emperaura do uor é _max ( = 70 C), conforme ilusra a Figura 4). 6

7 (), () _max adm_ciclo 0 Figura 4 - Ciclo de carga e ciclo de emperaura Para a fase de aquecimeno em-se: ( ) _ max 0 0 (3) Para a fase de resfriameno em-se: A adm_ ciclo amb e e ( ) 0 amb _ max amb Subsiuindo a Eq. (4) na Eq. (3) resula: (4) adm_ ciclo _ max amb e e adm_ con _ e (5) A e e Noe que, para 0 (eliminação do período de resfriameno), a Eq. (5) fornece a correne admissível em regime conínuo (Eq. ()). adm _ ciclo... A 7

8 3.3 - Esime o faor de aumeno da correne admissível devido ao ciclo de carga. f adm_ ciclo adm_ con _ e e e f mponha ao fio o ciclo de carga da Figura 3. mponha inicialmene a correne adm_ciclo e, quando a emperaura do uor alcançar _max (70 C), desligue o variac e inicie a conagem de empo do primeiro período de resfriameno. A parir dese pono ligue e desligue o variac nos insanes especificados e meça a emperaura do uor, lançando os valores na abela. abela - emperauras inicial e final em cada ciclo Ciclo _max ( C) 70 0 ( C) Da abela, desaque os valores correspondenes ao úlimo ciclo medido: _ max_ e... C 0... C Compare o valor _max_e com o esperado (70 C).... 8

9 4. Levanameno da curva empo x correne de disjunor de baixa ensão 4. - Deermine aproximadamene o limiar de auação da proeção magnéica do disjunor de 5A. Para ano, inicie o erimeno com uma correne elevada (maior que 50 A) e observe que a aberura do disjunor é imediaa (auação do elemeno magnéico - proeção conra curo-circuio). Para isso, ajuse a posição do variac erimenalmene. A parir desse pono deve-se diminuir o valor da correne aé a obenção de uma correne mínima ( limiar ) onde a aberura do disjunor coninua imediaa, conforme ilusrado na Figura 5. empo limiar Figura 5 - Limiar de auação da proeção manéica limiar =...A 4. - Levane a curva empo x correne do disjunor de 5A, a parir do valor de correne deerminado no iem anerior e diminuindo sucessivamene a correne. Considere um mínimo de 5 ponos aé o limie inferior de 5 A. Complee a abela 3 e race o gráfico empo x correne na Figura 6. AENÇÃO: Para cada pono obido, permia o resfriameno do disjunor por um empo mínimo de minuos. abela 3 - Curva empo x correne do disjunor de 5 A Correne (A) empo(s) 9

10 5. Coordenação da proeção 5. - Considerando a equação de aquecimeno fio isolado ao ar livre (Eq. ()), preencha a primeira coluna da abela 4, supondo que o fio pare sempre da emperaura ambiene e alcança a emperaura máxima ( _max = 70 C) após o empo especificado. race na Figura 6 a correspondene curva empo x correne. abela 4 - Correnes para coordenação disjunor-fio empo(s) Correne fornecida pela Eq. () (A) Correne fornecida pela Eq. (6) (A) 30 (*) 0 (*) (*) A Eq. (6) pressupõe pequena duração do curocircuio e, assim, os valores de empo 0 s e 30 s são descarados Deermine a equação de suporabilidade do fio (hipóese adiabáica). Considere que (i) o fio se enconrava operando na emperaura máxima (70 C) anes da ocorrência do curo-circuio, e (ii) a emperaura máxima admissível do fio durane o curo-circuio é 50 C. Nese caso, em-se (processo adiabáico): [Calor produzido] = [Calor armazenado] ou R Q Q iso ou ainda Q Q R iso (6) 0

11 A resisência do uor na Eq. (6) deve ser calculada na emperaura máxima especificada (50 C).... Uilize a equação acima para preencher a segunda coluna da abela 4. race na Figura 6 a correspondene curva empo x correne. N: Demonsra-se facilmene que, num papel log-log, a Eq. (6) é represenada por uma rea com inclinação de aproximadamene Uilizando o gráfico da Figura 6, verifique: a) seleividade enre os disjunores de 5 A e 30 A b) adequação dos disjunores de 5 A e 30 A para proeger o fio de,5mm c) a diferença enre as duas curvas que descrevem o comporameno do fio Ligue o fio de,5 mm em série com o disjunor de 5 A e imponha correne de 50 A. Verifique se o disjunor abre anes ou depois da emperaura do uor alcançar 70C. Comene.

12 5.5 - Subsiua o disjunor de 5 A pelo de 30 A e repia o iem anerior. Comene. (Obs: se o disjunor não inerromper o circuio e a emperaura no uor ulrapassar um valor de 80 o C, desligue o circuio) Comene os resulados. 6. Conclusões

13 (s) A (A) Figura 6 3

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC)

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC) Deparameno de Engenharia Elérica Tópicos Especiais em Energia Elérica () ula 2.2 Projeo do Induor Prof. João mérico Vilela Projeo de Induores Definição do úcleo a Fig.1 pode ser observado o modelo de um

Leia mais

UM MÉTODO RÁPIDO PARA ANÁLISE DO COMPORTAMENTO TÉRMICO DO ENROLAMENTO DO ESTATOR DE MOTORES DE INDUÇÃO TRIFÁSICOS DO TIPO GAIOLA

UM MÉTODO RÁPIDO PARA ANÁLISE DO COMPORTAMENTO TÉRMICO DO ENROLAMENTO DO ESTATOR DE MOTORES DE INDUÇÃO TRIFÁSICOS DO TIPO GAIOLA ART643-07 - CD 262-07 - PÁG.: 1 UM MÉTD RÁPID PARA ANÁLISE D CMPRTAMENT TÉRMIC D ENRLAMENT D ESTATR DE MTRES DE INDUÇÃ TRIFÁSICS D TIP GAILA 1 - RESUM Jocélio de Sá; João Robero Cogo; Hécor Arango. objeivo

Leia mais

PSI 3263 Práticas de Eletricidade e Eletrônica I 2016

PSI 3263 Práticas de Eletricidade e Eletrônica I 2016 PSI 3263 Práticas de Eletricidade e Eletrônica I 2016 Relatório da Experiência 6 Condutores e Dispositivos de Proteção Nomes: N o USP: 1. Procedimento experimental 1.1 - Levantamento de curva de aquecimento

Leia mais

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

CIRCUITO RC SÉRIE. max

CIRCUITO RC SÉRIE. max ELETRICIDADE 1 CAPÍTULO 8 CIRCUITO RC SÉRIE Ese capíulo em por finalidade inroduzir o esudo de circuios que apresenem correnes eléricas variáveis no empo. Para ano, esudaremos o caso de circuios os quais

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

dr = ( t ) k. Portanto,

dr = ( t ) k. Portanto, Aplicações das Equações Diferenciais de ordem (Evaporação de uma goa) Suponha que uma goa de chuva esférica evapore numa aa proporcional à sua área de superfície Se o raio original era de mm e depois de

Leia mais

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig.

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig. Universidade Federal da Bahia EE isposiivos Semiconduores ENG C41 Lisa de Exercícios n o.1 1) O diodo do circuio da Fig. 1 se compora segundo a caracerísica linearizada por pares da Fig 1. R R (ma) 2R

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

projecto de postos de transformação

projecto de postos de transformação ARTGO TÉCNCO 17 Henrique Ribeiro da Silva Dep. de Engenharia Elecroécnica (DEE) do nsiuo Superior de Engenharia do Poro (SEP) projeco de posos de ransformação {.ª Pare - Cálculo dos Conduores} Apesar de

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

UNIDADE 2. t=0. Fig. 2.1-Circuito Com Indutor Pré-Carregado

UNIDADE 2. t=0. Fig. 2.1-Circuito Com Indutor Pré-Carregado UNIDAD 2 CIRCUITOS BÁSICOS COM INTRRUPTORS 2.1 CIRCUITOS D PRIMIRA ORDM 2.1.1 Circuio com Induor PréCarregado em Série com Diodo Seja o circuio represenado na Fig. 2.1. D i =0 Fig. 2.1Circuio Com Induor

Leia mais

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45 18 GABARITO 1 2 O DIA PROCESSO SELETIO/2005 ÍSICA QUESTÕES DE 31 A 45 31. O gálio é um meal cuja emperaura de fusão é aproximadamene o C. Um pequeno pedaço desse meal, a 0 o C, é colocado em um recipiene

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

Campo magnético variável

Campo magnético variável Campo magnéico variável Já vimos que a passagem de uma correne elécrica cria um campo magnéico em orno de um conduor aravés do qual a correne flui. Esa descobera de Orsed levou os cienisas a desejaram

Leia mais

Equações Diferenciais Ordinárias Lineares

Equações Diferenciais Ordinárias Lineares Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais

Leia mais

QUESTÃO 60 DA CODESP

QUESTÃO 60 DA CODESP UEÃO 60 D CODE - 0 êmpera é um ipo de raameno érmico uilizado para aumenar a dureza de peças de aço respeio da êmpera, é correo afirmar: ) a êmpera modifica de maneira uniforme a dureza da peça, independenemene

Leia mais

Circuitos Elétricos- módulo F4

Circuitos Elétricos- módulo F4 Circuios léricos- módulo F4 M 014 Correne elécrica A correne elécrica consise num movimeno orienado de poradores de cara elécrica por acção de forças elécricas. Os poradores de cara podem ser elecrões

Leia mais

AULA PRÁTICA-TEÓRICA 01 ANÁLISE DE CIRCUITOS COM DIODOS

AULA PRÁTICA-TEÓRICA 01 ANÁLISE DE CIRCUITOS COM DIODOS PráicaTeórica 01 Análise de circuios com diodos INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CURSO TÉCNICO DE ELETRÔNICA Elerônica I AULA PRÁTICATEÓRICA

Leia mais

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3 INF01 118 Técnicas Digiais para Compuação Conceios Básicos de Circuios Eléricos Aula 3 1. Fones de Tensão e Correne Fones são elemenos aivos, capazes de fornecer energia ao circuio, na forma de ensão e

Leia mais

FÍSICA II. Estudo de circuitos RC em corrente contínua

FÍSICA II. Estudo de circuitos RC em corrente contínua FÍSICA II GUIA DO 2º TRABALHO LABORATORIAL Esudo de circuios RC em correne conínua OBJECTIVOS Preende-se com ese rabalho que os alunos conacem com um circuio elécrico conendo resisências, condensadores

Leia mais

PROJETO DE ENGRENAGENS - CILÍNDRICAS DE DENTES RETOS E HELICOIDAIS. Prof. Alexandre Augusto Pescador Sardá

PROJETO DE ENGRENAGENS - CILÍNDRICAS DE DENTES RETOS E HELICOIDAIS. Prof. Alexandre Augusto Pescador Sardá PROJETO DE ENGRENAGENS - CILÍNDRICAS DE DENTES RETOS E HELICOIDAIS Prof. Alexandre Auguso Pescador Sardá INTRODUÇÃO Falha por flexão dos denes: ocorrerá quando quando a ensão significaiva nos denes igualar-se

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

Amplificadores de potência de RF

Amplificadores de potência de RF Amplificadores de poência de RF Objeivo: Amplificar sinais de RF em níveis suficienes para a sua ransmissão (geralmene aravés de uma anena) com bom rendimeno energéico. R g P e RF P CC Amplificador de

Leia mais

Ampliador com estágio de saída classe AB

Ampliador com estágio de saída classe AB Ampliador com eságio de saída classe AB - Inrodução Nese laboraório será esudado um ampliador com rês eságios empregando ransisores bipolares, com aplicação na faixa de áudio freqüência. O eságio de enrada

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

COMO CONHECER A DISTRIBUIÇÃO DE TEMPERATURA

COMO CONHECER A DISTRIBUIÇÃO DE TEMPERATURA ESUDO DA CONDUÇÃO DE CALOR OBJEIVOS - Deerminar a disribuição de emperaura em um meio - Calcular o fluo de calor usando a Lei de Fourier Aplicações: - Conhecer a ineridade esruural de um meio em aluns

Leia mais

Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir.

Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir. PROVA DE FÍSICA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) O gráico a seguir represena a curva de aquecimeno de 10 g de uma subsância à pressão de 1 am. Analise as seguines airmações. I. O pono de ebulição

Leia mais

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade

Leia mais

AULA PRÁTICA-TEÓRICA EXTRA SIMULAÇÃO DE CIRCUITOS COM MULTISIM

AULA PRÁTICA-TEÓRICA EXTRA SIMULAÇÃO DE CIRCUITOS COM MULTISIM INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CURSO TÉCNICO DE ELETRÔNICA Elerônica I AULA PRÁTICATEÓRICA EXTRA SIMULAÇÃO DE CIRCUITOS COM MULTISIM

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

Lista de Exercícios nº 3 - Parte IV

Lista de Exercícios nº 3 - Parte IV DISCIPLINA: SE503 TEORIA MACROECONOMIA 01/09/011 Prof. João Basilio Pereima Neo E-mail: joaobasilio@ufpr.com.br Lisa de Exercícios nº 3 - Pare IV 1ª Quesão (...) ª Quesão Considere um modelo algébrico

Leia mais

Conversores CC-CC: Conversor Buck- Boost

Conversores CC-CC: Conversor Buck- Boost 14 Conversores CCCC: Conversor Buck Boos Mea dese capíulo Capíulo Esudar o princípio de funcionameno do conversor BuckBoos objeivos Enender o funcionameno dos conversores cccc do ipo BuckBoos Analisar

Leia mais

Conceitos Básicos Circuitos Resistivos

Conceitos Básicos Circuitos Resistivos Conceios Básicos Circuios esisivos Elecrónica 005006 Arnaldo Baisa Elecrónica_biomed_ef Circuio Elécrico com uma Baeria e uma esisência I V V V I Lei de Ohm I0 V 0 i0 Movimeno Das Pás P >P P >P Líquido

Leia mais

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC EXPERIÊNIA 7 ONSTANTE DE TEMPO EM IRUITOS R I - OBJETIVO: Medida da consane de empo em um circuio capaciivo. Medida da resisência inerna de um volímero e da capaciância de um circuio aravés da consane

Leia mais

Versão preliminar serão feitas correções em sala de aula 1

Versão preliminar serão feitas correções em sala de aula 1 Versão preinar serão feias correções em sala de aula 7.. Inrodução Dependendo das condições de soliciação, o maerial pode se enconrar sob diferenes esados mecânicos. Quando as cargas (exernas) são pequenas

Leia mais

4. SINAL E CONDICIONAMENTO DE SINAL

4. SINAL E CONDICIONAMENTO DE SINAL 4. SINAL E CONDICIONAMENO DE SINAL Sumário 4. SINAL E CONDICIONAMENO DE SINAL 4. CARACERÍSICAS DOS SINAIS 4.. Período e frequência 4..2 alor médio, valor eficaz e valor máximo 4.2 FILRAGEM 4.2. Circuio

Leia mais

Física. Física Módulo 1

Física. Física Módulo 1 Física Módulo 1 Nesa aula... Movimeno em uma dimensão Aceleração e ouras coisinhas O cálculo de x() a parir de v() v( ) = dx( ) d e x( ) x v( ) d = A velocidade é obida derivando-se a posição em relação

Leia mais

= + 3. h t t. h t t. h t t. h t t MATEMÁTICA

= + 3. h t t. h t t. h t t. h t t MATEMÁTICA MAEMÁICA 01 Um ourives possui uma esfera de ouro maciça que vai ser fundida para ser dividida em 8 (oio) esferas menores e de igual amanho. Seu objeivo é acondicionar cada esfera obida em uma caixa cúbica.

Leia mais

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é:

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é: PROCESSO SELETIVO 27 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 31. Considere o circuio mosrado na figura abaixo: S V R C Esando o capacior inicialmene descarregado, o gráfico que represena a correne

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F- 18 o semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno 1-D Conceios: posição, moimeno, rajeória Velocidade média Velocidade

Leia mais

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco Função de risco, h() 3. Função de risco ou axa de falha Manuenção e Confiabilidade Prof. Flavio Fogliao Mais imporane das medidas de confiabilidade Traa-se da quanidade de risco associada a uma unidade

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

Critérios e Metodologia de Apuração de Superfície de Volatilidade

Critérios e Metodologia de Apuração de Superfície de Volatilidade Criérios e Meodologia de Apuração de Superfície de Volailidade Diariamene são calculadas superfícies de volailidade implícia de odos os vencimenos de conraos de opções em que há posição em abero e/ou séries

Leia mais

SELECÇÃO DE MOTORES ELÉCTRICOS

SELECÇÃO DE MOTORES ELÉCTRICOS SELECÇÃO DE MOTORES ELÉCTRICOS FACTORES QUE INFLUEM NA SELECÇÃO DO MOTOR ELÉCTRICO CARGA ACCIONADA E CARACTERÍSTICAS DE SERVIÇO Diagramas de carga: oência e/ ou binário requeridos e sua variação. Classe

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

Atividade experimental

Atividade experimental Nome: n o Série/Classe: Daa: / / Aividade experimenal ermomeria, calorimeria e ransferência de calor Componenes da equipe: Nome Nu m. Série/Cla sse Daa 1 Daa 2 Conrole dos equipamenos uilizados Equipamenos

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16 Equações Simulâneas Aula 16 Gujarai, 011 Capíulos 18 a 0 Wooldridge, 011 Capíulo 16 Inrodução Durane boa pare do desenvolvimeno dos coneúdos desa disciplina, nós nos preocupamos apenas com modelos de regressão

Leia mais

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos. 4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia

Leia mais

Análise de Circuitos Dinâmicos no Domínio do Tempo

Análise de Circuitos Dinâmicos no Domínio do Tempo Teoria dos ircuios e Fundamenos de Elecrónica Análise de ircuios Dinâmicos no Domínio do Tempo Teresa Mendes de Almeida TeresaMAlmeida@is.ul.p DEE Área ienífica de Elecrónica T.M.Almeida IST-DEE- AElecrónica

Leia mais

APLICAÇÃO DE MODELAGEM NO CRESCIMENTO POPULACIONAL BRASILEIRO

APLICAÇÃO DE MODELAGEM NO CRESCIMENTO POPULACIONAL BRASILEIRO ALICAÇÃO DE MODELAGEM NO CRESCIMENTO OULACIONAL BRASILEIRO Adriano Luís Simonao (Faculdades Inegradas FAFIBE) Kenia Crisina Gallo (G- Faculdade de Ciências e Tecnologia de Birigüi/S) Resumo: Ese rabalho

Leia mais

Valor do Trabalho Realizado 16.

Valor do Trabalho Realizado 16. Anonio Vicorino Avila Anonio Edésio Jungles Planejameno e Conrole de Obras 16.2 Definições. 16.1 Objeivo. Valor do Trabalho Realizado 16. Parindo do conceio de Curva S, foi desenvolvida pelo Deparameno

Leia mais

Noções de Espectro de Freqüência

Noções de Espectro de Freqüência MINISTÉRIO DA EDUCAÇÃO - Campus São José Curso de Telecomunicações Noções de Especro de Freqüência Marcos Moecke São José - SC, 6 SUMÁRIO 3. ESPECTROS DE FREQÜÊNCIAS 3. ANÁLISE DE SINAIS NO DOMÍNIO DA

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

ELETRÔNICA DE POTÊNCIA II

ELETRÔNICA DE POTÊNCIA II EETRÔNIA DE POTÊNIA II AUA 2 ONEROR BUK (sep-down) Prof. Marcio Kimpara UFM - Universidade Federal de Mao Grosso do ul FAENG Faculdade de Engenharias, Arquieura e Urbanismo e Geografia Aula Anerior...

Leia mais

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 8 Inrodução a Cinemáica dos Fluidos Tópicos Abordados Nesa Aula Cinemáica dos Fluidos. Definição de Vazão Volumérica. Vazão em Massa e Vazão em Peso. Definição A cinemáica dos fluidos é a ramificação

Leia mais

são as resistências térmicas de superfície à superfície para cada seção (a, b,, n), determinadas pela expressão 4; são as áreas de cada seção

são as resistências térmicas de superfície à superfície para cada seção (a, b,, n), determinadas pela expressão 4; são as áreas de cada seção ABNT NBR 5220-2 - Desempenho érmico de edificações - Pare 2: Méodos de cálculo da ransmiância érmica, da capacidade érmica, do araso érmico e do faor solar de elemenos e componenes de edificações Esabelece

Leia mais

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III UNIVERSIDADE DA BEIRA INTERIOR FACUDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III icenciaura de Economia (ºAno/1ºS) Ano ecivo 007/008 Caderno de Exercícios Nº 1

Leia mais

Figura 1 Carga de um circuito RC série

Figura 1 Carga de um circuito RC série ASSOIAÇÃO EDUAIONAL DOM BOSO FAULDADE DE ENGENHAIA DE ESENDE ENGENHAIA ELÉTIA ELETÔNIA Disciplina: Laboraório de ircuios Eléricos orrene onínua 1. Objeivo Sempre que um capacior é carregado ou descarregado

Leia mais

Questões sobre derivadas. 1. Uma partícula caminha sobre uma trajetória qualquer obedecendo à função horária 2

Questões sobre derivadas. 1. Uma partícula caminha sobre uma trajetória qualquer obedecendo à função horária 2 Quesões sobre deriadas. Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária s ( = - + 0 ( s em meros e em segundos. a Deermine a lei de sua elocidade em função do empo. b Deermine

Leia mais

2. DÍODOS DE JUNÇÃO. Dispositivo de dois terminais, passivo e não-linear

2. DÍODOS DE JUNÇÃO. Dispositivo de dois terminais, passivo e não-linear 2. ÍOOS E JUNÇÃO Fernando Gonçalves nsiuo Superior Técnico Teoria dos Circuios e Fundamenos de Elecrónica - 2004/2005 íodo de Junção isposiivo de dois erminais, passivo e não-linear Foografia ânodo Símbolo

Leia mais

APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E 2ª ORDEM COM O SOFTWARE MAPLE

APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E 2ª ORDEM COM O SOFTWARE MAPLE 170 APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E ª ORDEM COM O SOFTWARE MAPLE PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS PUC MINAS MESTRADO PROFISSIONAL

Leia mais

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriee Righi LISTA DE EXERCÍCIOS # 1 Aenção: Aualize seu adobe, ou subsiua os quadrados por negaivo!!! 1) Deermine

Leia mais

RESSALTO HIDRÁULICO Nome: nº

RESSALTO HIDRÁULICO Nome: nº RESSALTO HIDRÁULICO Nome: nº O ressalo hidráulico é um dos fenômenos imporanes no campo da hidráulica. Ele foi primeiramene descrio por Leonardo da Vinci e o primeiro esudo experimenal foi crediado a Bidone

Leia mais

ANÁLISE DE TRANSIENTES COM ALTOS PERCENTUAIS DE TAMPONAMENTO DOS TUBOS DOS GERADORES DE VAPOR DE ANGRA 1

ANÁLISE DE TRANSIENTES COM ALTOS PERCENTUAIS DE TAMPONAMENTO DOS TUBOS DOS GERADORES DE VAPOR DE ANGRA 1 ANÁLISE DE TRANSIENTES COM ALTOS PERCENTUAIS DE TAMPONAMENTO DOS TUBOS DOS GERADORES DE VAPOR DE ANGRA 1 Márcio Poubel Lima *, Laercio Lucena Marins Jr *, Enio Anonio Vanni *, Márcio Dornellas Machado

Leia mais

ENSAIO SOBRE A FLUÊNCIA NA VIBRAÇÃO DE COLUNAS

ENSAIO SOBRE A FLUÊNCIA NA VIBRAÇÃO DE COLUNAS Congresso de Méodos Numéricos em Engenharia 215 Lisboa, 29 de Junho a 2 de Julho, 215 APMTAC, Porugal, 215 ENSAIO SOBRE A FLUÊNCIA NA VIBRAÇÃO DE COLUNAS Alexandre de Macêdo Wahrhafig 1 *, Reyolando M.

Leia mais

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Funções exponencial e logarítmica

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Funções exponencial e logarítmica Escola Secundária da Sé-Lamego Ficha de Trabalho de Maemáica Ano Lecivo de /4 Funções eponencial e logarímica - º Ano Nome: Nº: Turma: 4 A unção ( ),, é usada para deerminar o valor de um carro (em euros)

Leia mais

ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE

ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE TRABALHO PRÁTICO Nº 1 ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE Objecivo - Preende-se esudar o movimeno recilíneo e uniformemene acelerado medindo o empo gaso

Leia mais

EXERCICIOS DE APROFUNDAMENTO MATEMÁTICA LOGARITMOS 2015

EXERCICIOS DE APROFUNDAMENTO MATEMÁTICA LOGARITMOS 2015 EXERCICIOS DE APROFUNDAMENTO MATEMÁTICA LOGARITMOS 05. (Ia 05) Considere as seguines afirmações sobre números reais: I. Se a expansão decimal de x é infinia e periódica, enão x é um número racional. II..

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento Fisica I - IO Cinemáica Veorial Moimeno Reilíneo Prof. Crisiano Olieira Ed. Basilio Jafe sala crislpo@if.usp.br Moimeno Mecânica : relaciona força, maéria e moimeno Cinemáica : Pare da mecânica que descree

Leia mais

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou 6ROXomR&RPHQWDGD3URYDGH)VLFD. O sisema inernacional de unidades e medidas uiliza vários prefixos associados à unidade-base. Esses prefixos indicam os múliplos decimais que são maiores ou menores do que

Leia mais

4 Modelagem e metodologia de pesquisa

4 Modelagem e metodologia de pesquisa 4 Modelagem e meodologia de pesquisa Nese capíulo será apresenada a meodologia adoada nese rabalho para a aplicação e desenvolvimeno de um modelo de programação maemáica linear misa, onde a função-objeivo,

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

NOTA TÉCNICA. Nota Sobre Evolução da Produtividade no Brasil. Fernando de Holanda Barbosa Filho

NOTA TÉCNICA. Nota Sobre Evolução da Produtividade no Brasil. Fernando de Holanda Barbosa Filho NOTA TÉCNICA Noa Sobre Evolução da Produividade no Brasil Fernando de Holanda Barbosa Filho Fevereiro de 2014 1 Essa noa calcula a evolução da produividade no Brasil enre 2002 e 2013. Para ano uiliza duas

Leia mais

Monitoring / Monitoração

Monitoring / Monitoração Monioring / Monioração Mediação de correne e ensão Com alimenação flexível Transduor de correne de aé 12 C Os ransduores de correne aivos converem correnes alernadas senoidais de aé 12. fone de alimenação

Leia mais

Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indústria de Óleos Vegetais

Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indústria de Óleos Vegetais XI SIMPEP - Bauru, SP, Brasil, 8 a 1 de novembro de 24 Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indúsria de Óleos Vegeais Regiane Klidzio (URI) gep@urisan.che.br

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

ROTEIRO DE CÁLCULO. Este roteiro de cálculo se aplica ao projeto de trocadores de calor casco e tubos, sem mudança de fase

ROTEIRO DE CÁLCULO. Este roteiro de cálculo se aplica ao projeto de trocadores de calor casco e tubos, sem mudança de fase ROEIRO DE CÁLCULO Ese roeiro de cálculo se aplica ao projeo de rocadores de calor casco e ubos, sem mudança de fase . Deerminar qual fluido passa pelo ubo e qual passa pelo casco. Diferença de emperauras

Leia mais

ANÁLISE DE ESTRUTURAS VIA ANSYS

ANÁLISE DE ESTRUTURAS VIA ANSYS 2 ANÁLISE DE ESTRUTURAS VIA ANSYS A Análise de esruuras provavelmene é a aplicação mais comum do méodo dos elemenos finios. O ermo esruura não só diz respeio as esruuras de engenharia civil como pones

Leia mais

Análise de séries de tempo: modelos de decomposição

Análise de séries de tempo: modelos de decomposição Análise de séries de empo: modelos de decomposição Profa. Dra. Liane Werner Séries de emporais - Inrodução Uma série emporal é qualquer conjuno de observações ordenadas no empo. Dados adminisraivos, econômicos,

Leia mais

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são O ondensador O poencial elécrico de um conduor aumena à medida que lhe fornecemos carga elécrica. Esas duas grandezas são direcamene proporcionais. No enano, para a mesma quanidade de carga, dois conduores

Leia mais

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço Física e Química A Ficha de rabalho nº 2: Unidade 1 Física 11.º Ano Moimenos na Terra e no Espaço 1. Um corpo descree uma rajecória recilínea, sendo regisada a sua posição em sucessios insanes. Na abela

Leia mais

GERAÇÃO DE PREÇOS DE ATIVOS FINANCEIROS E SUA UTILIZAÇÃO PELO MODELO DE BLACK AND SCHOLES

GERAÇÃO DE PREÇOS DE ATIVOS FINANCEIROS E SUA UTILIZAÇÃO PELO MODELO DE BLACK AND SCHOLES XXX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO Mauridade e desafios da Engenharia de Produção: compeiividade das empresas, condições de rabalho, meio ambiene. São Carlos, SP, Brasil, 1 a15 de ouubro de

Leia mais

ELECTRÓNICA DE POTÊNCIA CONVERSORES CC-CC COM ISOLAMENTO GALVÂNICO

ELECTRÓNICA DE POTÊNCIA CONVERSORES CC-CC COM ISOLAMENTO GALVÂNICO ONERSORES ONERSORES OM ISOLAMENTO GALÂNIO FONTES DE DE ALIMENTAÇÃO OMUTADAS caracerísicas:.. saída saída regulada (regulação de de linha linha e regulação de de carga) carga).. isolameno galvânico 3. 3.

Leia mais

ELECTRÓNICA DE POTÊNCIA II

ELECTRÓNICA DE POTÊNCIA II E.N.I.D.H. Deparameno de Radioecnia APONTAMENTOS DE ELECTRÓNICA DE POTÊNCIA II (Capíulo 2) José Manuel Dores Cosa 2000 42 ÍNDICE Inrodução... 44 CAPÍTULO 2... 45 CONVERSORES COMUTADOS DE CORRENTE CONTÍNUA...

Leia mais

CONVERSORES CC-CC COM ISOLAMENTO GALVÂNICO

CONVERSORES CC-CC COM ISOLAMENTO GALVÂNICO ONERSORES ELETRÓNIOS DE POTÊNIA A ALTA FREQUÊNIA ONERSORES com isolameno galvânico ONERSORES OM ISOLAMENTO GALÂNIO FONTES DE DE ALIMENTAÇÃO OMUTADAS caracerísicas:.. saída saída regulada (regulação de

Leia mais

GABARITO DE QUÍMICA INSTITUTO MILITAR DE ENGENHARIA

GABARITO DE QUÍMICA INSTITUTO MILITAR DE ENGENHARIA GABARITO DE QUÍMICA INSTITUTO MILITAR DE ENGENHARIA Realizada em 8 de ouubro de 010 GABARITO DISCURSIVA DADOS: Massas aômicas (u) O C H N Na S Cu Zn 16 1 1 14 3 3 63,5 65,4 Tempo de meia - vida do U 38

Leia mais

Física e Química A 11.º Ano N.º 2 - Movimentos

Física e Química A 11.º Ano N.º 2 - Movimentos Física e Química A 11.º Ano N.º 2 - Moimenos 1. Uma parícula P 1 descree uma rajecória circular, de raio 1,0 m, parindo da posição A no senido indicado na figura 1 (a). fig. 1 Uma oura parícula P 2 descree

Leia mais

CORREIOS. Prof. Sérgio Altenfelder

CORREIOS. Prof. Sérgio Altenfelder 15. Uma pessoa preende medir a alura de um edifício baseado no amanho de sua sombra projeada ao solo. Sabendo-se que a pessoa em 1,70m de alura e as sombras do edifício e da pessoa medem 20m e 20cm respecivamene,

Leia mais

Kcel Motores e Fios Ltda.

Kcel Motores e Fios Ltda. Í N D I C E 1. Fundamenos gerais... 5 1.1 Moores de correne conínua... 5 1.2 Moores de correne alernada... 5 Família de moores eléricos... 5 1.2.1 Moores de indução... 6 1.2.1.1 Moores de indução monofásicos...

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios TP30 Modulação Digial Prof.: MSc. Marcelo Carneiro de Paiva Primeira Lisa de Exercícios Caracerize: - Transmissão em Banda-Base (apresene um exemplo de especro de ransmissão). - Transmissão em Banda Passane

Leia mais

Perdas Técnicas e Comerciais de Energia Elétrica em Sistemas de Distribuição

Perdas Técnicas e Comerciais de Energia Elétrica em Sistemas de Distribuição Perdas Técnicas e Comerciais de Energia Elérica em Sisemas de Disribuição D. P. Bernardon 1,, IEEE, L. Comasseo 1,, IEEE, L. N. Canha, A. R. Abaide 1. AES Sul - Disribuidora Gaúcha de Energia S/A,. UFSM

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

Diodos. Símbolo. Função (ideal) Conduzir corrente elétrica somente em um sentido. Tópico : Revisão dos modelos Diodos e Transistores

Diodos. Símbolo. Função (ideal) Conduzir corrente elétrica somente em um sentido. Tópico : Revisão dos modelos Diodos e Transistores 1 Tópico : evisão dos modelos Diodos e Transisores Diodos Símbolo O mais simples dos disposiivos semiconduores. Função (ideal) Conduzir correne elérica somene em um senido. Circuio abero Polarização 2

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo PROBLEMAS RESOLVIDOS DE FÍSIA Prof. Anderson oser Gaudio Deparameno de Física enro de iências Eaas Universidade Federal do Espírio Sano hp://www.cce.ufes.br/anderson anderson@npd.ufes.br Úlima aualização:

Leia mais