consumidores por hora. Uma média de três clientes por hora chegam solicitando serviço. A capacidade

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "consumidores por hora. Uma média de três clientes por hora chegam solicitando serviço. A capacidade"

Transcrição

1 D i i l i n a : P e u i a O e r a i o n a l C u r o : E e i a l i z a ç ã o e m M é t o d o Q u a n t i t a t i v o : E t a t í t i a e M a t e m á t i a A l i a d a i t a d o i d e e x e r í i o o b r e T e o r i a d a F i l a. Uma etação de erviço é formada or um únio ervidor ue ode atender uma média de doi onumidore or hora. Uma média de trê liente or hora hegam oliitando erviço. A aaidade do itema é de trê liente. (i Na média uanto liente oteniai entram no itema or hora? (ii Qual a robabilidade de ue o ervidor etea ouado?. Uma média de 3 arro or hora tenta utilizar o drive-in do retaurante Mi ofone. Se um total de mai do ue uatro arro etão na fila (inluindo o arro endo atendido um liente não entrará na fila. eva em média uatro minuto ara ue um liente ea atendido. (i Qual é o número médio de arro eerando ara erem atendido or hora? (ii Na média uanto arro erão atendido or hora? (iii Eu reém entrei na fila. Quanto temo vai levar até reeber minha omida? 3. Um lava ráido automátio funiona om omente uma baia. O arro hegam onforme uma ditribuição de Poion om uma média de 4 arro or hora e odem eerar num etaionamento om uatro vaga. Se o etaionamento etiver heio o liente ue hegam deitem e rouram outro lava ráido. O temo ara lavar e limar um arro egue uma ditribuição exonenial, om uma média de minuto. O rorietário uer determinar o imato da vaga limitada obre a erda de liente ara a onorrênia. Coniderando ea ituação, determine: (i A robabilidade de ue um arro ue hega ae imediatamente à baia de lavagem. (ii Temo de eera etimado até o iníio do erviço. (iii Número eerado de vaga vazia no etaionamento. (iv A robabilidade de toda a vaga etarem ouada. (v A erentagem de redução de temo médio de erviço ue limitará o temo médio no itema a aroximadamente minuto (reolva or tentativa-e-erro. (vi Conidere o lava ráido do exemlo anterior. Determine o número de vaga ue deve exitir no etaionamento ara ue o erentual de arro erdido ara a onorrênia ea inferior a %. 4. Mediçõe feita em um roteador motram ue aote de dado hegam ara erem roteado om uma taxa média de 5 aote or egundo ( e ão enaminhado (roeado om uma média de um aote a ada,5 m. O roteador tem eu buffer (área de eera limitado a um máximo de 5 aote. Determine: (i A taxa efetiva da hegada de aote. (ii A robabilidade de ue o buffer etea heio. Prof. or í Viali, Dr. - v ial - htt: //www. ur.br /famat /via li/

2 D i i l i n a : P e u i a O e r a i o n a l C u r o : E e i a l i z a ç ã o e m M é t o d o Q u a n t i t a t i v o : E t a t í t i a e M a t e m á t i a A l i a d a i t a d o i d e e x e r í i o o b r e T e o r i a d a F i l a (iii O tamanho médio da fila. (iv O número de aote no itema. (v O temo ue um aote gata na fila. 5. Uma ofiina meânia tem 4 meânio endo ue ada arro neeitando onerto é atendido or um únio meânio. Além do arro endo onertado ó abem mai 6 automóvei no átio da ofiina e uando ele etá heio o freguee tem ue rourar outra ofiina. A taxa média de hegada de arro ara onerto é de 3 or dia. Cada meânio onerta, em média, arro or dia. (i Qual a robabilidade da ofiina etar vazia? (ii Qual o no médio de arro eerando onerto? (iii Qual o no médio de arro na ofiina? (iv Do automóvei ue rouram a ofiina, uanto em média fiam? (v Quanto temo em média um arro eera na fila? (vi Quanto temo em média um arro fia na ofiina? (vii Qual a robabilidade de um arro hegar e ter vaga na ofiina? 6. O eritório de uma emrea aérea tem funionária atendendo telefonema ara reerva de voo. Além dio, uma hamada ode fiar em eera até uma da funionária etar dionível ara atender. Se a 3 linha etão ouada a hamada reebe o inal de ouado e a reerva é erdida. A hamada oorrem aleatoriamente (Poion a uma taxa média de uma or minuto. A duração de ada ligação tem uma ditribuição exonenial om uma média de,5 minuto. Ahe a robabilidade de ue: (i Uma hamada ea imediatamente atendida or uma funionária. (ii A hamada fiará na linha de eera. (iii A hamada reeberá o inal de ouado. (iv O número médio de hamada erdida em um dia, oniderando ue o erviço funiona 4 hora. 7. Uma barbearia de barbeiro ode aomodar um máximo de 5 eoa de ada vez (4 eerando e endo atendida. O freguee hegam de aordo om uma ditribuição de Poion em média 5 a ada hora. O barbeiro atende em média 4 liente or hora egundo uma exonenial. (i Que erentagem do temo o barbeiro etá oioo? (ii Qual a taxa de hegada efetiva de freguee? (iii Que fração de freguee oteniai vai embora? (iv Qual o número médio de freguee eerando ara erem atendido? (v Quanto temo em média um freguê fia na barbearia? Prof. or í Viali, Dr. - v ial - htt: //www. ur.br /famat /via li/

3 D i i l i n a : P e u i a O e r a i o n a l C u r o : E e i a l i z a ç ã o e m M é t o d o Q u a n t i t a t i v o : E t a t í t i a e M a t e m á t i a A l i a d a i t a d o i d e e x e r í i o o b r e T e o r i a d a F i l a 8. Uma euena omanhia de tranorte rodoviário oui uma frota homogênea, tanto na aaidade de tranorte uanto na vida útil de eu oito aminhõe. Obervou-e ue o aminhõe uebram egundo uma ditribuição exonenial de média de dia, devendo entrar em manutenção. Exite uma únia ofiina ara ee fim ua euie de meânio gata no onerto de ada veíulo um temo exonenialmente ditribuído om média de ino dia. Analie a efiiênia da ofiina, alulando a ua araterítia oeraionai. 9. Um gruo de 5 máuina é utilizado ara realizar tarefa em uma fábria. Cada máuina uebra egundo um roeo de Poion de taxa de dua veze a hora. A máuina uebrada ão onertada or trê funionário ue realizam o onerto em temo exonenialmente ditribuído om média de 45 minuto. Avalie o funionamento dee gruo de máuina.. A Toolo oera uma ofiina de uinagem om um total de máuina. Sabe-e ue ada máuina uebra uma vez a ada dua hora, em média. O onerto demora minuto, em média. Tanto o temo entre uebra uanto o de onerto eguem uma exonenial. A Toolo uer determinar o número ótimo de meânio de manutenção neeário ara manter a ofiina em funionamento onfortavelmente. Analie a ituação om uma invetigação obre a rodutividade da máuina em função do número de meânio de manutenção. Tal medida é definida omo: Produtividade da máuina (Má. dionívei Má. uebrada/má. dionívei ( - S /. Um oerador uida de 5 máuina. Aó ada tarefa a máuina deve er reautada ante de iniiar a róxima. O temo ara roear uma tarefa e ditribui de aordo om uma exonenial om média de 45 minuto. O temo de rearação ara a róxima tarefa egue uma exonenial om média de 8 minuto. (a Determine o número médio de máuina ue etão eerando aute ou endo autada. (b Calule a robabilidade de toda a máuina etarem funionando. ( Determine o temo médio de araliação de uma máuina.. Conidere um aino om máuina aça-níuei ue onedem rêmio egundo um roeo de Poion de taxa de doi rêmio or hora. Cada vez ue uma máuina onede um rêmio, fia travada até ue um atendente a oloue em funionamento novamente. Exite no aino um únio atendente ara realizar ee erviço em um temo exonenialmente ditribuído om média de minuto. Determine: (a a robabilidade de exitirem mai do ue 5 aça-níuei travado em um dado intante e (b o número médio de aça-níuei travado em um dado intante. ( o temo médio ue um açaníuel fia fora de erviço. Prof. or í Viali, Dr. - v ial - htt: //www. ur.br /famat /via li/

4 D i i l i n a : P e u i a O e r a i o n a l C u r o : E e i a l i z a ç ã o e m M é t o d o Q u a n t i t a t i v o : E t a t í t i a e M a t e m á t i a A l i a d a i t a d o i d e e x e r í i o o b r e T e o r i a d a F i l a A notação utilizada na teoria da fila é variada, ma em geral, a eguinte ão omun: número médio de liente ue entram no itema or unidade de temo; número médio de liente atendido (ue aem do itema or unidade de temo; número médio de liente no itema; número médio de liente na fila; número médio de liente endo atendido; temo médio ue o liente fia no itema; temo médio ue o liente fia na fila; temo médio ue um liente leva ara er atendido; P(T > t a robabilidade de ue um liente fiue mai do ue um temo t no itema; P(T > t a robabilidade de ue um liente fiue mai do ue um temo t na fila. Aim e um itema de fila etá em etado etaionário, tem-e: (ei de ittle k k, onde k robabilidade de ue exitam k liente no itema. Ob. O valor é denominado de taxa de ouação do itema. Sitema M/M//GD// ( Aeito no itema ( e [ ( ( ( ] ( ( ( Se /,,..., ( Taxa de utilização do ervidor ou robabilidade de ue ele etea ouado r Taxa de reeitado elo itema Prof. or í Viali, Dr. - v ial - htt: //www. ur.br /famat /via li/

5 D i i l i n a : P e u i a O e r a i o n a l C u r o : E e i a l i z a ç ã o e m M é t o d o Q u a n t i t a t i v o : E t a t í t i a e M a t e m á t i a A l i a d a i t a d o i d e e x e r í i o o b r e T e o r i a d a F i l a Sitema M/M//GD/ m ( (! (! (! (!! e e { [ (! ( ( (!! S! ( { ( ] [( ( ] ( ( } e e } e e!! e,,..., - e,..., ( (! ( ( (! { [ ( ( ]} e e ( (! { ( ( (! [ ( ( ]} e e O itema M/M//GD/K/K e,,.., e,,..., K K K! K (... K! K ( K K! K K P! k P e,,.., (K (K k! P e,,..., K! S (K Prof. orí Viali, Dr. - - htt://www. ur.br/famat /viali/

operação. Determine qual o percentual de vezes que o servidor adicional será acionado.

operação. Determine qual o percentual de vezes que o servidor adicional será acionado. P r i m e i r o e m e t r e d e 2 4 Revião da Poion e da Exponencial. Suponha ue o aceo a um ervidor de web iga uma Poion com taxa de uatro aceo por minuto. (i) Encontre a probabilidade de ue ocorram aceo

Leia mais

A notação utilizada na teoria das filas é variada mas, em geral, as seguintes são comuns:

A notação utilizada na teoria das filas é variada mas, em geral, as seguintes são comuns: A notação utilizada na teoria da fila é variada ma, em geral, a eguinte ão comun: λ número médio de cliente que entram no itema or unidade de temo; µ número médio de cliente atendido (que aem do itema)

Leia mais

D i s c i p l i n a : P e s q u i s a O p e r a c i o n a l T e o r i a d a s f i l a s

D i s c i p l i n a : P e s q u i s a O p e r a c i o n a l T e o r i a d a s f i l a s P r i m e i r o e m e t r e d e 2 2 evião da Poion e da Exonenial. Suonha ue o aeo a um ervidor de web iga uma Poion om taxa de uatro aeo or minuto. (i) Enontre a robabilidade de ue oorram aeo num eríodo

Leia mais

Teoria de Filas. Agner Krarup Erlang (*1878, Lonborg, Dinamarca; 1929, Copenhagen, Dinamarca). Fernando Nogueira Teoria de Filas 1

Teoria de Filas. Agner Krarup Erlang (*1878, Lonborg, Dinamarca; 1929, Copenhagen, Dinamarca). Fernando Nogueira Teoria de Filas 1 Teoria de Fila Ager Kraru Erlag (*878, Loborg, Diamarca; 99, Coehage, Diamarca). Ferado Nogueira Teoria de Fila Itrodução O etudo de Teoria de Fila trata com o feômeo de aguardar em fila uado medida rereetativa

Leia mais

FORMULÁRIO DE TEORIA DAS FILAS (QUEUEING THEORY)

FORMULÁRIO DE TEORIA DAS FILAS (QUEUEING THEORY) D i i l i n a : u i a O r a i o n a l I I T o r i a d a f i l a - F o r m u l á r i o S g u n d o m t r d FOMUÁIO DE TEOIA DAS FIAS (QUEUEING THEOY Na notação d ndall uma fila é drita or: A/B/C/Z//m Ou

Leia mais

Controle Servo e Regulatório

Controle Servo e Regulatório ontrole Sero e Regulatório Outro Proeo de Searação Prof a Ninoka Bojorge Deartamento de Engenharia Químia e de Petróleo U Sitema de mitura de orrente, w 2, w 2 Relembrando Exemlo da aula anterior A, w

Leia mais

Tensão Induzida por Fluxo Magnético Transformador

Tensão Induzida por Fluxo Magnético Transformador defi deartamento de fíica Laboratório de Fíica www.defi.ie.i.t Tenão Induzida or Fluxo Magnético Tranformador Intituto Suerior de Engenharia do Porto- Deartamento de Fíica Rua Dr. António Bernardino de

Leia mais

Objectivo Geral: Familiarização com os conceitos de sinais, espectros e modulação.

Objectivo Geral: Familiarização com os conceitos de sinais, espectros e modulação. Deartamento de Engenharia Electrotécnica Secção de Telecomunicaçõe Metrado integrado em Engenharia Electrotécnica e de Comutadore Licenciatura em Engenharia Informática º Trabalho de Laboratório Gruo:

Leia mais

Quantas equações existem?

Quantas equações existem? www2.jatai.ufg.br/oj/index.php/matematica Quanta equaçõe exitem? Rogério Céar do Santo Profeor da UnB - FUP profeorrogeriocear@gmail.com Reumo O trabalho conite em denir a altura de uma equação polinomial

Leia mais

3 Conceitos Fundamentais

3 Conceitos Fundamentais 3 Coneitos Fundamentais Neste aítulo são aresentados oneitos fundamentais ara o entendimento e estudo do omressor axial, assim omo sua modelagem termodinâmia 3 Máquinas de Fluxo As máquinas de fluxo odem

Leia mais

Professora FLORENCE. Resolução:

Professora FLORENCE. Resolução: 1. (FEI-SP) Qual o valor, em newton, da reultante da força que agem obre uma maa de 10 kg, abendo-e que a mema poui aceleração de 5 m/? Reolução: F m. a F 10. 5 F 50N. Uma força contante F é aplicada num

Leia mais

Observação: CURSOS MICROSOFT

Observação: CURSOS MICROSOFT Obervação: O material utilizado nete curo é de propriedade e ditribuição da emprea Microoft, podendo er utilizado por qualquer peoa no formato de ditribuição WEB e leitura em PDF conforme decrito na lei

Leia mais

Investigação Operacional

Investigação Operacional Ivetigação Operacioal Fila de Epera Liceciatura em Egeharia Civil Liceciatura em Egeharia do Território Nuo Moreira - 4/5 roblema Nuo Moreira - 4/5 No erviço de urgêcia do hopital da cidade o paciete ão

Leia mais

CAPÍTULO 6 - Testes de significância

CAPÍTULO 6 - Testes de significância INF 16 CAPÍTULO 6 - Tete de ignificância Introdução Tete de ignificância (também conhecido como Tete de Hipótee) correpondem a uma regra deciória que no permite rejeitar ou não rejeitar uma hipótee etatítica

Leia mais

3 Amplificador óptico a fibra dopada

3 Amplificador óptico a fibra dopada 3 Amlificador ótico a fibra doada Em qualquer itema de tranmião o amlificador tem um ael imortante de catar o inal que leva a informação, amlificá-lo, e devolvê-lo ara o canal de tranmião ou ara o recetor,

Leia mais

MOVIMENTOS VERTICAIS NO VÁCUO

MOVIMENTOS VERTICAIS NO VÁCUO Diciplina de Fíica Aplicada A 1/ Curo de Tecnólogo em Getão Ambiental Profeora M. Valéria Epíndola Lea MOVIMENTOS VERTICAIS NO VÁCUO Agora etudaremo o movimento na direção verticai e etaremo deprezando

Leia mais

Fenômenos de Transporte I

Fenômenos de Transporte I Fenômeno de Tranorte I Aula Prof. r. Gilberto Garcia Cortez 9.3 Ecoamento em um duto e tubo. 9.3. Conideraçõe erai O ecoamento em duto ou tubo é etudo de rande imortância, oi ão o reonáei elo tranorte

Leia mais

Breve apontamento sobre enrolamentos e campos em sistemas trifásicos

Breve apontamento sobre enrolamentos e campos em sistemas trifásicos Breve aontamento obre enrolamento e camo em itema trifáico. Introdução Nete documento areentam-e o fundamento da criação do camo girante da máquina eléctrica rotativa. Ete aunto é tratado de forma muito

Leia mais

Universidade Estadual de Campinas Faculdade de Engenharia Civil Departamento de Estruturas. Solicitações normais Cálculo no estado limite último

Universidade Estadual de Campinas Faculdade de Engenharia Civil Departamento de Estruturas. Solicitações normais Cálculo no estado limite último Univeridade Etadal de Campina Faldade de Engenaria Civil Departamento de Etrtra Soliitaçõe normai Cállo no etado limite último Nota de ala da diiplina AU414 - Etrtra IV Conreto armado Prof. M. Liz Carlo

Leia mais

Livro para a SBEA (material em construção) Edmundo Rodrigues 9. peneiras

Livro para a SBEA (material em construção) Edmundo Rodrigues 9. peneiras Livro para a SBEA (material em contrução) Edmundo Rodrigue 9 4.1. Análie granulométrica Granulometria, graduação ou compoição granulométrica de um agregado é a ditribuição percentual do eu divero tamanho

Leia mais

CURSO DE ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA. Exp. 2

CURSO DE ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA. Exp. 2 r od la ort no C UNESDADE DE MOG DAS CUZES - ENGENHAA EÉCA Prof. Joé oberto Marque CUSO DE ENGENHAA EÉCA EEÔNCA DE POÊNCA Ex. ONE CHAEADA PWM ABAXADOA BUCK Objetivo: O objetivo deta exeriência é demontrar

Leia mais

a) Calcule a força medida pelo dinamômetro com a chave aberta, estando o fio rígido em equilíbrio.

a) Calcule a força medida pelo dinamômetro com a chave aberta, estando o fio rígido em equilíbrio. UJ MÓDULO III DO PISM IÊNIO - POA DE ÍSICA PAA O DESENOLIMENO E A ESPOSA DAS QUESÕES, SÓ SEÁ ADMIIDO USA CANEA ESEOGÁICA AZUL OU PEA. Na olução da proa, ue, uando neeário, g = /, = 8 /, e = 9 - kg, π =.

Leia mais

log = logc log 2 x = a https://ueedgartito.wordpress.com P2 logc Logaritmos Logaritmos Logaritmos Logaritmos Logaritmos Matemática Básica

log = logc log 2 x = a https://ueedgartito.wordpress.com P2 logc Logaritmos Logaritmos Logaritmos Logaritmos Logaritmos Matemática Básica Mtemáti Bái Unidde 8 Função Logrítmi RANILDO LOPES Slide diponívei no noo SITE: http://ueedgrtito.wordpre.om Logritmndo Be do ritmo Logritmo Condição de Eitêni > > Logritmo Logritmo Logritmo Logritmndo

Leia mais

AÇÕES DE CONTROLE. Ações de Controle Relação Controlador/Planta Controlador proporcional Efeito integral Efeito derivativo Controlador PID

AÇÕES DE CONTROLE. Ações de Controle Relação Controlador/Planta Controlador proporcional Efeito integral Efeito derivativo Controlador PID AÇÕES E CONTROLE Açõe de Controle Relação Controlador/Planta Controlador roorcional Efeito integral Efeito derivativo Controlador PI Controle de Sitema Mecânico - MC - UNICAMP Açõe comun de controle Ação

Leia mais

Aula 20. Efeito Doppler

Aula 20. Efeito Doppler Aula 20 Efeito Doppler O efeito Doppler conite na frequência aparente, percebida por um oberador, em irtude do moimento relatio entre a fonte e o oberador. Cao I Fonte em repouo e oberador em moimento

Leia mais

2 Revisão Bibliográfica

2 Revisão Bibliográfica Revião Bibliográia.1. Introdução A eiiênia do itema de reorço om omóito de ibra de arbono e o etabeleimento de ritério de dimenionamento requerem uma maior omreenão do meanimo de aderênia que envolvem

Leia mais

Intervalo de Confiança para a Variância de uma População Distribuída Normalmente. Pode-se mostrar matematicamente que a variância amostral,

Intervalo de Confiança para a Variância de uma População Distribuída Normalmente. Pode-se mostrar matematicamente que a variância amostral, Etatítica II Antonio Roque Aula 8 Intervalo de Confiança para a Variância de uma População Ditribuída Normalmente Pode-e motrar matematicamente que a variância amotral, ( x x) n é um etimador não envieado

Leia mais

No dimensionamento à flexão simples, os efeitos do esforço cortante podem

No dimensionamento à flexão simples, os efeitos do esforço cortante podem FLEXÃO SIMPLES NA RUÍNA: EQUAÇÕES CAPÍTULO 7 Libânio M. Pinheiro, Caiane D. Muzardo, Sandro P. Santo. 12 maio 2003 FLEXÃO SIMPLES NA RUÍNA: EQUAÇÕES 7.1 HIPÓTESES No dimenionamento à flexão imple, o efeito

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SÃO PAULO CEFET SP

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SÃO PAULO CEFET SP Diciplina: Mecânica do Fluido Aplicada Lita de Exercício Reolvido Profeor: 1 de 11 Data: 13/0/08 Caruo 1. Um menino, na tentativa de melhor conhecer o fundo do mar, pretende chegar a uma profundidade de

Leia mais

PROJETO E CONSTRUÇÃO DE ESTRADAS

PROJETO E CONSTRUÇÃO DE ESTRADAS 19 PROJETO E CONSTRUÇÃO DE ESTRADAS PROJETO GEOMÉTRICO DE VIAS 3 - CURVAS HORIZONTAIS COM TRANSIÇÃO 3.1 - INTRODUÇÃO A deontinuidade da urvatura que exite no onto de aagem da tangente ara a irular (onto

Leia mais

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES P U C S PONTIFÍCIA UNIVESIDADE CATÓLICA DO IO GANDE DO SUL FACULDADE DE ENGENHAIA CUSO DE ENGENHAIA CIVIL CONCETO AADO II FLEXÃO SIPLES Prof. Almir Shäffer POTO ALEGE AÇO DE 006 1 FLEXÃO SIPLES 1- Generaliae

Leia mais

Capítulo 5: Análise através de volume de controle

Capítulo 5: Análise através de volume de controle Capítulo 5: Análie atravé de volume de controle Volume de controle Conervação de maa Introdução Exite um fluxo de maa da ubtância de trabalho em cada equipamento deta uina, ou eja, na bomba, caldeira,

Leia mais

= T B. = T Bloco A: F = m. = P Btang. s P A. 3. b. P x. Bloco B: = 2T s T = P B 2 s. s T = m 10 B 2. De (I) e (II): 6,8 m A. s m B

= T B. = T Bloco A: F = m. = P Btang. s P A. 3. b. P x. Bloco B: = 2T s T = P B 2 s. s T = m 10 B 2. De (I) e (II): 6,8 m A. s m B eolução Fíica FM.9 1. e Com bae na tabela, obervamo que o atleta etá com 5 kg acima do peo ideal. No gráfico, temo, para a meia maratona: 1 kg,7 min 5 kg x x,5 min. Na configuração apreentada, a força

Leia mais

Análise Dinâmica de Malhas Feedback: Respostas a SP e Carga.

Análise Dinâmica de Malhas Feedback: Respostas a SP e Carga. Análie inâia de Malha Feedbak: eota a S e Carga. rof a Ninoka Bojorge eartaento de Engenharia Quíia e de etróleo UFF Função de Tranferênia Malha Fehada Álgebra de iagraa de Bloo elebrando Bloo e érie U...

Leia mais

DIMENSIONAMENTO DE VIGAS DE CONCRETO ARMADO À FORÇA CORTANTE

DIMENSIONAMENTO DE VIGAS DE CONCRETO ARMADO À FORÇA CORTANTE UNIERSIDDE ESTDUL PULIST UNESP - Campu de Bauru/SP FCULDDE DE ENGENHRI Departamento de Engenharia Civil Diiplina: 2323 - ESTRUTURS DE CONCRETO II NOTS DE UL DIMENSIONMENTO DE IGS DE CONCRETO RMDO À FORÇ

Leia mais

CAPÍTULO 5. Dedução Natural

CAPÍTULO 5. Dedução Natural CAPÍTULO 5. Dedução Natual Iniciamo ete caítulo com a eguinte egunta: O ue é a dedução natual? É o oceo aa etabelece de maneia igooa a validade do agumento, deivando a concluão do agumento a ati da emia

Leia mais

CAPÍTULO 10 Modelagem e resposta de sistemas discretos

CAPÍTULO 10 Modelagem e resposta de sistemas discretos CAPÍTULO 10 Modelagem e repota de itema dicreto 10.1 Introdução O itema dicreto podem er repreentado, do memo modo que o itema contínuo, no domínio do tempo atravé de uma tranformação, nete cao a tranformada

Leia mais

Introdução a Robótica

Introdução a Robótica Introdução a Robótia Índie Analítio Introdução.... Robô Indutriai.... O Etado da Arte.... Apliaçõe e Benefíio.... Fundamento da Tenologia em Robótia...8. Braço Meânio...8 Tipo de Junta...8 Grau de Liberdade...9

Leia mais

Confrontando Resultados Experimentais e de Simulação

Confrontando Resultados Experimentais e de Simulação Confrontando Reultado Experimentai e de Simulação Jorge A. W. Gut Departamento de Engenharia Química Ecola Politécnica da Univeridade de São Paulo E mail: jorgewgut@up.br Um modelo de imulação é uma repreentação

Leia mais

Física Atómica e Nuclear Capítulo 7. Átomos Multilelectrónicos.

Física Atómica e Nuclear Capítulo 7. Átomos Multilelectrónicos. 132 7.6. Acoplamento do Momento Angular. A informação dada atravé da ditribuição electrónica no átomo não é uficiente para decrever completamente o etado do átomo, uma vez que não explica como o momento

Leia mais

Considere as seguintes expressões que foram mostradas anteriormente:

Considere as seguintes expressões que foram mostradas anteriormente: Demontração de que a linha neutra paa pelo centro de gravidade Foi mencionado anteriormente que, no cao da flexão imple (em eforço normal), a linha neutra (linha com valore nulo de tenõe normai σ x ) paa

Leia mais

TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações

TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações TRANSFORMADA DE LAPLACE Revião de algun: Conceito Deiniçõe Propriedade Aplicaçõe Introdução A Tranormada de Laplace é um método de tranormar equaçõe dierenciai em equaçõe algébrica mai acilmente olucionávei

Leia mais

I Desafio Petzl Para Bombeiros Regulamento Campeonato Internacional de Técnicas Verticais e Resgate

I Desafio Petzl Para Bombeiros Regulamento Campeonato Internacional de Técnicas Verticais e Resgate ! I Deafio Petzl Para Bombeiro Regulamento Campeonato Internacional de Técnica Verticai e Regate A Spelaion, ditribuidor excluivo Petzl no Brail e o Corpo de Bombeiro de Goiá, etá organizando o Primeiro

Leia mais

UNIDADE 2 10º ANO REVISÃO SISTEMA COMPLEXO SISTEMA TERMODINÂMICO

UNIDADE 2 10º ANO REVISÃO SISTEMA COMPLEXO SISTEMA TERMODINÂMICO UNIDADE 2 10º ANO REVISÃO SISTEMA COMPLEXO Trata-se de um sistema físio onde oorrem transformações de energia sob várias formas. Um veíulo motorizado é um sistema omlexo (sistema meânio e termodinâmio).

Leia mais

Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace

Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace Reolução de Equaçõe Diferenciai Ordinária por Série de Potência e Tranformada de Laplace Roberto Tocano Couto rtocano@id.uff.br Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,

Leia mais

Palavras-chave:Algoritmo Genético; Carregamento de Contêiner; Otimização Combinatória.

Palavras-chave:Algoritmo Genético; Carregamento de Contêiner; Otimização Combinatória. Reolução do Problema de Carregamento e Decarregamento 3D de Contêinere em Terminai Portuário para Múltiplo Cenário via Repreentação por Regra e Algoritmo Genético Aníbal Tavare de Azevedo (UNICAMP) anibal.azevedo@fca.unicamp.br

Leia mais

Associação de Professores de Matemática PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 2013 2ªFASE

Associação de Professores de Matemática PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 2013 2ªFASE Aociação de Profeore de Matemática Contacto: Rua Dr. João Couto, n.º 7-A 1500-36 Liboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

SITE EM JAVA PARA A SIMULAÇÃO DE MÁQUINAS ELÉTRICAS

SITE EM JAVA PARA A SIMULAÇÃO DE MÁQUINAS ELÉTRICAS SITE EM JAVA PARA A SIMULAÇÃO DE MÁQUINAS ELÉTRICAS Reumo Luca Franco de Ai¹ Marcelo Semenato² ¹Intituto Federal de Educação, Ciência e Tecnologia/Campu Jataí/Engenharia Elétrica/PIBIT-CNPQ lucafranco_jty@hotmail.com

Leia mais

Ww Ws. w = e = Vs 1 SOLO CONCEITOS BÁSICOS

Ww Ws. w = e = Vs 1 SOLO CONCEITOS BÁSICOS 1 SOLO CONCEITOS BÁSICOS O olo, ob o ponto de vita da Engenharia, é um conjunto de partícula ólida com vazio ou poro entre ela. Ete vazio podem etar preenchido com água, ar ou ambo. Aim o olo é : - eco

Leia mais

Intruçõe Breve Verão 1 0 junho 2005 INSTRUÇÕES APENAS PARA PESSOAL QUALIFICADO APERTO DO CONJUNTO DE SUPORTES AVISO: O funcionamento da ua coluna como componente de um itema upeno pode potencialmente expor

Leia mais

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida.

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida. Diciplina de Fíica Aplicada A / Curo de Tecnólogo em Geão Ambienal Profeora M. Valéria Epíndola Lea. Aceleração Média Já imo que quando eamo andando de carro em muio momeno é neceário reduzir a elocidade,

Leia mais

D i s c i p l i n a : P e s q u i s a O p e r a c i o n a l T e o r i a d a s F i l a s - L i s t a d e E x e r c í c i o s : 0 1

D i s c i p l i n a : P e s q u i s a O p e r a c i o n a l T e o r i a d a s F i l a s - L i s t a d e E x e r c í c i o s : 0 1 T e o r i a d a s F i l a s - L i s t a d e E x e r c í c i o s : S e x t a f e i r a, 4 d e n o v e m b r o d e 2. O número de navios etroleiros que chegam à determinada refinaria or dia tem uma distribuição

Leia mais

Um exemplo de Análise de Covariância. Um exemplo de Análise de Covariância (cont.)

Um exemplo de Análise de Covariância. Um exemplo de Análise de Covariância (cont.) Um exemplo de Análie de Covariância A Regreão Linear e a Análie de Variância etudada até aqui, ão cao particulare do Modelo Linear, que inclui também a Análie de Covariância Em qualquer deta trê ituaçõe

Leia mais

Equações Diferenciais (GMA00112) Resolução de Equações Diferenciais por Séries e Transformada de Laplace

Equações Diferenciais (GMA00112) Resolução de Equações Diferenciais por Séries e Transformada de Laplace Equaçõe Diferenciai GMA Reolução de Equaçõe Diferenciai por Série e Tranformada de Laplace Roberto Tocano Couto tocano@im.uff.br Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,

Leia mais

Física 1 Capítulo 7 Dinâmica do Movimento de Rotação Prof. Dr. Cláudio Sérgio Sartori.

Física 1 Capítulo 7 Dinâmica do Movimento de Rotação Prof. Dr. Cláudio Sérgio Sartori. Fíica Capítulo 7 Dinâmica do Movimento de Rotação Prof. Dr. Cláudio Sérgio Sartori. Introdução: Ao uarmo uma chave de roda para retirar o parafuo para trocar o pneu de um automóvel, a roda inteira pode

Leia mais

Empilhadores 1,4-2,5t

Empilhadores 1,4-2,5t Empilhadore 1,4-2,5t β α 3 l E C N C 1.1 1.2 1.3 1.5 1.8 1.9 2.1 2.3 2.4 3.1 3.2 3.3 3.5 3.6 4.1 4.2 4.3 4.4 4.5 4.7 4.8 4.10 4.15 4.19 4.20 4.21 4.22 4.24 4.25 4.26 4.28 4.32 4.33 4.34 4.35 4.37 5.1 5.2

Leia mais

Reconhece e aceita a diversidade de situações, gostos e preferências entre os seus colegas.

Reconhece e aceita a diversidade de situações, gostos e preferências entre os seus colegas. Ecola Báic a 2º º e 3º º Ciclo Tema 1 Viver com o outro Tema Conteúdo Competência Actividade Tema 1 Viver com o outro Valore Direito e Devere Noção de valor O valore como referenciai para a acção: - o

Leia mais

Padronizar os procedimentos relativos ao suporte de áudio e vídeo na Escola da Magistratura do Estado do Rio de Janeiro - EMERJ.

Padronizar os procedimentos relativos ao suporte de áudio e vídeo na Escola da Magistratura do Estado do Rio de Janeiro - EMERJ. Propoto por: Diretor do Departamento de Tecnologia de Informação e Comunicação (DETEC) Analiado por: Aeora da Aeoria de Getão Etratégica (ASGET) Aprovado por: Secretária-Geral de Enino (SECGE) 1 OBJETIVO

Leia mais

AULA 2 AULA4 Introdução à Teoria das Probabilidades

AULA 2 AULA4 Introdução à Teoria das Probabilidades UL UL4 Introdução à Teoria das robabilidades rof. itor Hugo Lahos Davila Coneitos ásios Experimento leatório ou Fenômeno leatório Situações ou aonteimentos ujos resultados não podem ser previstos om erteza.

Leia mais

Avaliação de Ações. Mercado de Capitais. Luiz Brandão. Ações. Mercado de Ações

Avaliação de Ações. Mercado de Capitais. Luiz Brandão. Ações. Mercado de Ações Mercado de Capitai Avaliação de Açõe Luiz Brandão O título negociado no mercado podem de renda fixa ou de renda variável. Título de Renda Fixa: Conhece-e de antemão qual a remuneração a er recebida. odem

Leia mais

Inclusão Social dos Jovens nos Assentamentos Rurais de Areia com ênfase no trabalho da Tutoria e recursos das novas TIC s

Inclusão Social dos Jovens nos Assentamentos Rurais de Areia com ênfase no trabalho da Tutoria e recursos das novas TIC s Incluão Social do Joven no Aentamento Rurai de Areia com ênfae no trabalho da Tutoria e recuro da nova TIC MIRANDA 1, Márcia C.V.; SILVA 2, Fátima do S.; FÉLIX 3, Jânio 1 Profeora orientadora e coordenadora

Leia mais

EFEITOS DO COEFICIENTE DE POISSON E ANÁLISE DE ERRO DE TENSÕES EM TECTÔNICA DE SAL

EFEITOS DO COEFICIENTE DE POISSON E ANÁLISE DE ERRO DE TENSÕES EM TECTÔNICA DE SAL Copright 004, Intituto Braileiro de Petróleo e Gá - IBP Ete Trabalho Técnico Científico foi preparado para apreentação no 3 Congreo Braileiro de P&D em Petróleo e Gá, a er realizado no período de a 5 de

Leia mais

CRECHE COMUNITARIA PINGO DE GENTE AV.Senador Levindo Coelho 130 Tirol CEP.30662-290 CNPJ: 21508312.0001/80

CRECHE COMUNITARIA PINGO DE GENTE AV.Senador Levindo Coelho 130 Tirol CEP.30662-290 CNPJ: 21508312.0001/80 ORGANIZAÇÃO PROPONENTE: CRECHE COMUNITARIA PINGO DE GENTE PROJETO : CUIDANDO EDUCANDO E CONSTRUINDO CIDADÃOS DO FUTURO. LINHA PROGRAMÁTICA DO PROJETO Creche, Educação Infantil, Socialização,Garantia de

Leia mais

Aula 19 Convecção Forçada:

Aula 19 Convecção Forçada: Aula 19 Conveção Forçada: UFJF/Deartamento de Engenharia de Produção e Meânia Prof. Dr. Wahington Orlando Irrazabal Bohorquez 1 Camada limite fluidodinâmia laminar em um tubo irular Caraterítia de eoamento

Leia mais

Carregamentos de Amplitudes Variável. Waldek Wladimir Bose Filho, PhD NEMAF Núcleo de Ensaio de Materiais e Análise de Falhas

Carregamentos de Amplitudes Variável. Waldek Wladimir Bose Filho, PhD NEMAF Núcleo de Ensaio de Materiais e Análise de Falhas Carregamento de Amplitude Variável Waldek Wladimir oe Filho, PhD EMAF úcleo de Enaio de Materiai e Análie de Falha Tenão Repetição ou Variação de Carga Carregamento em vôo Vôo médio Carga em olo Média

Leia mais

Fotografando o Eclipse Total da Lua

Fotografando o Eclipse Total da Lua Fotografando o Eclipe Total da Lua (trabalho apreentado para o Mueu de Atronomia e Ciência Afin) http://atrourf.com/diniz/artigo.html Autor: Joé Carlo Diniz (REA-BRASIL) "Você pode e deve fotografar o

Leia mais

RESUMO 01: SEÇÃO RETANGULAR ARMADURA SIMPLES E DUPLA

RESUMO 01: SEÇÃO RETANGULAR ARMADURA SIMPLES E DUPLA 0851 CONSTRUÇÕES DE CONCRETO RDO II PROF. IBERÊ 1 / 8 0851 CONSTRUÇÕES DE CONCRETO RDO II RESUO 01: SEÇÃO RETNGULR RDUR SIPLES E DUPL TERIIS - ço y y 1,15 C 50 y 5000 g / m y 4348 g / m σ y tração Diagrama

Leia mais

PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) ªFASE

PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) ªFASE PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 013 ªFASE 1. 1.1. Aplicando o método de Hondt, o quociente calculado ão o eguinte: Lita A B C D Número de voto 13 1035

Leia mais

FUNÇÕES DE TRANSFERÊNCIA

FUNÇÕES DE TRANSFERÊNCIA CAPÍTULO FUNÇÕE DE TRANFERÊNCIA INTRODUÇÃO O filtro contínuo roceam inai definido em qualquer intante de temo e que têm qualquer amlitude oível O filtro contínuo odem er realizado com diferente tecnologia

Leia mais

λ =? 300 m/ n = 3ventres nv = 3.300 = 2.6 2.6

λ =? 300 m/ n = 3ventres nv = 3.300 = 2.6 2.6 PROVA DE ÍSICA º ANO - 3ª MENSAL - 3º TRIMESTRE TIPO A 01) E relação ao que oi etudado obre ondulatória, ainale V (erdadeiro) ou (alo). (V) A elocidade de ua onda é igual ao produto do copriento de onda

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CEFET-SP ÁREA INDUSTRIAL Disciplina: Mecânica dos Fluidos Aplicada Exercícios Resolvidos 1 a lista.

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CEFET-SP ÁREA INDUSTRIAL Disciplina: Mecânica dos Fluidos Aplicada Exercícios Resolvidos 1 a lista. ÁREA INDUSTRIAL Diciplina: Mecânica do Fluido Aplicada Exercício Reolvido 1 a lita Profeor: 1 de 7 Data: /03/008 Caruo Em todo o problema, ão upoto conhecido: água =1000kgm 3 e g= 9,80665m 1. Motrar que

Leia mais

UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Disciplina: Equações Diferenciais

UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Disciplina: Equações Diferenciais Repota: UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Diciplina: Equaçõe Diferenciai Profeora: Geraldine Silveira Lima Eercício Livro: Jame Stewart Eercício 9.1 1. Motre que y 1 é uma olução

Leia mais

Introdução ao Windows Server 2003

Introdução ao Windows Server 2003 Profeor.: Airton Junior (airtonjjunior@gmail.com) Diciplina: Rede II Conteúdo.: Window 2003 Server, Intalação e configuração, IIS, FTP, DNS, DHCP, Active Diretory, TCP/IP. Avaliaçõe.: 2 dua Prova com peo

Leia mais

QUATRO ARTISTAS E SEUS POSICIONAMENTOS FRENTE À REALIDADE DAS MÁQUINAS FOUR ARTISTS AND THEIR VIEWS ABOUT MACHINES

QUATRO ARTISTAS E SEUS POSICIONAMENTOS FRENTE À REALIDADE DAS MÁQUINAS FOUR ARTISTS AND THEIR VIEWS ABOUT MACHINES 105 QUATRO ARTISTAS E SEUS POSICIONAMENTOS FRENTE À REALIDADE DAS MÁQUINAS FOUR ARTISTS AND THEIR VIEWS ABOUT MACHINES 1 RESUMO: Ete artigo traz uma reflexão obre o poicionamento de quatro artita frente

Leia mais

Cinemática Exercícios

Cinemática Exercícios Cinemática Exercício Aceleração e MUV. 1- Um anúncio de um certo tipo de automóvel proclama que o veículo, partindo do repouo, atinge a velocidade de 180 km/h em 8. Qual a aceleração média dee automóvel?

Leia mais

Lider. ança. para criar e gerir conhecimento. }A liderança é um fator essencial para se alcançar o sucesso também na gestão do conhecimento.

Lider. ança. para criar e gerir conhecimento. }A liderança é um fator essencial para se alcançar o sucesso também na gestão do conhecimento. Liderança para criar e gerir conhecimento Lider ança para criar e gerir conhecimento }A liderança é um fator eencial para e alcançar o uceo também na getão do conhecimento.~ 48 R e v i t a d a ES P M janeiro

Leia mais

Resistência dos Materiais SUMÁRIO 1. TENSÕES DE CISALHAMENTO... 1 1.1 DIMENSIONAMENTO... 2 1.2 EXEMPLOS... 2

Resistência dos Materiais SUMÁRIO 1. TENSÕES DE CISALHAMENTO... 1 1.1 DIMENSIONAMENTO... 2 1.2 EXEMPLOS... 2 Reitência do Materiai SUMÁRIO 1. TESÕES DE CISLHMETO... 1 1.1 DIMESIOMETO... 1. EXEMPLOS... Cialhamento 0 Prof. Joé Carlo Morilla Reitência do Materiai 1. Tenõe de Cialhamento Quando dua força cortante

Leia mais

2 Cargas Móveis, Linhas de Influência e Envoltórias de Esforços

2 Cargas Móveis, Linhas de Influência e Envoltórias de Esforços 2 Carga óvei, Linha de Influência e Envoltória de Eforço 21 Introdução Para o dimenionamento de qualquer etrutura é neceário conhecer o eforço máximo e mínimo que ela apreentará ao er ubmetida ao carregamento

Leia mais

Aula 4 Modelagem de sistemas no domínio da frequência Prof. Marcio Kimpara

Aula 4 Modelagem de sistemas no domínio da frequência Prof. Marcio Kimpara FUDAMETOS DE COTROLE E AUTOMAÇÃO Aula 4 Modelagem de itema no domínio da requência Pro. Marcio impara Unieridade Federal de Mato Groo do Sul Sitema mecânico tranlação Elemento Força deloc. tempo Laplace

Leia mais

Física Básica: Mecânica - H. Moysés Nussenzveig, 4.ed, 2003 Problemas do Capítulo 2

Física Básica: Mecânica - H. Moysés Nussenzveig, 4.ed, 2003 Problemas do Capítulo 2 Fíica Báica: Mecânica - H. Moyé Nuenzveig, 4.ed, 003 Problea do Capítulo por Abraha Moyé Cohen Departaento de Fíica - UFAM Manau, AM, Brail - 004 Problea Na célebre corrida entre a lebre e a tartaruga,

Leia mais

TRANSFORMADORES DE POTENCIAL

TRANSFORMADORES DE POTENCIAL TRANSFORMADORES DE POTENCIA 1 - Introdução: Tio de TP TP Eletromagnético (TP) TP Caacitivo (TPC) Até 138 k Acima de 138 k Funçõe Báica - Iolamento contra alta tenõe. - Fornecimento no ecundário de uma

Leia mais

6.2.1 Prescrições gerais

6.2.1 Prescrições gerais CAPÍTULO 6.2 PRESCRIÇÕES RELATIVAS AO FABRICO E AOS ENSAIOS SOBRE OS RECIPIENTES SOB PRESSÃO, AEROSSÓIS, RECIPIENTES DE BAIXA CAPACIDADE CONTENDO GÁS (CARTUCHOS DE GÁS) E CARTUCHOS DE PILHAS DE COMBUSTÍVEL

Leia mais

Simplified method for calculation of solid slabs supported on flexible beams: validation through the non-linear analysis

Simplified method for calculation of solid slabs supported on flexible beams: validation through the non-linear analysis Teoria e Prática na Engenharia Civil, n.14, p.71-81, Outubro, 2009 Método implificado para cálculo de laje maciça apoiada em viga fleívei: validação por meio da análie não linear Simplified method for

Leia mais

A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma

A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma Introdução A tranformada de Laplace pode er uada para reolver equaçõe diferencia lineare com coeficiente contante, ou eja, equaçõe da forma ay + by + cy = ft), para a, b, c R Para io, a equação diferencial

Leia mais

Capítulo I Tensões. Seja um corpo sob a ação de esforços externos em equilíbrio, como mostra a figura I-1:

Capítulo I Tensões. Seja um corpo sob a ação de esforços externos em equilíbrio, como mostra a figura I-1: apítuo I Seja um corpo ob a ação de eforço externo em equiíbrio, como motra a figura I-1: Figura I-3 Eforço que atuam na eção para equiibrar o corpo Tome-e, agora, uma pequena área que contém o ponto,

Leia mais

CAPÍTULO 7 - Intervalos de confiança

CAPÍTULO 7 - Intervalos de confiança INF 16 CAPÍTULO 7 - Itervalo de cofiaça É uma maeira de calcularmo uma etimativa de um parâmetro decohecido. Muita veze também fucioa como um tete de hipótee. A idéia é cotruir um itervalo de cofiaça para

Leia mais

Sistemas de Tempo-Real

Sistemas de Tempo-Real Aula 8 Ecalonamento de tarefa aperiódica Execução conjunta de tarefa periódica e aperiódica Utilização de ervidore de tarefa aperiódica Servidore de prioridade fixa Servidore de prioridade dinâmica 1 Aula

Leia mais

UMA ABORDAGEM GLOBAL PARA O PROBLEMA DE CARREGAMENTO NO TRANSPORTE DE CARGA FRACIONADA

UMA ABORDAGEM GLOBAL PARA O PROBLEMA DE CARREGAMENTO NO TRANSPORTE DE CARGA FRACIONADA UMA ABORDAGEM GLOBAL PARA O PROBLEMA DE CARREGAMENTO NO TRANSPORTE DE CARGA FRACIONADA Benjamin Mariotti Feldmann Mie Yu Hong Chiang Marco Antonio Brinati Univeridade de São Paulo Ecola Politécnica da

Leia mais

Grupo I (5 valores) Grupo II (5 valores)

Grupo I (5 valores) Grupo II (5 valores) Duração: 3h. Jutifique a ua repota. ISCTE Lieiatura em Eeharia de Teleomuiaçõe e Iformátia Sitema de Teleomuiaçõe Guiado Exame de ª époa, o letivo 07/08, /0/008 Grupo I (5 valore) Uma rede telefóia utiliza

Leia mais

PROTEÇÕES COLETIVAS. Modelo de Dimensionamento de um Sistema de Guarda-Corpo

PROTEÇÕES COLETIVAS. Modelo de Dimensionamento de um Sistema de Guarda-Corpo PROTEÇÕES COLETIVAS Modelo de Dimenionamento de um Sitema de Guarda-Corpo PROTEÇÕES COLETIVAS Modelo de Dimenionamento de um Sitema de Guarda-Corpo PROTEÇÕES COLETIVAS Modelo de Dimenionamento de um Sitema

Leia mais

Matemática. Resolução das atividades complementares ( ) M19 Geometria Analítica: Pontos e Retas. ( ) pertence à bissetriz dos quadrantes pares.

Matemática. Resolução das atividades complementares ( ) M19 Geometria Analítica: Pontos e Retas. ( ) pertence à bissetriz dos quadrantes pares. Reolução da atividade complementare Matemática M9 Geometria nalítica: Ponto e Reta p. 08 (MK-SP) Identifique a entença fala: a) O ponto (0, ) pertence ao eio. b) O ponto (4, 0) pertence ao eio. c) O ponto

Leia mais

s Rede Locais s Shielded Twisted Pair (STP); s Unshielded Twisted Pair (UTP); s Patch Panels; s Cabo Coaxial; s Fibra Óptica;

s Rede Locais s Shielded Twisted Pair (STP); s Unshielded Twisted Pair (UTP); s Patch Panels; s Cabo Coaxial; s Fibra Óptica; Rede de Computadore Rede Locai Shielded Twited Pair (STP); Unhielded Twited Pair (UTP); Patch Panel; Cabo Coaxial; Fibra Óptica; 2 2010 Airton Junior. All right reerved. Rede de Computadore É um conjunto

Leia mais

AVALIAÇÃO DE DESEMPENHO

AVALIAÇÃO DE DESEMPENHO AVALIAÇÃO DE DESEMPENHO Itrodução Aálie o domíio do tempo Repota ao degrau Repota à rampa Repota à parábola Aálie o domíio da freqüêcia Diagrama de Bode Diagrama de Nyquit Diagrama de Nichol Eta aula EM

Leia mais

TRANSMISSÃO DE CALOR II. Prof. Eduardo C. M. Loureiro, DSc.

TRANSMISSÃO DE CALOR II. Prof. Eduardo C. M. Loureiro, DSc. TRANSMISSÃO DE CAOR II Prof. Eduardo C. M. oureiro, DSc. MECANISMOS FÍSICOS T T at A condenação ocorre quando a temperatura de um vapor é reduzida a vaore inferiore ao de ua temperatura de aturação. Em

Leia mais

Modulação de Amplitude de Pulso PAM

Modulação de Amplitude de Pulso PAM UnB - FT ENE Experimento 0 Modulação de Amplitude de Pulo Objetivo Ete experimento propicia ao aluno a oportunidade de fazer um etudo prático da técnica (Pule Amplitude Modulation) Sinai de topo plano

Leia mais

Programa de Formação Técnica Continuada. Categoria de Emprego para Motores CA / CC

Programa de Formação Técnica Continuada. Categoria de Emprego para Motores CA / CC Programa de Formação Técnica Continuada Categoria de Emprego para Motore CA / CC Índice.Introdução.... Chave manuai etrela triângulo.... O motore.... Motore de indução tipo gaiola.... Motore de indução

Leia mais

Testes Acelerados de Confiabilidade

Testes Acelerados de Confiabilidade Tete Acelerad de Cnfiabilidade Definiçã: Tete Acelerad de Cnfiabilidade cnitem na expiçã de cmpnente/itema a carga de tre uficiente para reduzir eu temp-médi-até-falha (MTTF) à nívei aceitávei. O engenheir(a),

Leia mais

dossier Contém + Três brochuras Regulamento de Deontologia Regulamento de Inscrição Estatutos da Ordem dos Arquitectos

dossier Contém + Três brochuras Regulamento de Deontologia Regulamento de Inscrição Estatutos da Ordem dos Arquitectos SECÇÃO REGIONAL SUL Trav. Carvalho, 21-25, 1249-003 Lisboa tel. 213 241 140/5 fax. 213 241 169 e-mail seretaria2@oasrs.org horário de 2ª a 6ª, das 10h 19h SECÇÃO REGIONAL NORTE Rua D. Hugo, 5/7, 4050-305

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes ENG 8 Fenômeno de Tranorte I A Profª Fátima Loe Etática do fluido Definição: Um fluido é coniderado etático e todo o elemento do fluido etão arado ou e movem com uma velocidade contante, relativamente

Leia mais