KIT DOMINÓS E O DOMÍNIO DAS FRAÇÕES. GT 01 - Educação matemática no ensino fundamental: anos iniciais e anos finais

Tamanho: px
Começar a partir da página:

Download "KIT DOMINÓS E O DOMÍNIO DAS FRAÇÕES. GT 01 - Educação matemática no ensino fundamental: anos iniciais e anos finais"

Transcrição

1 KIT DOMINÓS E O DOMÍNIO DAS FRAÇÕES GT 01 - Educação matemática no ensino fundamental: anos iniciais e anos finais José Vilani de Farias, IFRN, Amilde Martins da Fonseca, IFRN, Resumo: Este trabalho versa sobre a produção de jogos didáticos que subsidiam o processo ensino aprendizagem da Matemática. Os jogos produzidos são dominós que tratam dos conteúdos de frações e porcentagens. O professor/autor apresenta e discute o conteúdo utilizando como base jogos tradicionais. O kit dominós e o domínio das frações é composto por três dominós descritos abaixo: Dominó de Frações e figuras Os objetivos deste jogo são: construir o conceito de número fracionário: sua representação numérica e geométrica, seus termos e seus significados e contribuir para facilitar a aprendizagem dos alunos no processo de resolução de problemas envolvendo frações. Desenvolvemos atividades em sala de aula, utilizando os jogos, o que proporcionou aos alunos a construção de conhecimentos matemáticos de forma lúdica, divertida e sem traumas. Confeccionamos um dominó que envolve o conteúdo de frações e sua representação geométrica, mais ainda, capaz de construir nos participantes o conceito de frações quanto ao significado do numerador e do denominador, este (denominador) como sendo o número de partes em que foi dividido um objeto, no caso do jogo, o objeto é um retângulo, e aquele (numerador) como sendo o número de partes, do objeto dividido, tomadas para sobre elas realizar alguma ação, que neste caso a ação foi a de pintar as partes do retângulo.

2 Como o jogo foi montado sobre o jogo de dominó, procuramos manter as mesmas regras. Inicialmente, pensamos nos naipes, depois deveríamos ter sete peças de cada naipe combinadas entre elas. Escrevemos no papel todas as frações que formariam as peças, após isso escolhemos aleatoriamente 14 delas para representarmos de forma geométrica. O primeiro jogo foi confeccionado em papelão para usarmos como teste. O jogo definitivo foi confeccionado em madeira. Os materiais utilizados foram: uma folha de madeira medindo 50cm x 60cm x 1cm, tinta a óleo para madeira nas cores preta e branca, tinta para tecido de cores variadas, caneta para marcar compact disc (CD) nas cores preta, azul e vermelha, pincel 12 e gabarito de letras e números. A folha de madeira foi dividida em 28 pedaços de 12cm x 6cm. Os cortes e o lixamento foram feitos na serraria. A tinta a óleo foi utilizada para pintar as faces das peças, a tinta de tecido foi usada para pintar as figuras (retângulos), os números foram pintados com a caneta de marcar CD com auxílio de um gabarito de letras e números. Descrição passo a passo da atividade: Passo 1: apresentamos aos alunos o dominó convencional, suas peças, suas regras. Passo 2: Repetimos o procedimento anterior apresentando o dominó de frações e figuras. Nesse momento, não é dito aos alunos nada sobre frações, apenas explicamos as regas do jogo: Cada peça está pintada com números ou figuras. As peças pintadas com números são formadas por uma barra horizontal, um número que fica sobre a barra e outro abaixo dela. As peças pintadas com figuras são retângulos divididos em outros pequenos retângulos, alguns deles preenchidos com cores variadas. As regras são parecidas com aquelas do dominó convencional. Inicia-se com um dos participantes jogando um carroção, pode-se combinar entre os participantes, antes de iniciar o jogo, qual deve ser o carroção a ser jogado na saída. O próximo jogador tem três opções para realizar sua jogada: 1) jogar uma peça idêntica a uma daquelas que foram jogadas, e compõem as pontas do jogo; 2) jogar uma peça de forma a combinar peças de números com peças de figuras. A combinação de números e figuras se dá da seguinte forma: nas peças de números, o número que fica abaixo da barra horizontal indica a quantidade de partes em que foi dividido a figura retangular e o número que fica acima indica quantas dessas partes foram pintadas; 3) passar a vez, caso em que o jogador não consegue realizar nenhuma das

3 jogadas mencionadas anteriormente. Como no dominó convencional, ganha quem conseguir jogar todas as suas peças. Passo 3: Após os alunos jogarem algumas partidas e o professor observar o domínio do jogo, verificando se alguns já conseguem contar as peças, (essa ação deve ser incentivada pelo professor), é hora do professor fazer algumas intervenções apresentando o conteúdo de frações: mostrando que aquela simbologia numérica representa uma fração cujo número acima da barra chama-se numerador e o número abaixo chama-se denominador; apresentar o significado de numerador e denominador como sendo a quantidade de partes em que foi dividido um todo (retângulo, salário, distancia, quilos etc.). Essa informação é dada pelo denominador e quantas partes desse todo foram tomadas para sobre elas realizar alguma ação (pintar, pagar o aluguel, caminhar, vender, etc.). Essa informação é dada pelo numerador. A importância da contagem de peças, combinada com o ato de jogar, é desenvolver no aluno a percepção rápida dos vários símbolos que pode ser representada uma fração e a relação existente entre elas. Passo 4: Nesse momento, os alunos deixam de jogar, para apenas observar as peças, enquanto o professor expõe vários problemas envolvendo frações, fazendo a relação entre o jogo, o cotidiano e a Matemática. Nesse passo, cabe também à formalização matemática por parte do professor: definição de fração e tipos de frações. Dominó de frações equivalentes O objetivo deste é trabalhar o conceito de frações equivalentes com vistas a facilitar o processo de ensino aprendizagem das operações envolvendo números fracionários. O processo de construção foi idêntico ao do dominó de frações e figuras. Mantivemos os valores dos carroções e as demais peças são formadas por frações equivalentes as primeiras. Nesse jogo, as figuras desenhadas nas peças não se repetem, ou seja, não há figuras idênticas. A mudança significativa está no conteúdo a ser transmitido por meio do jogo. Diferente do dominó de frações e figuras, a idéia não era construir conceitos matemáticos através do jogo, mas sim, de internalizá-los. Antes de jogar esse dominó é necessário que o aluno tenha conhecimento de frações equivalentes e de como gerá-las, a partir de sucessivas multiplicações e divisões. Essa atividade pode ser feita como sequência da anterior, alguns passos:

4 Passo 1: Jogar o dominó de frações e figuras, atividade anterior. Passo 2: Apresentar ao aluno o conceito de frações equivalentes e como gerá-las. Passo 3: Apresentar o dominó de frações equivalentes e suas regras. Diferente do dominó de frações e figuras, no dominó de frações equivalentes não há peças idênticas. Isso significa que, diante da mesa de jogo, o jogador terá apenas duas opções: 1) jogar uma peça cuja fração inscrita seja equivalente a qualquer uma que esteja nas pontas ou 2) passar a vez, ou ir ao monte, caso em que se combinam entre os jogadores de deixar peças sobrando para serem utilizadas quando alguns dos jogadores não tiver a peça para jogar. Nas primeiras partidas, os alunos podem se utilizar de lápis e papel para fazer as contas, ou seja, tomar as frações que estão nas pontas e gerar outras equivalente a elas e verificar se possui alguma peça com alguma das frações geradas. Mas o professor deve incentivá-los a libertarem-se do papel, afim de que os mesmos consigam realizar cálculos mentais. Passo 4: Primeira intervenção do professor. Incentivar os alunos a contar as peças, pois mais do que no dominó de figuras a contagem de peças aqui é algo muito importante, uma vez que o aluno adquire a habilidade de cálculos mentais, a percepção rápida das frações equivalentes e a internalização deste conceito. Passo 5: Segunda intervenção do professor. Apresentação das operações envolvendo números fracionários. Nesse momento, o professor irá trabalhar as quatro operações envolvendo números fracionários. É importante que o professor apresente o significado de cada operação, mostrando-as de forma aritmética e geométrica. O conceito de frações equivalentes e a maneira de gerá-las serão de fundamental importância quando o aluno for somar ou subtrair frações com denominadores diferentes. Passo 6: Critérios de desempate. Somam-se as frações de cada peça, quem obtiver, menor resultado ganha o jogo. Este ficou sendo o último passo dessa atividade, visto que precisávamos dos conceitos que envolvessem as operações com frações para poder realizála. O professor pode incentivar os alunos a jogar na perspectiva de fechar o jogo, tanto no dominó de frações e figuras quanto no dominó de frações equivalentes. Antes desse passo caso haja empate pode-se definir que ganha quem tiver menos peças ou repetir a partida.

5 Dominó de porcentagem O objetivo desse jogo é construir o conceito de porcentagem como sendo um número fracionário e, portanto, com representações numéricas e geométricas. Trabalhar o conceito de porcentagem como sendo uma fração equivalente de denominador 100. O processo de confecção foi idêntico ao dos demais dominós. Escrevemos inicialmente, os naipes e, posteriormente, as demais peças combinadas. Nesse jogo, a exemplo do dominó de frações equivalentes, as figuras não se repetem, ou seja, não há figuras idênticas. Esse dominó reúne conhecimentos do dominó de frações e figuras e do dominó de frações equivalentes, pois as peças são mescladas com figuras, símbolos de porcentagens e frações. Confeccionamos nove peças com representação de frações em figuras geométricas, nove peças com representação numérica de frações e dez peças com símbolos de porcentagens. Passos para trabalhar com o jogo de dominó de porcentagem: Passo 1: Apresentar o jogo e suas regras. O dominó de porcentagem reúne elementos dos dois dominós anteriores e acrescenta-lhes uma novidade: peças com números unidos ao símbolo %. Nesse momento nada é dito aos alunos sobre porcentagem, apenas são expostas as regras desse novo dominó: semelhante ao dominó de frações e figuras, nesse nós encontramos peças com frações representadas de forma numérica e geométrica cujas regras para jogá-las são as mesmas. As novidades do novo jogo são as peças que combinam números com o símbolo %. Esse símbolo indicará que ali existe uma fração cujo denominador é 100 e o numerador é o numero que o acompanha (ex. 60% indica que é uma fração de denominador 100 e numerador 60). Portanto, essas peças serão jogadas quando forem equivalentes as frações que estiverem sobre a mesa seja na sua forma numérica ou geométrica. Uma vez que os alunos já conhecem os outros dois dominós anteriores, não será difícil jogar o dominó de porcentagem. É importante que este jogo seja apresentado aos alunos apenas quando estes tiverem domínio dos outros dois, ou dos conteúdos necessários para jogá-lo. Passo 2: Apresentar o conteúdo de porcentagem, formalização matemática e sua aplicação. Apresentar o significado do símbolo de porcentagens (%), como sendo uma fração de denominador 100 ou a ela equivalente.

6 Passo 3: Trabalhar problemas envolvendo porcentagens. É importante que o professor trabalhe problemas envolvendo porcentagens, procurando sempre fazer um paralelo com as peças do dominó. Da mesma forma que encontramos o percentual de retângulos pintados, podemos encontrar o percentual do salário utilizado para pagar o aluguel ou o percentual de combustível gasto para fazer determinada viagem dentre outras situações.

ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos)

ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) 1 ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) Objetivos Introduzir o conceito de números inteiros negativos; Desenvolvimento O professor confeccionará o jogo com os alunos ou distribuirá os jogos

Leia mais

DANÔMIO. Objetivos Aprimorar o conhecimento da multiplicação de monômios.

DANÔMIO. Objetivos Aprimorar o conhecimento da multiplicação de monômios. DANÔMIO Objetivos Aprimorar o conhecimento da multiplicação de monômios. Materiais Dado feito de papel com um monômio em cada face, 6 tabelas que apresentam todas combinações de produtos dos monômios de

Leia mais

Dominó Geométrico 7.1. Apresentação Este é um bom material para interagir a matemática de uma forma divertida e descontraída por meio de um jogo de

Dominó Geométrico 7.1. Apresentação Este é um bom material para interagir a matemática de uma forma divertida e descontraída por meio de um jogo de Dominó Geométrico 7.1. Apresentação Este é um bom material para interagir a matemática de uma forma divertida e descontraída por meio de um jogo de dominó que pode ser desenvolvido por até no máximo quatro

Leia mais

DOMINÓ DAS QUATRO CORES

DOMINÓ DAS QUATRO CORES DOMINÓ DAS QUATRO CORES Aparecida Francisco da SILVA 1 Hélia Matiko Yano KODAMA 2 Resumo: O jogo Quatro Cores tem sido objeto de estudo de muitos profissionais que se dedicam à pesquisa da aplicação de

Leia mais

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um FRAÇÕES Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria

Leia mais

PEGUE 10. Quantidade: 08 unidades

PEGUE 10. Quantidade: 08 unidades 1 PEGUE 10 Materiais Um tabuleiro e 66 cartas redondas com os numerais de 1 a 7 nas seguintes quantidades: 1 22 cartas; 6-2 cartas; 2-16 cartas; 7-2 cartas; 3-12 cartas; Coringa 1 carta. 4-7 cartas; 5-4

Leia mais

PIFE DA MULTIPLICAÇÃO

PIFE DA MULTIPLICAÇÃO PIFE DA MULTIPLICAÇÃO Objetivo: Compreender melhor as operações de multiplicação. Materiais: 46 cartas da seguinte forma: 8 cartas com números do 2 ao 9 sendo estes multiplicadores; 8 cartas com números

Leia mais

Universidade Federal de Alfenas - UNIFAL-MG Equacionando Figura 1 - Painel imantado para fixação das formas geométricas coloridas.

Universidade Federal de Alfenas - UNIFAL-MG Equacionando Figura 1 - Painel imantado para fixação das formas geométricas coloridas. Equacionando Durante o acompanhamento do PIBID Matemática na Escola Estadual Professor Viana, foi examinado no cronograma de atividades a serem desenvolvidas nas turmas de oitavo ano, o ensino de Equações

Leia mais

Análise dos descritores da APR II 4ª série/5º ano Matemática

Análise dos descritores da APR II 4ª série/5º ano Matemática Análise dos descritores da APR II 4ª série/5º ano Matemática D10 Num problema, estabelecer trocas entre cédulas e moedas do sistema monetário brasileiro, em função de seus valores. O que é? Por meio deste

Leia mais

PLANO DE AULA DOMINÓ DE FRAÇÕES. 2. Conteúdo(s): Adição e subtração de frações de mesmo denominador.

PLANO DE AULA DOMINÓ DE FRAÇÕES. 2. Conteúdo(s): Adição e subtração de frações de mesmo denominador. UNIVERSIDADE FEDERAL DO PARANÁ Setor de Educação Programa Institucional de Bolsas de Iniciação à Docência PIBID/UFPR Projeto Interdisciplinar Pedagogia e Matemática PLANO DE AULA DOMINÓ DE FRAÇÕES Isabella

Leia mais

Competência Objeto de aprendizagem Habilidade

Competência Objeto de aprendizagem Habilidade Matemática 3ª Rosemeire Meinicke/Gustavo Lopes 6º Ano E.F. Competência Objeto de aprendizagem Habilidade H47- Resolver problemas que envolvam potenciação de números naturais. 1. Números naturais (N) 1.4-

Leia mais

MATEMÁTICA 5º ANO UNIDADE 1. 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes

MATEMÁTICA 5º ANO UNIDADE 1. 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes MATEMÁTICA 5º ANO UNIDADE 1 CAPÍTULOS 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes 2 IMAGENS E FORMAS Ângulos Ponto, retas e planos Polígono Diferenciar o significado

Leia mais

1º período. Conhecer os algarismos que compõem o SND (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Diferenciar algarismos e números.

1º período. Conhecer os algarismos que compõem o SND (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Diferenciar algarismos e números. 1º período Os números naturais: Sistema de Numeração Decimal. (SND). Pág.30 a 32. Um pouco de história: sistema de numeração dos romanos. Pág. 33 a 35 Os números naturais. Pág. 36 e 37 Sistema de Numeração

Leia mais

AGRUPAMENTO DE ESCOLAS DE PAREDE

AGRUPAMENTO DE ESCOLAS DE PAREDE GESTÃO DE CONTEÚDOS Ensino Básico 1.º Ciclo Matemática 3.º Ano Domínios Subdomínios Conteúdos Programáticos Nº Tempos previstos (Horas) 1º Período Geometria Medida naturais Adição e subtração Ler e interpretar

Leia mais

NÚMEROS RACIONAIS OPERAÇÕES

NÚMEROS RACIONAIS OPERAÇÕES UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2016.2 NÚMEROS RACIONAIS OPERAÇÕES Prof. Adriano Vargas Freitas Noção de número

Leia mais

Matemática. Questão 1. 6 o ano do Ensino Fundamental Turma. 1 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO:

Matemática. Questão 1. 6 o ano do Ensino Fundamental Turma. 1 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: EF AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 6 o ano do Ensino Fundamental Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 1 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Observe

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Básica Professor conteudista: Renato Zanini Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7

Leia mais

PLANO DE AULA: Data da aula: em aberto (há combinar com a supervisora).

PLANO DE AULA: Data da aula: em aberto (há combinar com a supervisora). PLANO DE AULA: Identificação: Mayara Fagundes Sena da Silva. Data da aula: em aberto (há combinar com a supervisora). Duração da aula: 2 Períodos. Conteúdo: Monômios. Conteúdos Específicos: - Partes de

Leia mais

à situação. à situação.

à situação. à situação. Unidade 1 Números naturais 1. Números naturais 2. Sistemas de numeração 3. Tabela simples Reconhecer os números naturais. Identificar o antecessor e o sucessor numa sequência de números naturais. Identificar

Leia mais

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º

Leia mais

DAMA DAS EQUAÇÕES DO 1º GRAU

DAMA DAS EQUAÇÕES DO 1º GRAU 1 DAMA DAS EQUAÇÕES DO 1º GRAU Resolver equações de 1 grau; Estimular o raciocínio. Duplas. Material (um para cada dupla): Tabuleiro8x8 com 64 casas. 64 peças. O jogo é composto por um tabuleiro 8x8 com

Leia mais

4º. ano 1º. VOLUME. Projeto Pedagógico de Matemática 1. AS OPERAÇÕES E AS HABILIDADES DE CALCULAR MENTALMENTE. Números e operações.

4º. ano 1º. VOLUME. Projeto Pedagógico de Matemática 1. AS OPERAÇÕES E AS HABILIDADES DE CALCULAR MENTALMENTE. Números e operações. 4º. ano 1º. VOLUME 1. AS OPERAÇÕES E AS HABILIDADES DE CALCULAR MENTALMENTE Realização de compreendendo seus significados: adição e subtração (com e sem reagrupamento) Multiplicação (como adição de parcelas

Leia mais

Planificação Anual de Matemática 2016 / ºAno

Planificação Anual de Matemática 2016 / ºAno Planificação Anual de Matemática 2016 / 2017 3ºAno NÚMEROS E Aulas Previstas: 1º período: 63 aulas 2º período: 63 aulas 3º período: 45 aulas DOMÍNIOS OBJETIVOS ATIVIDADES Números naturais Conhecer os numerais

Leia mais

UMA PROPOSTA CONSTRUTIVISTA PARA O ENSINO DE NÚMEROS RACIONAIS POSITIVOS E SUAS OPERAÇÕES UTILIZANDO O MATERIAL COUSINIERE

UMA PROPOSTA CONSTRUTIVISTA PARA O ENSINO DE NÚMEROS RACIONAIS POSITIVOS E SUAS OPERAÇÕES UTILIZANDO O MATERIAL COUSINIERE Sociedade Brasileira de Matemática Matemática na Contemporaneidade: desafios e possibilidades UMA PROPOSTA CONSTRUTIVISTA PARA O ENSINO DE NÚMEROS RACIONAIS POSITIVOS E SUAS OPERAÇÕES UTILIZANDO O MATERIAL

Leia mais

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE CONSELHO de DOCENTES Planificação Trimestral - 1.º Ano /2016 Matemática 2.º Período 52 dias letivos

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE CONSELHO de DOCENTES Planificação Trimestral - 1.º Ano /2016 Matemática 2.º Período 52 dias letivos janeiro Números naturais Correspondências um a um e comparação do número de elementos de dois conjuntos; Contagens de até doze objetos; O conjunto vazio e o número zero; Números naturais até 12; contagens

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Professor conteudista: Renato Zanini Sumário Matemática Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7 4 RESOLVENDO

Leia mais

Operações Fundamentais com Números

Operações Fundamentais com Números Capítulo 1 Operações Fundamentais com Números 1.1 QUATRO OPERAÇÕES Assim como na aritmética, quatro operações são fundamentais em álgebra: adição, subtração, multiplicação e divisão. Quando dois números

Leia mais

Prof. a : Patrícia Caldana

Prof. a : Patrícia Caldana CONJUNTOS NUMÉRICOS Podemos caracterizar um conjunto como sendo uma reunião de elementos que possuem características semelhantes. Caso esses elementos sejam números, temos então a representação dos conjuntos

Leia mais

21/08/2012. Definição de Razão. Se a e b são dois números reais, a razão entre a e b é o quociente. consequente consequente (b 0)

21/08/2012. Definição de Razão. Se a e b são dois números reais, a razão entre a e b é o quociente. consequente consequente (b 0) MATEMÁTICA Revisão Geral Aula 4 - Parte 1 Professor Me. Álvaro Emílio Leite Definição de Razão Se a e b são dois números reais, a razão entre a e b é o quociente antecedente antecedente : consequente consequente

Leia mais

Planificação Anual de Matemática 2017 / ºAno

Planificação Anual de Matemática 2017 / ºAno Planificação Anual de Matemática 2017 / 2018 3ºAno NÚMEROS E Aulas Previstas: 1º período: 64 aulas 2º período: 55 aulas 3º período: 52 aulas DOMÍNIOS OBJETIVOS ATIVIDADES Números naturais Utilizar corretamente

Leia mais

(A) (B) (C) (D) (E) (B) 5A e 10V (C) 5A e 25V (E) 6,25A e 15,625V. (D) 6,25A e 12,25V

(A) (B) (C) (D) (E) (B) 5A e 10V (C) 5A e 25V (E) 6,25A e 15,625V. (D) 6,25A e 12,25V 1. Assinale, dentre as regiões a seguir, pintadas de cinza, aquela que é formada pelos pontos do quadrado cuja distância a qualquer um dos vértices não é maior do que o comprimento do lado do quadrado.

Leia mais

A UTILIZAÇÃO DE MATERIAIS MANIPULÁVEIS NA FORMAÇÃO INICIAL DE PROFESSORES: JOGO CARA A CARA DE POLIEDROS

A UTILIZAÇÃO DE MATERIAIS MANIPULÁVEIS NA FORMAÇÃO INICIAL DE PROFESSORES: JOGO CARA A CARA DE POLIEDROS A UTILIZAÇÃO DE MATERIAIS MANIPULÁVEIS NA FORMAÇÃO INICIAL DE PROFESSORES: JOGO CARA A CARA DE POLIEDROS Formação de Professores e Educação Matemática (FPM) GT 08 Jailson Lourenço de PONTES jail21.jlo@gmail.com

Leia mais

NÚMEROS E OPERAÇÕES Números naturais

NÚMEROS E OPERAÇÕES Números naturais CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO (Aprovados em Conselho Pedagógico de 16 outubro de 2012) No caso específico da disciplina de MATEMÁTICA, do 3.º ano de escolaridade, a avaliação incidirá ainda ao nível

Leia mais

Competência Objeto de aprendizagem Habilidade

Competência Objeto de aprendizagem Habilidade Matemática 2ª Rosemeire Meinicke /Gustavo Lopes 6º Ano E.F. Competência Objeto de aprendizagem Habilidade COMPETÊNCIA 2 Foco: Os conjuntos numéricos Construir significados para os números naturais, inteiros,

Leia mais

Foto 1: Jogo: Roda-Roda Equações

Foto 1: Jogo: Roda-Roda Equações Registro PIBID Matemática 2016 ELABORAÇÃO DE JOGOS DIDÁTICOS Foram elaborados Jogos didáticos envolvendo as equações do 2º grau colaborativamente com os alunos do nono ano da escola participante EELAS.

Leia mais

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE Números e Operações ANUAL 164 dias letivos Números naturais Relações numéricas 1. Conhecer os numerais ordinais 1. Utilizar corretamente os numerais ordinais até «centésimo». 2. Contar até um milhão 1.

Leia mais

Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2015/2016 5º Ano de escolaridade

Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2015/2016 5º Ano de escolaridade Uma Escola de Cidadania Uma Escola de Qualidade Agrupamento de Escolas Dr. Francisco Sanches Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 05/06 5º Ano de escolaridade

Leia mais

Oficina de Matemática

Oficina de Matemática Oficina do Programa Integrar Eixo Educação 2012 Como usar bem o resultado da avaliação Oficina de Matemática Paracatu, 22 de junho de 2012 Eliane Scheid Gazire egazire@terra.com.br Quadro resumo do desempenho

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números

Leia mais

A) são da mesma cor. B) são vermelhas. C) uma é vermelha e duas são brancas. D) uma é branca e duas são vermelhas. E) pelo menos uma é vermelha.

A) são da mesma cor. B) são vermelhas. C) uma é vermelha e duas são brancas. D) uma é branca e duas são vermelhas. E) pelo menos uma é vermelha. XXII OLIMPÍADA BRASILEIRA DE MATEMÁTIA Primeira Fase Nível 1 - A duração da prova é de 3 horas. - Não é permitido o uso de calculadoras nem consultas a notas ou livros. - Você pode solicitar papel para

Leia mais

1º período ( 16 de Setembro a 17 de Dezembro) 38 blocos = 76 aulas

1º período ( 16 de Setembro a 17 de Dezembro) 38 blocos = 76 aulas ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS E TECNOLOGIAS 2015/2016 PLANIFICAÇÃO DE MATEMÁTICA 5 ºANO 1º Período 2º Período 3º

Leia mais

Pega-varetas dos inteiros

Pega-varetas dos inteiros Pega-varetas dos inteiros Desenvolvido por MDMat Mídias Digitais para Matemática EXPERIMENTO PRÁTICO 7º ANO DO ENSINO FUNDAMENTAL Com o apoio da Universidade Federal do Rio Grande do Sul Em parceria com

Leia mais

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b

Leia mais

ROLETRANDO DOS INTEIROS. GT 01 Educação matemática no ensino fundamental: anos iniciais e anos finais

ROLETRANDO DOS INTEIROS. GT 01 Educação matemática no ensino fundamental: anos iniciais e anos finais ROLETRANDO DOS INTEIROS GT 01 Educação matemática no ensino fundamental: anos iniciais e anos finais Cláudio Cristiano Liell Univates, cristianoliell@hotmail.com Gládis Bortoli Univates, gladisbortoli@gmail.com

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

Tamyris Caroline da Silva. Pricila de Fátima Stankevecz TEMA: FUTEBOL DE BOTÃO. FAIXA ETÁRIA: pré I (4 a 5 anos) JUSTIFICATIVA:

Tamyris Caroline da Silva. Pricila de Fátima Stankevecz TEMA: FUTEBOL DE BOTÃO. FAIXA ETÁRIA: pré I (4 a 5 anos) JUSTIFICATIVA: Universidade Federal do Paraná Setor de Educação Disciplina: PIBID Discentes: Tamara de la Macarena Moreiras Bucciarelli, Tamyris Caroline da Silva Pricila de Fátima Stankevecz TEMA: FUTEBOL DE BOTÃO FAIXA

Leia mais

Matemática - 4º ano. Números racionais não negativos. Tarefa : O passeio da turma da Rita

Matemática - 4º ano. Números racionais não negativos. Tarefa : O passeio da turma da Rita Números racionais não negativos Tarefa : O passeio da turma da Rita No final do ano, a turma da Rita foi passear à Serra da Arrábida. 1. A Rita e quatro dos seus amigos decidiram partilhar igualmente entre

Leia mais

OS DIFERENTES SIGNIFICADOS DE NÚMEROS RACIONAIS: um estudo das dificuldades apresentadas por alunos de 6º ano do Ensino Fundamental

OS DIFERENTES SIGNIFICADOS DE NÚMEROS RACIONAIS: um estudo das dificuldades apresentadas por alunos de 6º ano do Ensino Fundamental OS DIFERENTES SIGNIFICADOS DE NÚMEROS RACIONAIS: um estudo das dificuldades apresentadas por alunos de 6º ano do Ensino Fundamental Karolyne Camile Batista dos Santos karolynecamile19@gmail.com Elisa Fonseca

Leia mais

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática 1 Dia (10 mim) Acomodação dos alunos e realização da chamada.

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática 1 Dia (10 mim) Acomodação dos alunos e realização da chamada. PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Camila Dorneles da Rosa 1.2 Público alvo: Alunos do 6 ao 9 ano e Magistério. 1.3 Duração: 5 horas aula 1.4 Conteúdo desenvolvido: Operações

Leia mais

D e s e n h o T é c n i c o

D e s e n h o T é c n i c o AULA 2 VIII. ESCALAS NBR 8196 refere-se ao emprego de escalas no desenho. A escala de um desenho é a relação entre as dimensões do mesmo e as dimensões da peça real que está sendo representada. Assim,

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números

Leia mais

DOS INFINITOS DE CANTOR AOS LIVROS DIDÁTICOS DOS ENSINOS FUNDAMENTAL E MÉDIO

DOS INFINITOS DE CANTOR AOS LIVROS DIDÁTICOS DOS ENSINOS FUNDAMENTAL E MÉDIO ANALISANDO LIVROS DIDÁTICOS E SEUS CONCEITOS EM RELAÇÃO AOS CONJUNTOS DOS NÚMEROS INTEIROS E RACIONAIS MÓDULO DE PESQUISA: QUAL O SIGNIFICADO DO ESTUDO DOS CONJUNTOS NUMÉRICOS NO ENSINO DE MATEMÁTICA E

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

AULA 01 CONJUNTOS NUMÉRICOS

AULA 01 CONJUNTOS NUMÉRICOS AULA 01 CONJUNTOS NUMÉRICOS Apostila M1 página: 34 Para trabalharmos com números, devemos primeiramente ter um conhecimento básico de quais são os conjuntos ("tipos") de números existentes atualmente.

Leia mais

AULA 02 CONJUNTOS NUMÉRICOS. Figura 1 Conjuntos numéricos

AULA 02 CONJUNTOS NUMÉRICOS. Figura 1 Conjuntos numéricos AULA 02 CONJUNTOS NUMÉRICOS Figura 1 Conjuntos numéricos AULA 01 CONJUNTOS NUMÉRICOS Para trabalharmos com números, devemos primeiramente ter um conhecimento básico de quais são os conjuntos ("tipos")

Leia mais

REVISÃO DOS CONTEÚDOS

REVISÃO DOS CONTEÚDOS REVISÃO DOS CONTEÚDOS As quatro operações fundamentais As operações fundamentais da matemática são quatro: Adição (+), Subtração (-), Multiplicação (* ou x ou.) e Divisão (: ou / ou ). Em linguagem comum,

Leia mais

UMA PROPOSTA CONSTRUTIVISTA PARA O ENSINO DE NÚMEROS RACIONAIS POSITIVOS E SUAS OPERAÇÕES UTILIZANDO O MATERIAL COUSINIERE

UMA PROPOSTA CONSTRUTIVISTA PARA O ENSINO DE NÚMEROS RACIONAIS POSITIVOS E SUAS OPERAÇÕES UTILIZANDO O MATERIAL COUSINIERE UMA PROPOSTA CONSTRUTIVISTA PARA O ENSINO DE NÚMEROS RACIONAIS POSITIVOS E SUAS OPERAÇÕES UTILIZANDO O MATERIAL COUSINIERE Lucas Dechem Calanca Instituto Federal de Educação, Ciência e Tecnologia/câmpus

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS EDU 1500 FUNDAMENTOS TEÓRICOS E METODOLÓGICOS DO ENSINO DE MATEMÁTICA PROFESSORA LYGIANNE BATISTA VIEIRA

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS EDU 1500 FUNDAMENTOS TEÓRICOS E METODOLÓGICOS DO ENSINO DE MATEMÁTICA PROFESSORA LYGIANNE BATISTA VIEIRA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS EDU 1500 FUNDAMENTOS TEÓRICOS E METODOLÓGICOS DO ENSINO DE MATEMÁTICA PROFESSORA LYGIANNE BATISTA VIEIRA SUGESTÃO DE ATIVIDADES PARA TRABALHAR A MULTIPLICAÇÃO

Leia mais

PLANIFICAÇÃO MENSAL/ANUAL Matemática 3.ºano

PLANIFICAÇÃO MENSAL/ANUAL Matemática 3.ºano PLANIFICAÇÃO MENSAL/ANUAL Matemática 3.ºano Domínio/ Subdomínio Números Naturais Sistema de numeração decimal Adição e subtração Multiplicação MATEMÁTICA Metas a atingir 3.º ANO DE ESCOLARIDADE Meses do

Leia mais

Matriz Curricular 1º Ciclo / 2016 Ano de Escolaridade: 3.º Ano Matemática

Matriz Curricular 1º Ciclo / 2016 Ano de Escolaridade: 3.º Ano Matemática Ano letivo 2015 / 16 Matriz Curricular 1º Ciclo Ano Letivo: 2015 / 2016 Ano de Escolaridade: 3.º Ano Matemática Nº total de dias letivos 164 dias Nº de dias letivos 1º período - 64 dias 2º período - 52

Leia mais

OPERAÇÕES COM FRAÇÕES. Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores.

OPERAÇÕES COM FRAÇÕES. Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores. ADIÇÃO E SUBTRAÇÃO Há dois casos possíveis: º) Frações com denominadores iguais OPERAÇÕES COM FRAÇÕES Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores. Exemplos:

Leia mais

(RE)CONSTRUINDO O CONCEITO DE NÚMERO RACIONAL

(RE)CONSTRUINDO O CONCEITO DE NÚMERO RACIONAL (RE)CONSTRUINDO O CONCEITO DE NÚMERO RACIONAL Ana Clara Pessanha Teixeira de Mendonça Rodrigo Viana Pereira Bruno Alves Dassie Wanderley Moura Rezende 4 Resumo: São notórias as dificuldades dos estudantes

Leia mais

CONTEÚDOS E DIDÁTICA DE MATEMÁTICA

CONTEÚDOS E DIDÁTICA DE MATEMÁTICA Oper ações Ao realizar operações com números naturais, os alunos ampliam seu conhecimento sobre os números e o sistema de numeração decimal. Por isso, operar com o sistema de numeração decimal a partir

Leia mais

Geometria e Medida. Números e Operações. Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação. - Atenção.

Geometria e Medida. Números e Operações. Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação. - Atenção. Conselho de Docentes do 3º Ano PLANIFICAÇÃO Anual de Matemática Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação Geometria e Medida Localização e orientação no espaço Coordenadas

Leia mais

ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL

ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL Rua Prof Guilherme Butler, 792 - Barreirinha - CEP 82.700-000 - Curitiba/PR Fone: (41) 3053-8636 - e-mail: ease.acp@adventistas.org.br

Leia mais

Só abra este caderno quando o fiscal autorizar. Leia atentamente as instruções abaixo.

Só abra este caderno quando o fiscal autorizar. Leia atentamente as instruções abaixo. PROCESSO SELETIVO 2003/1 MATEMÁTICA CURSOS Administração, Administração em Agronegócios, Administração em Hotelaria, Arquitetura e Urbanismo, Ciências Contábeis, Ciências Econômica, Engenharia Agrícola,

Leia mais

AGRUPAMENTO DE ESCOLAS DE SAMORA CORREIA ESCOLA BÁSICA PROF. JOÃO FERNANDES PRATAS ESCOLA BÁSICA DE PORTO ALTO

AGRUPAMENTO DE ESCOLAS DE SAMORA CORREIA ESCOLA BÁSICA PROF. JOÃO FERNANDES PRATAS ESCOLA BÁSICA DE PORTO ALTO AGRUPAMENTO DE ESCOLAS DE SAMORA CORREIA ESCOLA BÁSICA PROF. JOÃO FERNANDES PRATAS ESCOLA BÁSICA DE PORTO ALTO Prova Extraordinária de Avaliação Matemática 2º Ciclo - 6.º Ano de Escolaridade Despacho Normativo

Leia mais

fevereiro PC Sampaio Alex Amaral Gabriel Ritter (Allan Pinho)

fevereiro PC Sampaio Alex Amaral Gabriel Ritter (Allan Pinho) 10 fevereiro PC Sampaio Alex Amaral Gabriel Ritter 06 (Allan Pinho) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Números e operações Números racionais não negativos Noção e representação de número racional Comparação e ordenação de números racionais Operações com números racionais Valores aproximados Percentagens

Leia mais

Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 6 ano/e.f.

Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 6 ano/e.f. Módulo Unidades de Medidas de Comprimentos e Áreas Unidades de Medida de Área e Exercícios. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 1 Exercícios

Leia mais

CAMINHOS DA GEOMETRIA NA ERA DIGITAL

CAMINHOS DA GEOMETRIA NA ERA DIGITAL CAMINHOS DA GEOMETRIA NA ERA DIGITAL GT 05 Educação Matemática: tecnologias informáticas e educação à distância Tatiana Schmitz UNISINOS e-mail@sinos.net Ana Paula de Quadros UNISINOS anapauladequadros@gmail.com

Leia mais

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO DESCRITORES DE MATEMÁTICA PROVA - 3º BIMESTRE 2011 2º ANO Reconhecer e utilizar

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA ALFA Título do Porcentagem no cotidiano

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA ALFA Título do Porcentagem no cotidiano SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA ALFA Título do Porcentagem no cotidiano Podcast Área Matemática Segmento Ensino Fundamental - Programa de Alfabetização de Jovens e Adultos Duração 4min44seg

Leia mais

MULTIPLICAÇÃO E DIVISÃO DE DECIMAIS

MULTIPLICAÇÃO E DIVISÃO DE DECIMAIS MULTIPLICAÇÃO E DIVISÃO DE DECIMAIS Multiplicação com números decimais Há duas maneiras de efetuarmos a multiplicação envolvendo números decimais: multiplicação de número natural por decimal e multiplicação

Leia mais

LOS SIGNIFICADOS DE LOS NÚMEROS FRACCIONÁRIOS

LOS SIGNIFICADOS DE LOS NÚMEROS FRACCIONÁRIOS LOS SIGNIFICADOS DE LOS NÚMEROS FRACCIONÁRIOS Prof. Maria José Ferreira da Silva zeze@pucsp.br Porque as dificuldades no ensino? Porque as dificuldades na aprendizagem? GRANDEZAS Quantificar significa

Leia mais

número racional. apresentados na forma decimal. comparar ou ordenar números números racionais

número racional. apresentados na forma decimal. comparar ou ordenar números números racionais PLANO DE TRABALHO ANUAL -2017 ESCOLA: Escola Estadual Prof. Calixto de Souza Aranha ANO: 5º PROFESSORAS: Francisca, Marluce, Milena, Neide, Roseli DICIPLINA: Matemática CONTEÚDO EXPECTATIVA HABILIDADE

Leia mais

SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR

SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR 2ª AVALIAÇÃO DIAGNÓSTICA DO 4º ANO DO ENSINO FUNDAMENTAL 2012 MATEMÁTICA

Leia mais

DOS REAIS AOS DECIMAIS

DOS REAIS AOS DECIMAIS DOS REAIS AOS DECIMAIS Número é a sua representação Na sua origem, número é resultado dos processos de contagem ou de medida. Tais números precisam ter algum tipo de representação, para possibilitar as

Leia mais

PLANEJAMENTO Disciplina: Matemática Série: 6º Ano Ensino: Fundamental II Prof(a).: Jeane

PLANEJAMENTO Disciplina: Matemática Série: 6º Ano Ensino: Fundamental II Prof(a).: Jeane Disciplina: Matemática Série: 6º Ano Ensino: Fundamental II Prof(a).: Jeane 1ª UNIDADE EIXOS COGNITIVOS CONTEÚDOS HABILIDADES Contagem 1. Números pra quê? H 1 ( Reconhecer, no contexto social, diferentes

Leia mais

JOGOS MATEMÁTICOS PIBID-UFS 2012

JOGOS MATEMÁTICOS PIBID-UFS 2012 JOGOS MATEMÁTICOS PIBID-UFS 2012 Letícia Balbino Santos Leticia_peixinha@hotmail.com Darlysson Wesley da Silva Fundação Universidade Federal do Mato Grosso do Sul darlyssonwesley@hotmail.com Rodrigo Oliveira

Leia mais

PLANIFICAÇÃO ANUAL 2016/2017 MATEMÁTICA- 3ºANO

PLANIFICAÇÃO ANUAL 2016/2017 MATEMÁTICA- 3ºANO Direção Geral dos Estabelecimentos Escolares Direção de Serviços da Região do Algarve Agrupamento de Escolas José Belchior Viegas (Sede: Escola Secundária José Belchior Viegas) PLANIFICAÇÃO ANUAL 2016/2017

Leia mais

PROPOSTA DIDÁTICA. (100 min) Desenvolvimento de atividades exploratórias envolvendo conceitos de fração

PROPOSTA DIDÁTICA. (100 min) Desenvolvimento de atividades exploratórias envolvendo conceitos de fração PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Jéssica Marilda Gomes Mendes 1.2 Público alvo: 6º/ 7º ano 1.3 Duração: 2,5 horas 1.4 Conteúdo desenvolvido: Frações 2. Objetivo(s) da proposta

Leia mais

BINGO DOS POLINÔMIOS. Apresentação: Jogo matemático

BINGO DOS POLINÔMIOS. Apresentação: Jogo matemático BINGO DOS POLINÔMIOS Apresentação: Jogo matemático Gabriel Jorge dos Santos 1 ; Jorge Luiz de Freitas 2 ; Sara Katiana Vieira da Silva 3 ; Taíse Barbosa Santos 4 Introdução Este jogo é voltado para a educação

Leia mais

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 4º

Leia mais

MATERIAL: Tabuleiro e pinos (marcadores). São necessários 20 pinos para os cordeiros e 2 pinos para os tigres.

MATERIAL: Tabuleiro e pinos (marcadores). São necessários 20 pinos para os cordeiros e 2 pinos para os tigres. Cordeiros e tigres MATERIAL: Tabuleiro e pinos (marcadores). São necessários 20 pinos para os cordeiros e 2 pinos para os tigres. 1. O jogo começa com o tabuleiro vazio. 2. Quem está com os tigres ocupa

Leia mais

Universidade Tecnológica Federal do Paraná UTFPR Câmpus Apucarana. Projeto Novos Talentos Edital CAPES 55/12. Professor Responsável Ivan José Coser.

Universidade Tecnológica Federal do Paraná UTFPR Câmpus Apucarana. Projeto Novos Talentos Edital CAPES 55/12. Professor Responsável Ivan José Coser. 1 Universidade Tecnológica Federal do Paraná UTFPR Câmpus Apucarana Projeto Novos Talentos Edital CAPES 55/12 Professor Responsável Ivan José Coser. Atividades de Matemática Julho 2014 2 1. TANGRAM O TANGRAM

Leia mais

DESCRIÇÃO DAS ATIVIDADES:

DESCRIÇÃO DAS ATIVIDADES: DESCRIÇÃO DAS ATIVIDADES: 1) O JOGO DOS PALITOS E A PROBABILIDADE: esta sequência didática apresentada aos anos iniciais (1º/5º ano) do Ensino Fundamental tem como objetivo possibilitar conhecimentos das

Leia mais

Exercícios complementares

Exercícios complementares Exercícios complementares Conteúdo(s) abordado(s): Os conteúdos abordados neste material fazem parte dos blocos de conteúdos das seguintes avaliações: o Operações (adição, subtração, multiplicação e divisão)

Leia mais

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como

Leia mais

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 João queria sair de casa, mas não sabia qual era a previsão do tempo. Ao ligar a TV no canal do tempo, a jornalista anunciou que existia a possibilidade de chuva no fim da tarde

Leia mais

PROGRAMAÇÃO CURRICULAR DE MATEMÁTICA. UNIDADE 1 Conteúdos

PROGRAMAÇÃO CURRICULAR DE MATEMÁTICA. UNIDADE 1 Conteúdos PROGRAMAÇÃO CURRICULAR DE MATEMÁTICA 1. ano - 1. volume 1. ano - 2. volume UNIDADE 1 Localização espacial, utilizando o próprio corpo como referencial. Localização espacial, utilizando referenciais externos

Leia mais

Pró-letramento Matemática Estado de Minas Gerais

Pró-letramento Matemática Estado de Minas Gerais Pró-letramento Matemática Estado de Minas Gerais Diferentes significados de um mesmo conceito: o caso das frações. 1 Cleiton Batista Vasconcelos e Elizabeth Belfort Muitos conceitos matemáticos podem ser

Leia mais

Mestrado profissional em Educação para Ciências e Matemática. Análise e desenvolvimento de recursos didáticos para o ensino de Ciências e Matemática

Mestrado profissional em Educação para Ciências e Matemática. Análise e desenvolvimento de recursos didáticos para o ensino de Ciências e Matemática DOMINÓ QUÍMICO Alunos: Anahê Netto Leão Marques; Joel Brito; Sandro Stanley Soares Professora: Marta João Francisco Silva Souza INSTRUÇÕES: Acreditando no jogo como ferramenta auxiliar no processo de ensino-aprendizagem

Leia mais

G A B A R I T O G A B A R I T O

G A B A R I T O G A B A R I T O Prova Anglo P-2 G A B A R I T O Tipo D-8-05/2011 01. B 07. A 13. C 19. B 02. D 08. C 14. A 20. C 03. A 09. B 15. D 21. C 04. D 10. D 16. B 22. D 05. C 11. A 17. D 00 06. B 12. C 18. B 00 841201711 PROVA

Leia mais

Prepara a Prova Final Matemática 4.º ano

Prepara a Prova Final Matemática 4.º ano Nem todos os números representam quantidades inteiras e existem, por isso, diferentes formas de representar as partes da unidade. Os números decimais e fracionários representam essas partes da unidade.

Leia mais

MATEMÁTICA DESCRITORES BIM3/2017

MATEMÁTICA DESCRITORES BIM3/2017 4º ANO Calcular o resultado de uma adição ou de uma subtração de números naturais. Calcular o resultado de uma multiplicação ou de uma divisão de números naturais Ler informações e dados apresentados em

Leia mais

Prezados Estudantes, Professores de Matemática e Diretores de Escola,

Prezados Estudantes, Professores de Matemática e Diretores de Escola, Prezados Estudantes, Professores de Matemática e Diretores de Escola, Os Problemas Semanais são um incentivo a mais para que os estudantes possam se divertir estudando Matemática, ao mesmo tempo em que

Leia mais

(RE) CONSTRUINDO O CONCEITO DE NÚMERO RACIONAL

(RE) CONSTRUINDO O CONCEITO DE NÚMERO RACIONAL (RE) CONSTRUINDO O CONCEITO DE NÚMERO RACIONAL Wanderley Moura Rezende Universidade Federal Fluminense wmrezende@id.uff.br Bruno Alves Dassie Universidade Federal Fluminense badassie@gmail.com Ana Clara

Leia mais

PLANO DE ENSINO Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa

PLANO DE ENSINO Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa PLANO DE ENSINO 2016 Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa Competências e Habilidades Gerais da Disciplina Desenvolver a responsabilidade e o gosto pelo trabalho em equipe; Relacionar

Leia mais

Números. Leitura e escrita de um número no sistema de numeração indo-arábico Os números naturais 24 Comparando números naturais 25

Números. Leitura e escrita de um número no sistema de numeração indo-arábico Os números naturais 24 Comparando números naturais 25 Sumário CAPÍTULO 1 Números 1. Os números registram o mundo em que vivemos 11 2. Sistemas de numeração 12 3. O sistema de numeração indo-arábico 16 Leitura e escrita de um número no sistema de numeração

Leia mais