defi departamento de física

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "defi departamento de física"

Transcrição

1 def deparameno de físca Laboraóros de Físca Equações de Fresnel Insuo Superor de Engenhara do Poro Deparameno de Físca Rua Dr. Anóno Bernardno de Almeda, Poro. Tel Fax:

2 Laboraóros de Físca Les de Fresnel Objecvos: Les de Fresnel Compreender o conceo de polarzação da luz; Deermnar o ângulo de Brewser; Traçar expermenalmene as les de Fresnel. Inrodução eórca Segundo as les da reflexão e da refracção, quando um fexe lumnoso ncde na superfíce de separação enre dos meos com dferenes caraceríscas, uma pare desse fexe é reflecdo numa drecção smérca em relação à normal da superfíce, com um ângulo gual ao ângulo de ncdênca Le da Reflexão. O resane fexe é refracado, propagando-se no segundo meo com índce de refracção n, numa drecção que obedece à le da refracção desgnada por Le de Snell (1): n snθ 1 = n snθ (1) A nensdade dos város fexes é deermnada a parr dos coefcenes de reflexão e de ransmssão (), que correspondem à razão enre as ampludes dos campos elécrcos dos fexes reflecdo e ransmdo (ou refracado) relavamene à amplude do fexe ncdene, respecvamene. Sabendo que qualquer po de polarzação pode ser sempre decomposo em duas componenes perpendculares enre s, dever-se-ão dsngur esas duas suações quano ao fexe ncdene, pos as condções fronera mposas na zona de separação enre os meos esão condconadas pela drecção de osclação do campo elécrco ncdene. Assm, dsnguem-se os coefcenes de reflexão e de ransmssão para os dos casos (Fgura 1). E r = E r E = E () Fgura 1 Indcação do plano de ncdênca e das drecções de polarzação para os dferenes fexes: ncdene, reflecdo e refracado. Deparameno de Físca Págna /6

3 Laboraóros de Físca Les de Fresnel a) Quando o fexe ncdene em polarzação perpendcular ao plano de ncdênca, er-se-á: r n1cosθ ncosθ = n cosθ + n cosθ 1 n1 cos = θ n cosθ + n cosθ 1 (3) b) Quando o fexe ncdene em polarzação paralela ao plano de ncdênca, er-se-á: ncosθ n1cosθ r = n cosθ + n cosθ 1 n1 cosθ = n cosθ + n cosθ (4) 1 A nensdade dos fexes reflecdo e ransmdo é deermnada a parr das suas poêncas relavamene ao fexe ncdene. As quandades assm deermnadas são desgnadas por Reflecânca R e Transmânca T. Sendo a reflecânca R a razão enre as respecvas nensdades, esa será gual ao quadrado do coefcene de reflexão, r (5), uma vez que o meo de propagação é o mesmo para os fexes reflecdo e ncdene. Em conraparda, o fexe ransmdo ao propagar-se num meo com índce de refracção dferene numa drecção de propagação ambém dferene, va sofrer expansão,.e., o dâmero do fexe no segundo meo é maor (se n > n 1 ). Nese caso, a ransmânca T é proporconal ao quadrado do coefcene de ransmssão,, com um facor de proporconaldade desgnado por facor de expansão do fexe e represenado em (6). R I I r = = r (5) T I I n n = = 1 cosθ cosθ (6) De acordo com as duas suações de polarzação do campo elécrco ncdene, ambém se dsnguem as reflecâncas e as ransmâncas em função dessa polarzação, conforme as expressões segunes ndcam: R I = = = = I sen ( θ r θ ) Ir g ( ) R θ θ sen ( θ + θ) I g ( θ + θ) (7) T nwi n cosθ 4sen θ cos θ = = nwi 1 n1 cosθ sen ( θ+ θ) wi n cosθ 4sen θ cos θ T = = wi θ θ θ θ θ n1 cos sen cos ( + ) ( ) (8) onde, w w represenam respecvamene, as larguras dos fexes ncdene e ransmdo. Deparameno de Físca Págna 3/6

4 Laboraóros de Físca Les de Fresnel Ângulo de Brewser Quando θ + θ = 90º, a onda reflecda va emergr lnearmene polarzada, apenas com a componene do campo elécrco perpendcular ao plano de ncdênca, pos a sua componene paralela anula-se. O ângulo de ncdênca para o qual se verfca esa suação é desgnado por ângulo de Brewser, podendo ser calculado a parr da le de Snell, resulando em: g B n n θ = (9) 1 Incdênca normal Quando o fexe ncde com drecção normal à superfíce,.e., θ θ 0º e perpendcular são dêncas e as equações de Fresnel escrevem-se como: = =, as componenes paralela n n 1 = = e n1+ n R R R 4nn 1 T = T T = ( n + n ) (10) 1 Nesa suação a reflexão é mínma. A reflexão aumena com a amplude do ângulo de ncdênca. Para θ = 90º a reflexão é oal para ambas as componenes da onda,.e., R = 1. Na Fgura esão represenados dos gráfcos referenes às reflecâncas observadas em função do ângulo de ncdênca, para dferenes meos, nas duas suações de polarzação. A parr deses gráfcos pode-se deermnar o valor do ângulo de Brewser para os nerfaces represenados. Verfca-se que para meos de ransmssão com índces de refracção maores, o ângulo de Brewser aumena. Fgura - Coefcenes de reflexão para n 1 =1 e n = 1.3 (cma) e para n 1 =1 e n = (baxo) em função do ângulo de ncdênca (θ). Deparameno de Físca Págna 4/6

5 Laboraóros de Físca Les de Fresnel Maeral Necessáro Laser Foodíodo Volímero Polarod Transferdor Placa espessa ransparene Procedmeno expermenal 1. Verfque se a monagem expermenal esá de acordo com o esquema represenado na Fgura 3.. Coloque a placa espessa ransparene em cma do ransferdor graduado. Faça ncdr a luz laser rasane ao ransferdor e aponada para o cenro do mesmo de forma a ler a escala correcamene. Laser Polarod Foodíodo Fgura 3 Esquema de monagem. Deermnação do ângulo de Brewser 3. Com a ajuda do Polarod, orene o fexe laser de forma a er o exo de polarzação paralelo ao plano de ncdênca. 4. Vá rodando a placa de plásco sobre o ransferdor de forma ao fexe laser ncdr com um ângulo cada vez maor. Procure o ângulo de Brewser,.e., procure a ncdênca para a qual o fexe reflecdo pela placa ransparene ver um mínmo de nensdade. ATENÇÃO: Exsem pelos menos dos fexes reflecdos na placa, orgnados pela reflexão em cada uma das suas superfíces. Deve consderar somene o fexe reflecdo na prmera superfíce. Deparameno de Físca Págna 5/6

6 Laboraóros de Físca Les de Fresnel 5. Use o valor obdo para deermnar o índce de refracção da placa ransparene, consderando que o índce de refracção do ar é n ar = 1. Verfcação das equações de Fresnel 6. Ajuse o Polarod à saída do laser e rode o laser de forma ao fexe er polarzação horzonal. 7. Coloque o foodíodo orenado para o fexe reflecdo na superfíce da frene da placa (reflexão prncpal ou prmára). 8. Deve er cudado para usar correcamene a fenda que proege o foodíodo da radação ambene. Verfque ambém se o fexe laser esá a ncdr no cenro do foodíodo. NOTA IMPORTANTE: O foodíodo possu uma resposa aproxmadamene lnear de 4mV/lux. A sauração é angda para 450 mv. 9. Faça varar os ângulos de ncdênca, começando por um valor baxo (~10º) aé 90º, em nervalos de 10º. Com o volímero lgado ao foodíodo e usando a escala mas baxa de ensão DC, regse os valores de ensão para cada ângulo. 10. Repa o procedmeno aneror mas com a luz do laser polarzada vercalmene. 11. Represene grafcamene as reflecâncas obdas expermenalmene, comparando-as com as curvas eórcas, usando o índce de refracção meddo anerormene. 1. Represene grafcamene a reflecânca oal R = R + R T. 13. Represene grafcamene a curva da ransmânca para cada uma dos casos de polarzação, a parr dos resulados expermenas. Verfque se exse conservação de energa. Ouras nformações Deverá regsar odas as medções que efecuar, bem como as caraceríscas dos aparelhos de medda ulzados. Todos os cálculos deverão esar ndcados de forma clara, ulzando undades conssenes para as váras grandezas. Referêncas Bblográfcas Physcs Laboraory Expermens (5h edon), Jerry D. Wlson, 1998, Houghon Mffln Company, U.S.A. Laboraory Expermens n College Physcs (7h edon), Ccero H. Bernard & Chrold D. Epp, 1995, John Wley & Sons, Inc. Deparameno de Físca Págna 6/6

7 Laboraóros de Físca Les de Fresnel Anexo A Curso: Les de Fresnel Anexo A Dscplna: Ano: Turma: Grupo #: Daa da realzação: Daa de enrega: Tabelas Tabela 1: Regso dos Aparelhos de Medção Aparelhos Undades Resolução Erro de Leura Tabela : Meddas do fexe reflecdo polarzação horzonal polarzação vercal Ângulo θ V // [mv] R // V [mv] R 10º 0º 30º 40º 50º 60º 70º 80º <90º - -

8 Laboraóros de Físca Les de Fresnel Anexo B Quesões sobre os conceos de: Conceo de polarzação da luz; Ângulo de Brewser; Les de Fresnel. Les de Fresnel Anexo B Quesões - -

Física Experimental IV Polarização por Reflexão ângulo de Brewster. Prof. Alexandre Suaide Prof. Manfredo Tabacniks

Física Experimental IV Polarização por Reflexão ângulo de Brewster. Prof. Alexandre Suaide Prof. Manfredo Tabacniks Físca xpermenal IV - 008 Polarzação por Reflexão ângulo de Brewser Prof. Alexandre Suade Prof. Manfredo Tabacnks Reflexão e Refração da Luz fsca.ufpr.br/edlson/cap34.pdf fsca.ufpr.br/edlson/cap34.pdf prsma

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA UNESP FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA FEIS QUARTA SÉRIE DE EXERCÍCIOS DE ONDAS E LINHAS DE COMUNICAÇÃO

UNIVERSIDADE ESTADUAL PAULISTA UNESP FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA FEIS QUARTA SÉRIE DE EXERCÍCIOS DE ONDAS E LINHAS DE COMUNICAÇÃO UNIVERSIDADE ESTADUAL PAULISTA UNESP FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA FEIS QUARTA SÉRIE DE EXERCÍCIOS DE ONDAS E LINHAS DE COMUNICAÇÃO 1) Traçar os gráfcos de magnude e fase do coefcene de reflexão,

Leia mais

Módulo 2: Métodos Numéricos. (problemas de valores iniciais e problemas de condições-fronteira)

Módulo 2: Métodos Numéricos. (problemas de valores iniciais e problemas de condições-fronteira) Módulo : Méodos Numércos Equações dferencas ordnáras problemas de valores ncas e problemas de condções-fronera Modelação Compuaconal de Maeras -5. Equações dferencas ordnáras - Inrodução Uma equação algébrca

Leia mais

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton 9 CPÍTUL 4 DINÂMIC D PRTÍCUL: IMPULS E QUNTIDDE DE MVIMENT Nese capíulo será analsada a le de Newon na forma de negral no domíno do empo, aplcada ao momeno de parículas. Defne-se o conceo de mpulso e quandade

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experênca IV (aulas 06 e 07) Queda lvre 1. Obevos. Inrodução 3. Procedmeno expermenal 4. Análse de dados 5. Quesões 6. Referêncas 1. Obevos Nesa experênca esudaremos o movmeno da queda de um corpo, comparando

Leia mais

Conceitos Básicos de Circuitos Elétricos

Conceitos Básicos de Circuitos Elétricos onceos Báscos de rcuos lércos. nrodução Nesa aposla são apresenados os conceos e defnções fundamenas ulzados na análse de crcuos elércos. O correo enendmeno e nerpreação deses conceos é essencal para o

Leia mais

Instituto de Física USP. Física V Aula 30. Professora: Mazé Bechara

Instituto de Física USP. Física V Aula 30. Professora: Mazé Bechara Insuo de Físca USP Físca V Aula 30 Professora: Maé Bechara Aula 30 Tópco IV - Posulados e equação básca da Mecânca quânca 1. Os posulados báscos da Mecânca Quânca e a nerpreação probablísca de Ma Born.

Leia mais

Introdução à Computação Gráfica

Introdução à Computação Gráfica Inrodução à Compuação Gráfca Desenho de Consrução Naval Manuel Venura Insuo Superor Técnco Secção Auónoma de Engenhara Naval Sumáro Represenação maemáca de curvas Curvas polnomas e curvas paramércas Curvas

Leia mais

F-128 Física Geral I. Aula exploratória-10a UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-10a UNICAMP IFGW F-8 Físca Geral I Aula exploraóra-a UNICAMP IFGW username@f.uncamp.br Varáves roaconas Cada pono do corpo rígdo execua um movmeno crcular de rao r em orno do exo. Fgura: s=r Deslocameno angular: em radanos

Leia mais

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães Físca I º Semesre de 03 Insuo de Físca- Unversdade de São Paulo Aula 5 Trabalho e energa Proessor: Valdr Gumarães E-mal: valdrg@.usp.br Fone: 309.704 Trabalho realzado por uma orça consane Derenemene

Leia mais

MECÂNICA CLÁSSICA. AULA N o 4. Carga de Noether- Simetrias e Conservação

MECÂNICA CLÁSSICA. AULA N o 4. Carga de Noether- Simetrias e Conservação MECÂNIC CLÁSSIC UL N o 4 Carga de Noeher- Smeras e Conservação Vamos ver o caso de uma parícula movendo-se no plano, porém descrevendo-a agora em coordenadas polares: r r d dr T T m dr m d r d d m r m

Leia mais

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas.

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas. 1 INTRODUÇÃO E CONCEITOS INICIAIS 1.1 Mecânca É a pare da Físca que esuda os movmenos dos corpos. 1. -Cnemáca É a pare da mecânca que descreve os movmenos, sem se preocupar com suas causas. 1.3 - Pono

Leia mais

CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013. Padrão. Padrão. max i. I - F = fator estabelecido no art. 4º da Resolução nº 4.

CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013. Padrão. Padrão. max i. I - F = fator estabelecido no art. 4º da Resolução nº 4. CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013 Esabelece os procedmenos para o cálculo da parcela dos avos ponderados pelo rsco (RWA) referene às exposções sueas à varação de axas de uros prefxadas denomnadas

Leia mais

Caracterização ótica de soluções

Caracterização ótica de soluções Caracterzação ótca de soluções Físca Expermental IV - 2016 - Prof. Dr. Valmr Antono Chtta 1. Resumo O projeto tem como objetvo prncpal determnar o comportamento da luz ao passar por meos delétrcos e translúcdos,

Leia mais

MECÂNICA CLÁSSICA. AULA N o 3. Lagrangeano Princípio da Mínima Ação Exemplos

MECÂNICA CLÁSSICA. AULA N o 3. Lagrangeano Princípio da Mínima Ação Exemplos MECÂNICA CÁSSICA AUA N o 3 agrangeano Prncípo da Mínma Ação Exemplos Todas as les da Físca êm uma esruura em comum: as les de uma parícula em movmeno sob a ação da gravdade, o movmeno dado pela equação

Leia mais

Curso de Óptica Aplicada

Curso de Óptica Aplicada Curso de Ópca Aplcada Faculdade de Cêcas e Tecologa Uversdade Nova de Lsboa AT 4 Propagação Deparameo Aula Teórca de Físca 5 Ópca Geomérca Curso de Ópca Aplcada Aula Teórca 4 Propagação Curso de Ópca Aplcada

Leia mais

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v Dispara-se, segundo um ângulo de 6 com o horizone, um projéil que explode ao aingir o solo e oue-se o ruído da explosão, no pono de parida do projéil, 8 segundos após o disparo. Deerminar a elocidade inicial

Leia mais

Gripe: Época de gripe; actividade gripal; cálculo da linha de base e do respectivo intervalo de confiança a 95%; e área de actividade basal.

Gripe: Época de gripe; actividade gripal; cálculo da linha de base e do respectivo intervalo de confiança a 95%; e área de actividade basal. Grpe: Época de grpe; acvdade grpal; cálculo da lnha de ase e do respecvo nervalo de confança a 95%; e área de acvdade asal. ÉPOCA DE GRPE Para maor facldade de compreensão será desgnado por época de grpe

Leia mais

Nota Técnica sobre a Circular nº 2.972, de 23 de março de 2000

Nota Técnica sobre a Circular nº 2.972, de 23 de março de 2000 Noa Técnca sobre a rcular nº 2.972, de 23 de março de 2000 Meodologa ulzada no processo de apuração do valor da volaldade padrão e do mulplcador para o da, dvulgados daramene pelo Banco enral do Brasl.

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

3 Análise de Demanda Condicionada

3 Análise de Demanda Condicionada 3 Análse de Demanda Condconada 3.1 Inrodução A análse Condconada da Demanda é uma écnca que quebra o consumo resdencal em pares, cada uma assocada a um uso fnal ou a um deermnado equpameno em parcular.

Leia mais

ÓPTICA GEOMÉTRICA ÓPTICA REFLEXÃO MEIOS DE PROPAGAÇÃO DA LUZ. Estuda os fenômenos luminosos, sem se interessar com sua natureza.

ÓPTICA GEOMÉTRICA ÓPTICA REFLEXÃO MEIOS DE PROPAGAÇÃO DA LUZ. Estuda os fenômenos luminosos, sem se interessar com sua natureza. 12. Num calorímetro de capacdade térmca 8,0 cal/ o C ncalmente a 10º C são colocados 200g de um líqudo de calor específco 0,40 cal/g. o C. Verfca-se que o equlíbro térmco se estabelece a 50º C. Determne

Leia mais

5 Apreçamento de ESOs com preço de exercício fixo

5 Apreçamento de ESOs com preço de exercício fixo 5 Apreçameno de ESOs com preço de exercíco fxo Ese capíulo rá explorar os prncpas modelos de apreçameno das ESOs ulzados hoje em da. Neses modelos a regra de decsão é esruurada em orno da maxmzação do

Leia mais

Projeto de Inversores e Conversores CC-CC

Projeto de Inversores e Conversores CC-CC eparameno de Engenhara Elérca Aula. onversor Buck Prof. João Amérco lela Bblografa BAB, vo. & MANS enzar ruz. onversores - Báscos Não-solados. ª edção, UFS,. MOHAN Ned; UNEAN ore M.; OBBNS Wllam P. Power

Leia mais

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n 1 CAPÍTULO 1 REPREENTAÇÃO E CLAIFICAÇÃO DE ITEMA 1.1. Represenação de ssemas 1.1.1. semas com uma enrada e uma saída (IO) e sema monovarável IO = ngle Inpu ngle Oupu s e = enrada s = saída = ssema 1.1..

Leia mais

Análise da Confiabilidade de Componentes Não Reparáveis

Análise da Confiabilidade de Componentes Não Reparáveis Análse da onfabldade de omponenes Não Reparáves. omponenes versus Ssemas! Ssema é um conjuno de dos ou mas componenes nerconecados para a realzação de uma ou mas funções! A dsnção enre ssema, sub-ssema

Leia mais

PROF. DR. JACQUES FACON LIMIARIZAÇÃO POR ENTROPIA DE WULU

PROF. DR. JACQUES FACON LIMIARIZAÇÃO POR ENTROPIA DE WULU 1 PUCPR- Ponfíca Unversdade Caólca Do Paraná PPGIA- Programa de Pós-Graduação Em Informáca Aplcada PROF. DR. JACQUES FACON IMIARIZAÇÃO POR ENTROPIA DE WUU Resumo: Uma nova écnca de marzação baseada em

Leia mais

CIRCUITOS ELÉTRICOS EXERCÍCIOS ) Para o circuito da figura, determinar a tensão de saída V out, utilizando a linearidade.

CIRCUITOS ELÉTRICOS EXERCÍCIOS ) Para o circuito da figura, determinar a tensão de saída V out, utilizando a linearidade. FISP CIRCUITOS ELÉTRICOS EXERCÍCIOS RESOLVIDOS 00 CIRCUITOS ELÉTRICOS EXERCÍCIOS 00 Para o crcuo da fgura, deermnar a ensão de saída V ou, ulzando a lneardade. Assumremos que a ensão de saída seja V ou

Leia mais

RESULTADOS TEÓRICOS PARA TURBULÊNCIA GERADA POR DUAS GRELHAS OSCILANTES

RESULTADOS TEÓRICOS PARA TURBULÊNCIA GERADA POR DUAS GRELHAS OSCILANTES RESULTADOS TEÓRICOS PARA TURBULÊNCIA GERADA POR DUAS GRELHAS OSCILANTES Harry Edmar Schulz Fazal Hussan Chaudhry USP - Escola de Engenhara de São Carlos, Deparameno de Hdráulca e Saneameno Laboraóro de

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Potêncas e raízes Propostas de resolução Exercícos de exames e testes ntermédos 1. Smplfcando a expressão de z na f.a., como 5+ ) 5 1 5, temos: z 1 + 1 ) + 1 1 1

Leia mais

ESTUDO COMPARATIVO DE SISTEMAS DE AERAÇÃO PARA A ESTAÇÃO DE TRATAMENTO DE ESGOTOS SUZANO

ESTUDO COMPARATIVO DE SISTEMAS DE AERAÇÃO PARA A ESTAÇÃO DE TRATAMENTO DE ESGOTOS SUZANO ESTUDO COMPARATIVO DE SISTEMAS DE AERAÇÃO PARA A ESTAÇÃO DE TRATAMENTO DE ESGOTOS SUZANO Roque Passos Pvel Escola Polécnca da Unversdade de São Paulo - EPUSP Pedro Alem Sobrnho Escola Polécnca da Unversdade

Leia mais

Arco-Íris, Miragens e

Arco-Íris, Miragens e Insttuto Superor Técnco, e Jorge C. Romão Insttuto Superor Técnco, Departamento de Físca & CFTP A. Rovsco Pas 1, 1049-001 Lsboa, Portugal December 6, 2011 Jorge C. Romão Sldes EO 1 Arco Írs Jorge C. Romão

Leia mais

defi departamento de física

defi departamento de física defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Interferómetro de Michelson Instituto Superior de Engenharia do Porto Departamento de Física Rua Dr. António Bernardino de Almeida,

Leia mais

MEDIDA DO TEMPO DE RESPOSTA DOS MEDIDORES DE PRESSÃO DO SPR DA U.N.A. A. A. - UNIDADE I UTILIZANDO O MÉTODO DE MEDIDA DIRETA

MEDIDA DO TEMPO DE RESPOSTA DOS MEDIDORES DE PRESSÃO DO SPR DA U.N.A. A. A. - UNIDADE I UTILIZANDO O MÉTODO DE MEDIDA DIRETA MEDIDA DO TEMPO DE RESPOSTA DOS MEDIDORES DE PRESSÃO DO SPR DA U.N.A. A. A. - UNIDADE I UTILIZANDO O MÉTODO DE MEDIDA DIRETA Sergo Rcardo Perera Perllo *, Irac Maríne Perera Gonçalves *, Robero Carlos

Leia mais

2 Sistemas de Reconhecimento de Voz

2 Sistemas de Reconhecimento de Voz 2 Ssemas de Reconhecmeno de Voz O desenvolvmeno de nerfaces homem-máquna conroladas pela voz vsa subsur, em ceras aplcações, as nerfaces radconas as como eclados, panés e dsposvos smlares. Nese cenáro

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Resistores. antes de estudar o capítulo PARTE I

Resistores. antes de estudar o capítulo PARTE I PARTE I Undade B 6 capítulo Resstores seções: 61 Consderações ncas 62 Resstênca elétrca Le de Ohm 63 Le de Joule 64 Resstvdade antes de estudar o capítulo Veja nesta tabela os temas prncpas do capítulo

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

Antenas e Propagação Folha de exercícios nº2 Conceitos Fundamentais

Antenas e Propagação Folha de exercícios nº2 Conceitos Fundamentais Antenas e Propagação Folha de eercícos nº2 Concetos Fundamentas 1. Uma onda electromagnétca plana e unforme propaga-se em meo lvre. O campo magnétco H é dado por: 1 jk H e ( ˆ 2 yˆ) 120 a) Determne o campo

Leia mais

F-128 Física Geral I. Aula exploratória-10b UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-10b UNICAMP IFGW F-18 Físca Geral I Aula exploratóra-10b UNICAMP IFGW username@f.uncamp.br O teorema dos exos paralelos Se conhecermos o momento de nérca I CM de um corpo em relação a um exo que passa pelo seu centro de

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

2ª PARTE Estudo do choque elástico e inelástico.

2ª PARTE Estudo do choque elástico e inelástico. 2ª PARTE Estudo do choque elástco e nelástco. Introdução Consderemos dos corpos de massas m 1 e m 2, anmados de velocdades v 1 e v 2, respectvamente, movmentando-se em rota de colsão. Na colsão, os corpos

Leia mais

LISTA DE EXERCÍCIOS ENGENHARIA DE RESERVATÓRIOS

LISTA DE EXERCÍCIOS ENGENHARIA DE RESERVATÓRIOS PÓS-GRADUAÇÃO EM ENGENHARIA DE PETRÓLEO E GÁS NATURAL LISTA DE EXERCÍCIOS ENGENHARIA DE RESERVATÓRIOS 1. Consdere o esquema de searação FLASH mosrado na fura a seur que reresena o rocesso que ocorre em

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

3 Planejamento da Operação Energética no Brasil

3 Planejamento da Operação Energética no Brasil 3 Planeameno da Operação Energéca no Brasl 3.1 Aspecos Geras O ssema elérco braslero é composo por dos dferenes pos de ssemas: os ssemas solados, os quas predomnam na regão Nore do Brasl e represenam cerca

Leia mais

ESPELHOS E LENTES ESPELHOS PLANOS

ESPELHOS E LENTES ESPELHOS PLANOS ESPELHOS E LENTES 1 Embora para os povos prmtvos os espelhos tvessem propredades mágcas, orgem de lendas e crendces que estão presentes até hoje, para a físca são apenas superfíces poldas que produzem

Leia mais

Espectro da radiação electromagnética

Espectro da radiação electromagnética specro da radiação elecromagnéica specro da radiação elecromagnéica A Naureza da Luz Carácer corpuscular Isaac Newon (643-77) Carácer ondulaório Chrisiaan Huygens(69-695) Carácer corpuscular não eplica

Leia mais

Roteiro-Relatório da Experiência N o 4 CARACTERÍSTICAS DO TRANSISTOR BIPOLAR

Roteiro-Relatório da Experiência N o 4 CARACTERÍSTICAS DO TRANSISTOR BIPOLAR PROF.: Joaqum Rangel Codeço Rotero-Relatóro da Experênca N o 4 CARACTERÍSTICAS DO TRANSISTOR BIPOLAR 1. COMPONENTES DA EQUIPE: ALUNOS 1 2 NOTA Prof.: Joaqum Rangel Codeço Data: / / : hs 2. OBJETIVOS: 2.1.

Leia mais

Crescimento do Produto Agropecuário Brasileiro: uma Aplicação do Vetor Auto-regressivo (VAR)

Crescimento do Produto Agropecuário Brasileiro: uma Aplicação do Vetor Auto-regressivo (VAR) Quesões Agráras, Educação no Campo e Desenvolvmeno CRESCIMENTO DO PRODUTO AGROPECUÁRIO: UMA APLICAÇÃO DO VETOR AUTO-REGRESSIVO (VAR) CARLOS ALBERTO GONÇALVES DA SILVA; LÉO DA ROCHA FERREIRA; PAULO FERNANDO

Leia mais

OTIMIZAÇÃO NA REFINAÇÃO DE PASTAS QUÍMICAS: MINIMIZAÇÃO ENERGÉTICA E OTIMIZAÇÃO CONJUGADA DE PROPRIEDADES

OTIMIZAÇÃO NA REFINAÇÃO DE PASTAS QUÍMICAS: MINIMIZAÇÃO ENERGÉTICA E OTIMIZAÇÃO CONJUGADA DE PROPRIEDADES M..O. D Almeda ; C.E.B. Foekel; S.W. Park; C..C. Marques; P.K. Yasumura and V. Manfred (Edors), Proceedngs of he ABTCP 01 + VII CIADICYP The 45 h ABTCP Inernaonal Pulp and Paper Congress and VII IberoAmercan

Leia mais

ipea COEFICIENTES DE IMPORTAÇÃO E EXPORTAÇÃO NA INDÚSTRIA

ipea COEFICIENTES DE IMPORTAÇÃO E EXPORTAÇÃO NA INDÚSTRIA COEFICIENTES DE IMPORTAÇÃO E EXPORTAÇÃO NA INDÚSTRIA Paulo Mansur Levy Mara Isabel Fernans Serra Esa noa em como objevo dvulgar resulados relavos ao comporameno das exporações e mporações produos ndusras

Leia mais

Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido.

Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido. A Prevsão com o Modelo de Regressão.... Inrodução ao Modelo de Regressão.... Exemplos de Modelos Lneares... 3. Dervação dos Mínmos Quadrados no Modelo de Regressão... 6 4. A Naureza Probablísca do Modelo

Leia mais

Curso de Circuitos Elétricos 2 a. Edição, L.Q. Orsini D. Consonni, Editora Edgard Blücher Ltda. Volume I Errata

Curso de Circuitos Elétricos 2 a. Edição, L.Q. Orsini D. Consonni, Editora Edgard Blücher Ltda. Volume I Errata Curso de Crcutos Elétrcos a Edção, Q rsn D Consonn, Edtora Edgard Blücher tda Pág5 Equação (5): dw( t) v( t) = dq( t) Pág5 no parágrafo após equação (36): Volume I Errata, caso em que não há energa ncal

Leia mais

tmax tmin tmax A seguir, com base nas equações apresentadas, uma nova abordagem para o cálculo do ponto de pedido será formulada.

tmax tmin tmax A seguir, com base nas equações apresentadas, uma nova abordagem para o cálculo do ponto de pedido será formulada. A pesqusa Operaconal e os Recursos Renováves 4 a 7 de novembro de 003, Naal-RN PONTO DE PEDIDO BASEADO EM PREVISÕES Eduardo Saggoro Garca Unversdade Federal do Ro de Janero UFRJ edsg@ufr.br Vrgílo José

Leia mais

GUSTAVO CRUZ DA SILVEIRA

GUSTAVO CRUZ DA SILVEIRA UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE TRANSPORTES GUSTAVO CRUZ DA SILVEIRA INFLUÊNCIA DA GEOMETRIA DOS SATÉLITES NA PRECISÃO DAS COORDENADAS GEODÉSICAS OBTIDAS COM

Leia mais

x () ξ de uma variável aleatória X ser um número real, enquanto que uma realização do

x () ξ de uma variável aleatória X ser um número real, enquanto que uma realização do 3 Snas Aleaóros em empo Conínuo. Pare II: Modelos de Fones de Informação e de uído. No capíulo aneror vemos oporundade de recordar os conceos báscos da eora das probabldades e das varáves aleaóras. Nese

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

S&P Dow Jones Indices: Metodologia da matemática dos índices

S&P Dow Jones Indices: Metodologia da matemática dos índices S&P Dow Jones Indces: Meodologa da maemáca dos índces S&P Dow Jones Indces: Meodologa do índce Ouubro 2013 Índce Inrodução 3 Dferenes varedades de índces 3 O dvsor do índce 4 Índces ponderados por capalzação

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Arbitragem na Estrutura a Termo das Taxas de Juros: Uma Abordagem Bayesiana

Arbitragem na Estrutura a Termo das Taxas de Juros: Uma Abordagem Bayesiana Arbragem na Esruura a ermo das axas de Juros: Uma Abordagem Bayesana Márco Pole Laurn Armêno Das Wesn Neo Insper Workng Paper WPE: / Copyrgh Insper. odos os dreos reservados. É probda a reprodução parcal

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que

Leia mais

Realimentação negativa em ampliadores

Realimentação negativa em ampliadores Realmentação negatva em ampladores 1 Introdução necessdade de amplfcadores com ganho estável em undades repetdoras em lnhas telefôncas levou o Eng. Harold Black à cração da técnca denomnada realmentação

Leia mais

CAPÍTULO I CIRCUITOS BÁSICOS COM INTERRUPTORES, DIODOS E TIRISTORES 1.1 CIRCUITOS DE PRIMEIRA ORDEM Circuito RC em Série com um Tiristor

CAPÍTULO I CIRCUITOS BÁSICOS COM INTERRUPTORES, DIODOS E TIRISTORES 1.1 CIRCUITOS DE PRIMEIRA ORDEM Circuito RC em Série com um Tiristor APÍTUO I IRUITOS BÁSIOS OM INTERRUPTORES, IOOS E TIRISTORES. IRUITOS E PRIMEIRA OREM.. rcuo R em Sére com um Trsor Seja o crcuo apresenado na Fg... T R v R V v Fg.. rcuo RT sére. Anes do dsparo do rsor,

Leia mais

Leis de conservação em forma integral

Leis de conservação em forma integral Les de conservação em forma ntegral J. L. Balño Departamento de Engenhara Mecânca Escola Poltécnca - Unversdade de São Paulo Apostla de aula Rev. 10/08/2017 Les de conservação em forma ntegral 1 / 26 Sumáro

Leia mais

2. A Medição da Actividade Económica Grandezas Nominais e Reais e Índices de Preços

2. A Medição da Actividade Económica Grandezas Nominais e Reais e Índices de Preços 2. A Medção da Acvdade Económca 2.4. Grandezas Nomnas e Reas e Índces de Preços Ouubro 2007, nesdrum@fe.u. Sldes baseados no guão dsonível no se da cadera 1 2.4. Grandezas Nomnas e Reas e Índces de Preços

Leia mais

Física E Extensivo V. 6

Física E Extensivo V. 6 GAARITO ísca E Extenso V. 6 Exercícos ) I. also. Depende da permeabldade do meo. II. Verdadero. III. Verdadero. ~ R µ. µ. π. d R π π. R R ) R cm 6 A 5) 5 6 A µ. R 4 π. -7. 6., π. 6,π. 5 T 8 A 3) A A regra

Leia mais

Teoria de Circuitos e Fundamentos de Electrónica: Teoria de Circuitos e Fundamentos de Electrónica: Regime forçado sinusoidal.

Teoria de Circuitos e Fundamentos de Electrónica: Teoria de Circuitos e Fundamentos de Electrónica: Regime forçado sinusoidal. ege forçado snusodal Função snusodal Função snusodal ege forçado co fones snusodas Apludes copleas pedânca e Adânca écncas de análse X X ( 4 3 4 f ω π f Função snusodal X (ω θ π π 3π π Função snusodal

Leia mais

FILTROS ATIVOS: UMA ABORDAGEM COMPARATIVA. Héctor Arango José Policarpo G. Abreu Adalberto Candido

FILTROS ATIVOS: UMA ABORDAGEM COMPARATIVA. Héctor Arango José Policarpo G. Abreu Adalberto Candido FILTROS ATIVOS: UMA ABORDAGEM COMPARATIVA Hécor Arango José Polcaro G. Abreu Adalbero Canddo Insuo de Engenhara Elérca - EFEI Av. BPS, 1303-37500-000 - Iajubá (MG) e-mal: arango@ee.efe.rmg.br Resumo -

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos Mecânca Estatístca Tal como a Termodnâmca Clássca, também a Mecânca Estatístca se dedca ao estudo das propredades físcas dos sstemas macroscópcos. Tratase de sstemas com um número muto elevado de partículas

Leia mais

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS PROF: Claudo Saldan CONTATO: saldan.mat@gmal.com PARTE 0 -(MACK SP/00/Janero) Se y = x, sendo x= e =, o valor de (xy) é a) 9 9 9 9 e) 9 0 -(FGV/00/Janero)

Leia mais

Teoria momento linear em voo horizontal. horizontal. Num helicóptero em voo horizontal o rotor move-se através do ar com uma componente. rotor.

Teoria momento linear em voo horizontal. horizontal. Num helicóptero em voo horizontal o rotor move-se através do ar com uma componente. rotor. Teora do momento lnear em voo horzontal Num helcóptero em voo horzontal o rotor move-se através do ar com uma componente da velocdade que é paralela ao plano do rotor. Dado que o rotor fornece a força

Leia mais

7. FILTROS PASSIVOS E ATIVOS

7. FILTROS PASSIVOS E ATIVOS 7. FILTROS PASSIVOS E ATIVOS São esudadas nese capíulo esruuras de crcuos capazes de mgar o problema de dsorção de correnes e/ou ensões em ssemas elércos. Inca-se com os flros passvos, verfcando alguns

Leia mais

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO L IRUITOS LÉTRIOS 8 UNIFI,VFS, Re. BDB PRT L IRUITOS LÉTRIOS NGNHRI D OMPUTÇÃO PÍTULO 5 PITORS INDUTORS: omporameno com Snas onínuos e com Snas lernaos 5. INTRODUÇÃO Ressor elemeno que sspa poênca. 5.

Leia mais

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry. Cenro Federal de Educação Tecnológca de Sana Caarna Deparameno de Elerônca Refcadore Flro Capaco Prof. Cló Anôno Pery. Floranópol, noembro de 2007. Na próxma aula Seqüênca de coneúdo: 1. Flro capaco. www.cefec.edu.br/~pery

Leia mais

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

2 Programação Matemática Princípios Básicos

2 Programação Matemática Princípios Básicos Programação Maemáca Prncípos Báscos. Consderações Geras Os objevos dese capíulo são apresenar os conceos de Programação Maemáca (PM) necessáros à compreensão do processo de omzação de dmensões e descrever

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

Transistores Bipolares de Junção Parte I Transistores Bipolares de Junção (TBJs) Parte I

Transistores Bipolares de Junção Parte I Transistores Bipolares de Junção (TBJs) Parte I Transstores Bpolares de Junção (TBJs) Parte I apítulo 4 de (SEDRA e SMITH, 1996). SUMÁRIO Introdução 4.1. Estrutura Físca e Modos de Operação 4.2. Operação do Transstor npn no Modo Atvo 4.3. O Transstor

Leia mais

F-128 Física Geral I. Aula Exploratória Cap. 3.

F-128 Física Geral I. Aula Exploratória Cap. 3. F-128 Físca Geral I ula Eploratóra Cap. 3 username@f.uncamp.br Soma de vetores usando componentes cartesanas Se, o vetor C será dado em componentes cartesanas por: C ( î ĵ)( î ĵ) ( )î ( )ĵ C C î C ĵ onde:

Leia mais

Controle Cinemático de Robôs Manipuladores

Controle Cinemático de Robôs Manipuladores Conrole Cnemáco de Robôs Manpuladores Funconameno Básco pos de rajeóra rajeóras Pono a Pono rajeóras Coordenadas ou Isócronas rajeóras Conínuas Geração de rajeóras Caresanas Inerpolação de rajeóras Inerpoladores

Leia mais

Artigos IMPACTO DA PRECIPITAÇÃO EDOS EFEITOS DE CALENDÁRIO NAS VENDAS DE CIMENTO* Maria Helena Nunes**

Artigos IMPACTO DA PRECIPITAÇÃO EDOS EFEITOS DE CALENDÁRIO NAS VENDAS DE CIMENTO* Maria Helena Nunes** Argos IMPACTO DA PRECIPITAÇÃO EDOS EFEITOS DE CALENDÁRIO NAS VENDAS DE CIMENTO* Mara Helena Nunes** 1. INTRODUÇÃO * As opnões expressas no argo são da nera responsabldade da auora e não concdem necessaramene

Leia mais

Séries de Fourier de Senos e de Cossenos de Índices Ímpares

Séries de Fourier de Senos e de Cossenos de Índices Ímpares Séries de Fourier de Senos e de Cossenos de Índices Ímpares Reginaldo J. Sanos Deparameno de Maemáica-ICEx Universidade Federal de Minas Gerais hp://www.ma.ufmg.br/~regi 26 de seembro de 21 2 Análogo ao

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III Universidade Federal de Viçosa Cenro de Ciências Exaas e Tecnológicas Deparameno de Maemáica Primeira Lisa de Exercícios MAT 4 Cálculo III Julgue a veracidade das afirmações abaixo assinalando ( V para

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012 EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares janeiro EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares quadrimesre Figura Convolução (LATHI,

Leia mais

Regionalização da Depleção Regional com Dados Primários de Vazão

Regionalização da Depleção Regional com Dados Primários de Vazão RBRH Revsa Braslera de Recursos Hídrcos Volume 1 n.3 Jul/Se 25, 43-51 Regonalzação da Depleção Regonal com Dados Prmáros de Vazão Geraldo Lopes da Slvera, Jussara Cabral Cruz Deparameno de Hdráulca e Saneameno

Leia mais

NÚMEROS COMPLEXOS (C)

NÚMEROS COMPLEXOS (C) Professor: Casso Kechalosk Mello Dscplna: Matemátca Aluno: N Turma: Data: NÚMEROS COMPLEXOS (C) Quando resolvemos a equação de º grau x² - 6x + = 0 procedemos da segunte forma: b b ± 4ac 6 ± 6 4 6 ± 6

Leia mais

(19) 3251-1012 O ELITE RESOLVE IME 2013 DISCURSIVAS FÍSICA FÍSICA. , devido à equação (1). Voltando à equação (2) obtemos:

(19) 3251-1012 O ELITE RESOLVE IME 2013 DISCURSIVAS FÍSICA FÍSICA. , devido à equação (1). Voltando à equação (2) obtemos: (9) - O LIT SOLV IM DISCUSIVS ÍSIC USTÃO ÍSIC sendo nula a velocdade vercal ncal v, devdo à equação (). Volando à equação () obemos:,8 ˆj ˆj b) Dado o momeno lnear da equação () obemos a velocdade na dreção

Leia mais

4 Premissas quanto aos Modelos de Despacho de Geração, Formação do Preço da Energia e Comercialização de Energia

4 Premissas quanto aos Modelos de Despacho de Geração, Formação do Preço da Energia e Comercialização de Energia 61 4 Premssas quano aos Modelos de Despacho de Geração, Formação do Preço da Energa e Comercalzação de Energa 4.1. Inrodução A remuneração de uma geradora depende do modelo de despacho de geração e formação

Leia mais

NUVENS HP: UMA PROPOSTA SEM MALHA PARA O MEC

NUVENS HP: UMA PROPOSTA SEM MALHA PARA O MEC UVES HP: UMA PROPOSTA SEM MALHA PARA O MEC Adrano Scremn Unversdade Federal do Paraná Deparameno de Engenhara Mecânca Cx. P. 90 853-900 Curba, PR, Brasl Resumo. Duare & Oden (996) desenvolveram recenemene

Leia mais

Análise do Desempenho dos Gestores de Fundos, baseada nas Transações e nas Participações das Carteiras

Análise do Desempenho dos Gestores de Fundos, baseada nas Transações e nas Participações das Carteiras Vâna Sofa Sequera Umbelno Análse do Desempenho dos Gesores de Fundos, baseada nas Transações e nas Parcpações das Careras Dsseração de Mesrado apresenado à Faculdade de Economa da Unversdade de Combra

Leia mais

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima. ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine

Leia mais

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores FUNDMENTOS DE ROBÓTIC Modelo Cnemátco de Robôs Manpuladores Modelo Cnemátco de Robôs Manpuladores Introdução Modelo Cnemátco Dreto Modelo Cnemátco de um Robô de GDL Representação de Denavt-Hartenberg Exemplos

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

GUSTAVO UHMANN HOSS ANÁLISE DE TENSÕES EM COMPONENTES DE UMA SUSPENSÃO PNEU- MÁTICA.

GUSTAVO UHMANN HOSS ANÁLISE DE TENSÕES EM COMPONENTES DE UMA SUSPENSÃO PNEU- MÁTICA. GUSTAO UHMANN HOSS ANÁLISE DE TENSÕES EM COMPONENTES DE UMA SUSPENSÃO PNEU- MÁTICA. Monografa apresenada ao Deparameno de Engenara Mecânca da Escola de Engenara da Unversdade Federal do Ro Grande do Sul,

Leia mais

CONVERSORES CC-CC Aplicações: Controlo de motores de CC-CC Fontes de alimentação comutadas Carga de baterias bateria

CONVERSORES CC-CC Aplicações: Controlo de motores de CC-CC Fontes de alimentação comutadas Carga de baterias bateria CÓNCA PÊNCA Aplcações: CN CC-CC CN CC-CC Crolo de moores de CC-CC Fes de almenação comuadas Carga de baeras ensão cínua de enrada moor de correne cínua crolo e comando baera ede CA ecfcador não crolado

Leia mais

CIRCULAR Nº 3.568, DE 21 DE DEZEMBRO DE 2011

CIRCULAR Nº 3.568, DE 21 DE DEZEMBRO DE 2011 CAPÍTULO : Crculares não Codfcadas 2 CIRCULAR Nº 3.568, DE 2 DE DEZEMBRO DE 20 Alera dsposvos das Crculares ns. 3.36, de 2 de seembro de 2007, 3.388, de 4 de unho de 2008, 3.389, de 25 de unho de 2008,

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais