EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS

Tamanho: px
Começar a partir da página:

Download "EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS"

Transcrição

1 EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS (Unicamp 06) Considere a função f() 5, definida para todo número real. a) Esboce o gráfico de y f() no plano cartesiano para. b) Determine os valores dos números reais a e b para os quais a equação log a( b) f() admite como soluções e 6.. (Afa 06) Considere a função real f definida por f() a com a ] 0, [ Sobre a função real g definida por g() b f() com b ], [, é correto afirmar que a) possui raiz negativa e igual a log a( b) b) é crescente em todo o seu domínio. c) possui valor máimo. d) é injetora. 3. (Unesp 06) A figura descreve o gráfico de uma função eponencial do tipo y a, de em. Página de

2 EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS - 06 Nessa função, o valor de y para a) log5 b) log5 c) 5 d) log 5 e),5 0,5 é igual a. (Ita 06) Se é um número natural com 05 dígitos, então o número de dígitos da parte inteira de 7 é igual a a) 85. b) 86. c) 87. d) 88. e) (Ita 06) Considere as seguintes afirmações: I. A função f() log0 II. A equação III. A equação 3 É (são) verdadeira(s) a) apenas I. b) apenas I e II. c) apenas II e III. d) I, II e III. e) apenas III. é estritamente crescente no intervalo ], [. possui uma única solução real. ( ) admite pelo menos uma solução real positiva. 6. (Ita 06) Seja (a, a, a 3, ) a sequência definida da seguinte forma: a 000 e an log 0( a n) para n. Considere as afirmações a seguir: I. A sequência (a n ) é decrescente. II. an 0 para todo n. III. an para todo n 3. É (são) verdadeira(s) a) apenas I. b) apenas I e II. c) apenas II e III. d) I, II e III. e) apenas III. 7. (Fuvest 06) Considere as funções f e g definidas por f() log ( ), se,, g() log, se,. 3 a) Calcule f, f(), f(3), g( ), g(0) e g(). b) Encontre,, tal que f() g(). Página de

3 EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS - 06 c) Levando em conta os resultados dos itens a) e b), esboce os gráficos de f e de g no sistema cartesiano abaio. 8. (Ita 06) Seja f a função definida por f() log ( 8). Determine: a) O domínio D f da função f. b) O conjunto de todos os valores de Df tais que f(). c) O conjunto de todos os valores de Df tais que f(). 9. (Unesp 06) Um torneio de futebol será disputado por 6 equipes que, ao final, serão classificadas do º ao 6º lugar. Para efeitos da classificação final, as regras do torneio impedem qualquer tipo de empate. Considerando para os cálculos log 5! e log 0,3, a ordem de grandeza do total de classificações possíveis das equipes nesse torneio é de a) bilhões. b) quatrilhões. c) quintilhões. d) milhões. e) trilhões. 0. (Fuvest 06) Use as propriedades do logaritmo para simplificar a epressão O valor de S é S log 06 5 log 06 0 log a) b) 3 c) 5 d) 7 e) 0 Página 3 de

4 EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS (Fac. Albert Einstein - Medicina 06) Uma pesquisa foi desenvolvida a partir de 50 bactérias de uma cultura. Estimou-se então, de maneira aproimada, que, durante certo tempo, o aumento percentual do número de bactérias na cultura poderia ser obtido pela epressão B(t) 30 log 3(t ) 50, em que t é o tempo decorrido, em minutos, após o início da pesquisa, Nessas condições, ao fim da primeira hora da pesquisa, quantas bactérias havia em tal cultura? a) 35 b) 00 c) 50 d) 55. (Aman 06) Fazendo n5 temos que primos entre si. Logo a b é igual a a) 8 b) 9 c) 0 d) 5 e) 5 a y e e, a e b *, a e b b 3. (Unicamp 06) A solução da equação na variável real, log ( 6), é um número a) primo. b) par. c) negativo. d) irracional.. (Mackenzie 06) A equação do º grau distintas, se a) t 0 b) t c) t 0 ou t d) 0 t e) 0 t ou t 00 logt 0,5 logt 0 tem duas raízes reais 5. (Usf 06) O número de bactérias de uma determinada cultura pode ser modelado t utilizando a função B(t) 800 0, sendo B o número de bactérias presentes na cultura e t o tempo dado em horas a partir do início da observação. Aproimadamente, quantas horas serão necessárias para se observar bactérias nessa cultura? Considere log 0,30. a) 0 horas. b) 50 horas. c) 0 horas. d) 50 horas. e) 00 horas. 6. (Fgv 06) A lei de Benford, também chamada de lei do primeiro dígito, sugere que, em vários conjuntos de dados numéricos, a ocorrência dos algarismos de a 9 no início dos números (da esquerda para a direita em cada número) do conjunto de dados não é igualmente provável. A lei se verifica em diversos conjuntos de dados reais como, por eemplo, o conjunto das populações dos diversos municípios de um país, o conjunto dos dados numéricos contidos nas contas de energia elétrica da população de um município, o conjunto dos comprimentos dos rios de um país etc. Página de

5 EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS - 06 Quando a lei de Benford se aplica aos dados analisados, a probabilidade P(n) de que o algarismo n seja o primeiro algarismo em um dado numérico qualquer do conjunto de dados n será P(n) log. n Por eemplo, se a lei se aplica, a probabilidade de que o algarismo (n ) seja o primeiro (da esquerda para a direita) em um número sorteado ao acaso do conjunto de dados é igual a log, ou seja, aproimadamente 30%, já que log 0,30. Admita que os dados numéricos indicados na tabela tenham sido retirados da declaração de imposto de renda de um contribuinte. Também admita que a Receita Federal tenha a epectativa de que tais dados obedeçam, ainda que aproimadamente, à lei de Benford. Tabela a) Complete a tabela na página de resolução e resposta, registrando a frequência do primeiro dígito (da esquerda para a direita) dos dados da tabela para os casos em que n, n 3 e n. Registre também a frequência relativa desses algarismos (ver eemplo para o caso em que n ). n 3 Frequência de n 9 Frequência relativa de n b) Admita que uma declaração de imposto de renda vai para a malha fina (análise mais detalhada da Receita Federal) se a diferença, em módulo, entre a frequência relativa do primeiro dígito, em porcentagem, e a probabilidade dada pelo modelo da lei de Benford, também em porcentagem, seja maior do que quatro pontos percentuais para algum n. Argumente, com dados numéricos, se a declaração analisada na tabela deverá ou não ir para a malha fina. Adote nos cálculos log 0,30 e log 3 0,8. Página 5 de

6 EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS - 06 Gabarito: Resposta da questão : a) Fazendo os cálculos, tem-se: f() 5 f( ) (,3) f( ) 5 0 (,0) f(0) 5 (0, ) f() 5 3 (, 3) f(3) (3,0) f() (,3) Montando o gráfico: b) Substituindo uma das raízes dadas e desenvolvendo a equação: log a( b) 5 0 log a( b) 5 log a( b) 0 a b b b Substituindo a segunda raiz dada e desenvolvendo a equação: log a( b) log a(6 ) log a(8) 9 a 8 a 8 a Assim, os valores dos números reais a e b são 3 e, respectivamente. Resposta da questão : [A] Analisando as alternativas uma a uma: [A] CORRETA. A raiz da função g(), ou seja, g() 0, acontece quando f() b. Assim: b a log a( b) loga a log a( b) logaa log a( b) Pelo enunciado, como b ], [, logo ( b). Também do enunciado, como a ] 0, [ pode-se desenhar o seguinte gráfico de uma função logarítmica de base a, sendo 0 a : Página 6 de

7 EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS - 06 Assim percebe-se que para todos os valores maiores que, a negativa. Portanto, a alternativa é correta. log a( b) será terá uma raiz [B] INCORRETA. Se considerarmos a função f() e a função constante h() b, podemos desenhar um gráfico aproimado como o apresentado a seguir: Pode-se considerar que a função g() compreende o espaço hachurado em amarelo, uma vez que é resultante da diferença das duas funções representadas. Assim, não se pode afirmar que ela seja crescente em todo seu domínio. A alternativa é incorreta. [C] INCORRETA. Pela análise do mesmo gráfico das funções f() e h(), percebe-se que ambas estendem-se ao infinito. Conforme o valor de decresce, o valor de g() tende ao infinito e desta forma não eiste valor máimo. A alternativa é incorreta. [D] INCORRETA. Uma função injetora é aquela que, seja uma função f : A B, para todo elemento distinto de A associam-se elementos únicos e distintos em B. Assim, como g() se apresenta em módulo, analisando a área hachurada em amarelo do gráfico anterior percebe-se que para dois valores distintos de poderão eistir imagens iguais. A alternativa é incorreta. Resposta da questão 3: [C] Com os valores do gráfico e do enunciado, pode-se escrever: Página 7 de

8 EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS - 06 y a 0, a a 0, y 0, 0,5 0,5 0,5 0 0,5 y 0, Resposta da questão : [D] Se é um número natural com 05 dígitos, então: Sabendo que: , , Logo, 7 terá 88 algarismos. Resposta da questão 5: [B] [I] Verdadeira. Para e pertencentes ao intervalo ], [ e. log0 log0 Portanto a função é crescente para todo real maior que. [II] Verdadeira. 3 3 log3, 3 Portanto, a equação tem apenas uma solução real. [III] Falsa. Se Se Se, portanto não é raiz da equação. ( ) ( ) 0 ( ) Portanto, a equação não admite nenhuma raiz real positiva. Resposta da questão 6: [D] Página 8 de

9 EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS - 06 a 000 a log ( 000) 3, 0 a log ( 3, ) 0, 3 0 a log ( 0, ) 0, 0 a log ( 0, ) 0, n 0 Portanto, a alternativa [D] é a correta. Resposta da questão 7: a) Realizando os cálculos: f log log f f() log ( ) log () 0 f() 0 f(3) log (3 ) log () f(3) g( ) log log () g( ) 0 g(0) log log () g(0) 0 g() log log g() b) Realizando os cálculos: f() g() log ( ) log log ( ) log ( ) 0 0 (não convém pois ) c) Na figura a seguir estão esboçados os gráficos, com g() em azul e f() em vermelho. Resposta da questão 8: a) Condições para a eistência do logaritmo: Página 9 de

10 EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS - 06 b) 8 0 ou Portanto, o domínio da função será D ], [. f() log ( 8) 8 ( ) 9,5 o conjunto pedido é o conjunto vazio. Ou seja S =. Como,5, c) Teremos: log ( 8) log ( 8) log ou Como, concluímos que S, Resposta da questão 9: [E] 3 3 5, portanto o conjunto pedido será dado por: O número de classificações possíveis corresponde a P6 6!. Portanto, sendo 6!, temos log log6! log log6 5! log log log5! log log log5! log 0,3 3, 0. Em consequência, como está mais próimo de de grandeza pedida é de trilhões. Resposta da questão 0: [E] 0 do que de 5 0, segue-se que a ordem c Lembrando que logb a, logba loga b reais positivos diferentes de, temos c logba e logc a b logc a logc b, com a, b e c Página 0 de

11 EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS - 06 S log 06 5 log log 7 06 (5 log 06 log 06 3 log 06 7) 0 log log Resposta da questão : [A] Determinando o aumento percentual depois de 60 minutos ( hora), temos: B(60) 30 log (60 ) Portanto, o número de bactérias após uma hora será dado por: , Resposta da questão : [B] y e n5 e n5 5 n e Portanto, a b 5 9. Resposta da questão 3: [A] Sabendo que c loga b c a b, para quaisquer a e b reais positivos, e a, temos log ( 6) 6 0 3, que é um número primo. Resposta da questão : [E] Vamos lembrar, inicialmente o domínio da função logarítmica: t 0. Para que a equação tenha duas raízes distintas seu discriminante deverá ser maior que zero, portanto: logt logt 0 logt 0 ou logt t ou t 00. Considerando o domínio da função, temos como solução o seguinte intervalo: 0 t ou t 00 Resposta da questão 5: [C] Tem-se que Página de

12 EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS - 06 t 0 B(t) t 5 0 t 5 0 log log t log log0 log 0 t 0,3 0,3 0 t 06,67 h. Resposta da questão 6: a) Preenchendo a tabela de acordo com o enunciado temos: n 3 Frequência de n Frequência ,67% relativa de n ,33% ,67% 30 n b) Calculando pelo modelo da lei de Benford, isto é, P(n) log, n temos: 3 P() log log log3 log 0,8 0,30 0,8 8% 8% 6,67% % 3 P(3) log log log log3 0,60 0,8 0, % % 3,33% % P() log log log5 log 0,70 0,60 0, 0% 0% 6,67% % Portanto, deverá ir para a malha fina. Página de

Interbits SuperPro Web

Interbits SuperPro Web Lista ita eponencial e modulo Carlos Peioto. (Ita 07) Esboce o gráfico da função f: dada por f().. (Ita 07) Sejam S {(, y) : y } e área da região S S é S {(, y) : (y ) 5}. A a) 5. 4 π b) 5. 4 π c) 5. 4

Leia mais

Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem LISTA FUNÇÕES

Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem LISTA FUNÇÕES Questão 01 - A quantidade mensalmente vendida x, em toneladas, de certo produto, relaciona-se com seu preço por tonelada p, em reais, através da equação p = 2 000 0,5x. O custo de produção mensal em reais

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV Economia a Fase /Dezembro/015 MATEMÁTICA 01. Mauro iniciou um programa de perda de peso quando estava pesando 90 kg. A programação previa a perda de 1,6 kg na primeira

Leia mais

matemática 003. caderno 1 provas da 2 a fase EESP Escola de Economia de São Paulo F U N D A Ç Ã O GETULIO VARGAS processo seletivo

matemática 003. caderno 1 provas da 2 a fase EESP Escola de Economia de São Paulo F U N D A Ç Ã O GETULIO VARGAS processo seletivo F U N D A Ç Ã O GETULIO VARGAS EESP Escola de Economia de São Paulo Assinatura do Candidato 003. caderno 1 provas da 2 a fase matemática processo seletivo 1 o semestre de 2016 Você recebeu este caderno

Leia mais

1º trimestre - Matemática Data:20/04/2017. Sala de Estudo. Resposta: Resposta: números reais positivos, tais que. 1. (Ufjf-pism ) Sejam a, b, c

1º trimestre - Matemática Data:20/04/2017. Sala de Estudo. Resposta: Resposta: números reais positivos, tais que. 1. (Ufjf-pism ) Sejam a, b, c º trimestre - Matemática Data:0/04/07 Ensino Médio 3º ano classe: Profº. Maurício Sala de Estudo. e. (Ufjf-pism 07) Sejam a, b, c logb d 3. O valor da epressão a) b) c) 3 d) 4 e) 0 e d log números reais

Leia mais

INSTITUTO FEDERAL DE BRASILIA 2ª Lista de exercícios ALUNO(A): TURMA: 1_2016 DATA: 18/03/2016

INSTITUTO FEDERAL DE BRASILIA 2ª Lista de exercícios ALUNO(A): TURMA: 1_2016 DATA: 18/03/2016 INSTITUTO FEDERAL DE BRASILIA ª Lista de eercícios MATEMÁTICA ALUNO(A): TURMA: _06 DATA: 8/0/06. Duas plantas crescem de uma forma tal que, t dias após serem plantadas, a planta tem h (t) t centímetros

Leia mais

Inequação Logarítmica

Inequação Logarítmica Inequação Logarítmica. (Fuvest 05) Resolva as inequações: 3 a) 6 0; 3 b) log 6.. (Uerj 05) Ao digitar corretamente a epressão log 0( ) em uma calculadora, o retorno obtido no visor corresponde a uma mensagem

Leia mais

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Equações Eponenciais: FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Chamamos de equações eponenciais toda equação na qual a incógnita aparece em epoente. Para resolver equações eponenciais, devemos realizar

Leia mais

LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO

LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO. (Espce (Aman)) O domínio da função real f A), B), 6 C),6 D), E), 8 é. (Unicamp) Seja f() uma função tal que para todo número real temos que f( ) ( )f(). Então, f() é

Leia mais

Logarítmos básicos. 3 x x 2 vale:

Logarítmos básicos. 3 x x 2 vale: Logarítmos básicos. (Pucrj 05) Se log 3, então 3 vale: a) 34 b) 6 c) 8 d) 50 e) 66. (Unesp 05) No artigo Desmatamento na Amazônia Brasileira: com que intensidade vem ocorrendo?, o pesquisador Philip M.

Leia mais

LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO

LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO. (Espce (Aman)) O domínio da função real f A), B), 6 C),6 D), E), 8 é. (Unicamp) Seja f() uma função tal que para todo número real temos que f( ) ( )f(). Então, f() é

Leia mais

a) 10 b) 7 c) 0 d) 3 e) 4 6. (G1 - cftmg 2013) A soma das raízes da equação a) 7. b) 4. c) 3. d) 5.

a) 10 b) 7 c) 0 d) 3 e) 4 6. (G1 - cftmg 2013) A soma das raízes da equação a) 7. b) 4. c) 3. d) 5. Equações Modulares 1. (Espcex (Aman) 015) O número de soluções da equação 1 x x = x, no conjunto, é a) 1. b). c). d) 4. e) 5.. (Ufsc 014) Assinale a(s) proposição(ões) CORRETA(S). x 1 01) O domínio da

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA 3º ANO

LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA 3º ANO LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA º ANO. (Espce (Aman)) O domínio da função real f A),, 6 C),6 D),, 8 é. (Unicamp) Seja f() uma função tal que para todo número real temos que f( ) ( )f(). Então,

Leia mais

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016 POLINÕMIOS E EQUAÇÕES POLINOMIAIS 06. (Unicamp 06) Considere o polinômio cúbico p() a, onde a é um número real. a) No caso em que p() 0, determine os valores de para os quais a matriz A abaio não é invertível.

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Eército EsPCE Questão 1 Sabendo-se que Concurso 009 3 5 199 log log log... log 10000 + + + + =,

Leia mais

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 1

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 1 Eercícios de Aprofundamento Matemática Equações e Inequações 1. (Mackenzie 013) A função f() a) S / 3 ou 1 3 b) S / 3 ou 1 3 c) S / 3 ou 1 3 d) S / 1 ou 1 3 e) S / 1 ou 1 3 9 tem como domínio o conjunto

Leia mais

FUNÇÕES EXPONENCIAIS

FUNÇÕES EXPONENCIAIS FUNÇÕES EXPONENCIAIS ) Uma possível lei para a função eponencial do gráfico é (a) = 0,7. (b) =. 0,7 (c) = -. 0,7 (d) = -.,7 (e) = - 0,7. ) Os gráficos de = e = - (a) têm dois pontos em comum. (b) são coincidentes.

Leia mais

Exercícios de Aprofundamento 2015 Mat Log/Exp/Teo. Num.

Exercícios de Aprofundamento 2015 Mat Log/Exp/Teo. Num. Eercícios de Aprofundamento 05 Mat Log/Ep/Teo. Num.. (Ita 05) Considere as seguintes afirmações sobre números reais: I. Se a epansão decimal de é infinita e periódica, então é um número racional. II..

Leia mais

Logaritmo e Função Logarítmica

Logaritmo e Função Logarítmica Logaritmo e Função Logarítmica. (Unifor 04) Após acionar um flash de uma câmera, a bateria imediatamente começa a recarregar o capacitor do flash, o qual armazena uma carga elétrica dada por t Q(t) Q 0

Leia mais

Lista de Função Inversa, Bijeção e Paridade Extensivo Alfa Professor: Leandro (Pinda)

Lista de Função Inversa, Bijeção e Paridade Extensivo Alfa Professor: Leandro (Pinda) Lista de Função Inversa, Bijeção e Paridade Etensivo Alfa Professor: Leandro (Pinda). (Udesc 0) A função f definida por f() é uma função bijetora, se os conjuntos que representam o domínio (D(f)) e a imagem

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, com a > 0 e a, chamamos função eponencial de base a a função f de R R que associa a cada real o número a. Podemos escrever, também: f: R R a Eemplos

Leia mais

NÚMEROS COMPLEXOS

NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS - 016 1. (EFOMM 016) O número complexo, z z (cos θ i sen θ), sendo i a unidade imaginária e 0 θ π, que satisfaz a inequação z i e que possui o menor argumento θ, é a) b) c) d) 5 5 z i

Leia mais

LOGARITMOS. Mottola. 4) (FUVEST) Se log 10 8 = a então log 10 5 vale (a) a 3 (b) 5a - 1 (c) 2a/3 (d) 1 + a/3 (e) 1 - a/3

LOGARITMOS. Mottola. 4) (FUVEST) Se log 10 8 = a então log 10 5 vale (a) a 3 (b) 5a - 1 (c) 2a/3 (d) 1 + a/3 (e) 1 - a/3 LOGARITMOS 1) (UFMG) Para a função f() = log a (1 + 2 ), com a > 1, assinale a alternativa incorreta. (a) A função é definida para todo R. (b) A função tem valor mínimo para = 0. (c) A função assume valores

Leia mais

5,7 0,19.10, então x é

5,7 0,19.10, então x é EQUAÇÕES E FUNÇÕES EXPONENCIAIS ) O valor de que verifica a equação 7 9 é 0,4 0,8,,, ) A solução da equação 7 é ) Se 0, então o valor de é 6) O valor positivo de em 6 é 7) Se,7 0,00 0,9.0, então é ) A

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

Logaritmos Exponenciais - Fatoração

Logaritmos Exponenciais - Fatoração Logaritmos Eponenciais - Fatoração Prof. Edson. Após acionar um flash de uma câmera, a bateria imediatamente começa a recarregar o capacitor do flash, o qual armazena uma carga elétrica dada por t Q(t)

Leia mais

5. EQUAÇÕES E INEQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS

5. EQUAÇÕES E INEQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS 57 5. EQUAÇÕES E INEQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS 5.. EQUAÇÕES EXPONENCIAIS Equações que envolvem termos em que a incógnita aparece no epoente são chamadas de equações eponenciais. Por eemplo, =

Leia mais

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir

Leia mais

Matemática A Extensivo V. 3

Matemática A Extensivo V. 3 Etensivo V. Eercícios 0) a) S = {, } b) S = c) S = ; 4 d) S = {,,, } e) S = ; a) + = Pela propriedade IX temos: + = ou + = = = = = Para = Para = + = + = = = = (ok) = (ok) S = {, } b) = + Pela propriedade

Leia mais

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0 FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode

Leia mais

Gráficos de Funções. Matemática Prof. Piloto. d 2. d d 2 2. d 2

Gráficos de Funções. Matemática Prof. Piloto. d 2. d d 2 2. d 2 Matemática Prof. Piloto Gráficos de Funções 1. Função Uma forma simples de dizer o que é uma função é: Uma função é uma variável (y) que depende de outra () Nosso esquema mental é: y é a função ou variável

Leia mais

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 2

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 2 1. (Mackenzie 1996) A soma dos valores inteiros pertencentes ao domínio da função real definida por f(x) = x / x 3x a) 1. b). c) 3. d) - 1. e) -. é:. (Mackenzie 1996) Na desigualdade ser: (x 1) + x > k,

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 24 FUNÇÃO EXPONENCIAL

MATEMÁTICA - 1 o ANO MÓDULO 24 FUNÇÃO EXPONENCIAL MATEMÁTICA - 1 o ANO MÓDULO 24 FUNÇÃO EXPONENCIAL f() = 2 y 1 2 2 4 0 1-1 ½ -2 ¼ 1 y A função é crescente. f() = (1/2) y 1 ½ 2 ¼ 0 1-1 2-2 4 1 y A função é decrescente. Como pode cair no enem (UFF) A automedicação

Leia mais

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x. Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)

Leia mais

b) Aumentando de uma unidade a intensidade do terremoto, por quanto fica multiplicada a energia liberada?

b) Aumentando de uma unidade a intensidade do terremoto, por quanto fica multiplicada a energia liberada? Professor Habib Lista de Matemática 1. (G1) Resolva a equação 2Ñ = 128 2. (G1) Calcule x de modo que se obtenha 10 Ñ = 1 3. (Uff) Resolva o sistema ý3ñ + 3Ò = 36 þ ÿ3ñ Ò = 243 4. (Ufsc) Determinar o valor

Leia mais

Exercícios Propostos

Exercícios Propostos Enem e Uesb Matemática Cursinho: Universidade para Todos Professor: Cirlei Xavier Lista: 6 a Lista de Matemática Aluno (a): Disciplina: Matemática Conteúdo: Equações e Funções Turma: A e B Data: Outubro

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Matemática A Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Nesse caso temos {a} como subconjunto de {a, b}, logo a relação correta seria a} {a,

Leia mais

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES 01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores

Leia mais

; a = 5 (d) f (x) = 2x 4 x 3 + 2x 2 ; a = 2 x ; a = 1 (f) f (x) = 3 x. 9 x ; a = 9. x 2 x 2 ; a = 2

; a = 5 (d) f (x) = 2x 4 x 3 + 2x 2 ; a = 2 x ; a = 1 (f) f (x) = 3 x. 9 x ; a = 9. x 2 x 2 ; a = 2 2. Em cada caso abaio calcule o ite de f ), quando a. a) f ) = 2 + 5; a = 7 b) f ) = c) f ) = 2 + 3 0 + 5 e) f ) = 3 3 + + ; a = 0 ; a = 5 d) f ) = 2 4 3 + 2 2 ; a = 2 2 + 8 3 ; a = + 3 h) f ) = 9 ; a

Leia mais

CPV 73% de aprovação na ESPM

CPV 73% de aprovação na ESPM 7% de aprovação na ESPM ESPM NOVEMBRO/007 PROVA E MATEMÁTICA. O menor número natural tal que 0800. = n 5, com n N*, é igual a: a) 745 b) 50 c) 5 d) 4050 e) 785 Temos que 0800. = n 5 4.. 5. = n 5 para que

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web . (Ufpr 07) Rafaela e Henrique participaram de uma atividade voluntária que consistiu na pintura da fachada de uma instituição de caridade. No final do dia, restaram duas latas de tinta idênticas (de mesmo

Leia mais

x x 2 lim g ( x ) M, x D, onde M é um número real positivo.

x x 2 lim g ( x ) M, x D, onde M é um número real positivo. UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL a LISTA DE EXERCÍCIOS PERÍODO 0.. Nos eercícios a) p), calcule o ite de f ( ), quando a. f b) f ( ) =, a = 0 a) ( ) =, a = 7 0 f d) f ( ) =, a =

Leia mais

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática MTM3100 - Pré-cálculo Gabarito parcial da 11 a lista de eercícios 1. Crescente em [ 1, 1]. Crescente

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Neste caso temos {a} como subconjunto de {a, b} logo a relação correta seria a} {a, b} c) Falso

Leia mais

LTDA APES PROF. RANILDO LOPES SITE:

LTDA APES PROF. RANILDO LOPES SITE: Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO

Leia mais

4(u v) 5. u(u 1) v e) u + v. (10000) é igual a. ax b LISTA EXATAMENTE LOGARÍTMOS

4(u v) 5. u(u 1) v e) u + v. (10000) é igual a. ax b LISTA EXATAMENTE LOGARÍTMOS LISTA EXATAMENTE LOGARÍTMOS 1. (Cesgranrio) O valor de log x (x x ) é: a) 3 4. b) 4 3. c) 3. d) 3. e) 4.. (Cesgranrio) Se log 10 (x - ) = 0, então x vale: a). b) 4. c) 3. d) 7/3. e) /. 3. (Fei) Se log

Leia mais

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Inequações Quociente. Primeiro Ano do Ensino Médio

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Inequações Quociente. Primeiro Ano do Ensino Médio Material Teórico - Inequações Produto e Quociente de Primeiro Grau Inequações Quociente Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 27 de

Leia mais

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5. 1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis

Leia mais

Bases Matemáticas - Turma A3

Bases Matemáticas - Turma A3 Bases Matemáticas - Turma A3 a Avaliação - Resolvida Esta resolução é mais do que um mero gabarito. O objetivo é apresentar a solução de cada problema de modo detalhado, com o propósito de ajudar na compreensão

Leia mais

Prova 2 - Bases Matemáticas

Prova 2 - Bases Matemáticas Prova 2 - Bases Matemáticas Resolução comentada Bases Matemáticas - Turma A3 2 a Avaliação - Resolvida Esta resolução é mais do que um mero gabarito. O objetivo é apresentar a solução de cada problema

Leia mais

( a) ( ) ( ) ( ) 1. A função m : x x x 2 tem por representação gráfica. A C 1 B D Seja f uma função definida em R.

( a) ( ) ( ) ( ) 1. A função m : x x x 2 tem por representação gráfica. A C 1 B D Seja f uma função definida em R. Para cada uma das seguintes questões, seleccione a resposta correcta entre as quatro alternativas que são indicadas, justificando a sua escolha.. A função m : tem por representação gráfica. A C B D. Seja

Leia mais

Gabarito. Sistemas numéricos. 1. Números naturais. 2. N. 3. Infinito. 4. Infinito. 5. Não. Contra-exemplo: número 7.

Gabarito. Sistemas numéricos. 1. Números naturais. 2. N. 3. Infinito. 4. Infinito. 5. Não. Contra-exemplo: número 7. Gabarito Sistemas numéricos. Números naturais.. N. Infinito.. Infinito. 5. Não. Contra-eemplo: número 7. 6. Não, pois sempre é possível encontrar um número maior, bastando somar mais uma unidade. 7. 0

Leia mais

Lista de Exercícios de Funções

Lista de Exercícios de Funções Lista de Eercícios de Funções ) Seja a R, 0< a < e f a função real de variável real definida por : f() = ( a a ) cos( π) + 4cos( π) + 3 Sobre o domínio A desta função podemos afirmar que : a) (], [ Z)

Leia mais

A MATEMÁTICA NO PISM I PROF. KELLER LOPES A MOTIVAÇÃO

A MATEMÁTICA NO PISM I PROF. KELLER LOPES A MOTIVAÇÃO A MATEMÁTICA NO PISM I PROF. KELLER LOPES A MOTIVAÇÃO TEMAS DO PISM I 01 - GEOMETRIA PLANA Semelhança e congruência de triângulos Áreas. Razões Trigonométricas. 02 - Conjuntos Numéricos 03 - Funções Conceito

Leia mais

Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Elaborado por. Seção 7. Versão

Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Elaborado por. Seção 7. Versão Matemática I Elaborado por Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Versão 2009-1 Conteúdo da Seção Função Eponencial Função Logarítmica 2 A função eponencial tem a seguinte forma b

Leia mais

Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7

Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 Função Modular 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 2. (Pucrj 2016) Qual dos gráficos abaixo representa a função

Leia mais

A matriz das incógnitas é uma matriz coluna formada pelas incógnitas do sistema.

A matriz das incógnitas é uma matriz coluna formada pelas incógnitas do sistema. MATEMÁTICA MÓDULO 1 SISTEMA LINEAR Um sistema linear de m equações a n incógnitas é um conjunto de m (m 1) equações lineares a n incógnitas e pode ser escrito como segue: a a a b a a a b 11 1 1 1n n 1

Leia mais

5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27

5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27 MATEMÁTICA CADERNO CURSO D ) [log ( log )] = [log ( log )] = = [log ( )] = [log ] = = 7 FRENTE ÁLGEBRA n Módulo Logaritmos: Definição e Eistência ) a) log 8 = = 8 = = b) log 8 = = 8 = = c) log = = ( )

Leia mais

f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2,

f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2, Ensino Aluno (: Nº: Turma: ª série Bimestre: º Disciplina: Espanhol Atividade Complementar Funções Compostas e Inversas Professor (: Cleber Costa Data: / /. (Eear 07) Sabe-se que a função invertível. Assim,

Leia mais

CPV - especializado na ESPM

CPV - especializado na ESPM - especializado na ESPM ESPM JULHO/006 PROVA E MATEMÁTICA. Assinale a alternativa correspondente à epressão de menor valor: a) [( ) ] [ ] c) [( ) ] [ ] [ ] Calculando-se cada item, temos: a) [( ) ] = =

Leia mais

LISTA DE REVISÃO DE ÁLGEBRA 3ºANO

LISTA DE REVISÃO DE ÁLGEBRA 3ºANO LISTA DE REVISÃO DE ÁLGEBRA 3ºANO. (Espcex (Aman)) Considerando a função real definida por a) 8 b) 0 c) d) e) 4 x 3, se x, x x, se x o valor de f(0) f(4) é. (Enem) Após realizar uma pesquisa de mercado,

Leia mais

Matemática A Extensivo V. 6

Matemática A Extensivo V. 6 Etensivo V. 6 Eercícios ) C A função que descreve o custo com a primeira locadora é dada por: f () =, + em que é a quantidade de quilômetro rodado. Função que descreve o custo com a segunda locadora: f

Leia mais

MATEMÁTICA QUESTÕES DE VESTIBULARES Função Modular Função Exponencial Função Logarítmica 3 a SÉRIE ENSINO MÉDIO 2009 Prof.

MATEMÁTICA QUESTÕES DE VESTIBULARES Função Modular Função Exponencial Função Logarítmica 3 a SÉRIE ENSINO MÉDIO 2009 Prof. MATEMÁTICA QUESTÕES DE VESTIBULARES Função Modular Função Eponencial Função Logarítmica a SÉRIE ENSINO MÉDIO 009 Prof. Rogério Rodrigues =======================================================================

Leia mais

2. Sendo f(x) = x 4 e g(x) = 4 x calcule:

2. Sendo f(x) = x 4 e g(x) = 4 x calcule: Geometria linear Dados dois pontos distintos e, o primeiro postulado de Euclides nos permite construir, com a régua, o segmento. Notação: Depois de construído o segmento, tomamos o seu comprimento como

Leia mais

FGV 1 a Fase maio/2002

FGV 1 a Fase maio/2002 FGV 1 a Fase maio/00 Matemática Questão 01 Uma cesta básica de produtos contém kg de arroz, 1 kg de feijão e kg de farinha. No período de 1 ano, o preço do quilograma de arroz subiu 10%, o do feijão subiu

Leia mais

Sequências. 1. (Uem 2013) Seja r um número inteiro positivo fixado. Considere a sequência numérica definida por 1 r

Sequências. 1. (Uem 2013) Seja r um número inteiro positivo fixado. Considere a sequência numérica definida por 1 r Sequências. (Uem 03) Seja r um número inteiro positivo fixado. Considere a sequência numérica a definida por r e assinale o que for correto. an an a 0) A soma dos 50 primeiros termos da sequência (a, a,

Leia mais

Unidade 3. Funções de uma variável

Unidade 3. Funções de uma variável Unidade 3 Funções de uma variável Funções Um dos conceitos mais importantes da matemática é o conceito de unção. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda.

Leia mais

Erivaldo. UFSC Parte 02

Erivaldo. UFSC Parte 02 Erivaldo UFSC Parte 02 UFSC 2011 Análise Combinatória página 14 32.( ) O sangue humano pode ser classificado quanto ao sistema ABO e quanto ao fator Rh. Sobre uma determinada populac a o P, os tipos sangui

Leia mais

Lista de Módulo Extensivo Alfa Professor: Leandro (Pinda)

Lista de Módulo Extensivo Alfa Professor: Leandro (Pinda) Lista de Módulo Etensivo Alfa Professor: Leandro (Pinda). (Pucpr 08) Considere os seguintes dados. Pode-se dizer que quando duas variáveis e y são tais que a cada valor de corresponde um único valor de

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, tal que 0 < a?, chamamos função eponencial de ase a a função f de R R que associa a cada real o número a. Podemos escrever, tamém: f: R R a Eemplos

Leia mais

MÓDULO 33. Funções I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 33. Funções I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA C9_ITA_Mod_33_36_prof /0/0 09:5 Page I Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 33 Funções I. (OPM Seja f uma função dada por: f( = 7 e n f(n =, para n natural, maior que.

Leia mais

MATEMÁTICA MÓDULO 9 FUNÇÃO MODULAR 1. DEFINIÇÃO OBSERVAÇÃO 2. PROPRIEDADES 3. EQUAÇÕES E INEQUAÇÕES MODULARES. x,se x 0 x,se x 0

MATEMÁTICA MÓDULO 9 FUNÇÃO MODULAR 1. DEFINIÇÃO OBSERVAÇÃO 2. PROPRIEDADES 3. EQUAÇÕES E INEQUAÇÕES MODULARES. x,se x 0 x,se x 0 FUNÇÃO MODULAR 1. DEFINIÇÃO A função modular (ou valor absoluto) é tal que f,se 0,se 0.A notação utilizada é f. OBSERVAÇÃO Veja que f 0 para todo real.. PROPRIEDADES I) II) III) IV) (Esta propriedade é

Leia mais

ANÁLISE COMBINATÓRIA E PRINCÍPIO FUNDAMENTAL DA CONTAGEM

ANÁLISE COMBINATÓRIA E PRINCÍPIO FUNDAMENTAL DA CONTAGEM 1. (Fac. Albert Einstein - Medicin 2016) Suponha que nos Jogos Olímpicos de 2016 apenas um representante do Brasil faça parte do grupo de atletas que disputarão a final da prova de natação dos 100 metros

Leia mais

Portanto, o comprimento total de vigas necessárias para fazer a sequência completa de grades, em metros, foi de

Portanto, o comprimento total de vigas necessárias para fazer a sequência completa de grades, em metros, foi de 1. (Unesp 016) A figura indica o padrão de uma sequência de grades, feitas com vigas idênticas, que estão dispostas em posição horizontal e vertical. Cada viga tem 0,5 m de comprimento. O padrão da sequência

Leia mais

TESTE GLOBAL 11.º ANO

TESTE GLOBAL 11.º ANO TESTE GLOBAL º ANO NOME: Nº: TURMA: ANO LETIVO: / AVALIAÇÃO: PROFESSOR: ENC EDUCAÇÃO: DURAÇÃO DO TESTE: 90 MINUTOS O teste é constituído por dois grupos O Grupo I é constituído por itens de escolha múltipla

Leia mais

LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO PROFESSOR: Claudio Saldan CONTATO: PARTE 1 - TRABALHO 4º BIMESTRE 3 9 =

LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO PROFESSOR: Claudio Saldan CONTATO: PARTE 1 - TRABALHO 4º BIMESTRE 3 9 = LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO PROFESSOR: Claudio Saldan CONTATO: saldan.mat@gmail.com PARTE - TRABALHO 4º BIMESTRE - (UEPG PR) + Dada a função f () =, assinale o que for correto. 0.

Leia mais

5.7 Aplicações da derivada ao estudo das funções.

5.7 Aplicações da derivada ao estudo das funções. Capítulo V: Derivação 0.. 4. 7. tg( ) 0 tg( π ( + + ) sen( ) + ) sen( ) Resolução: cos( ) Repare que não eiste sen( ). + 5. ( e + ) 6. 0 π ( + cos( )) cos( ) sen( ) sen( ) Mas, e como 0, então 0 + + +

Leia mais

Capítulo 2. Funções. 2.1 Funções

Capítulo 2. Funções. 2.1 Funções Capítulo Funções Ao final deste capítulo você deverá: Recordar o conceito de função, domínio e imagem; Enunciar e praticar as operações com funções; Identificar as funções elementares, calcular função

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU. Apontamentos Teóricos: Função Exponencial e Função Logarítmica

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU. Apontamentos Teóricos: Função Exponencial e Função Logarítmica INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 007/008 Semestre 1 o Apontamentos Teóricos:

Leia mais

Processo Seletivo Estendido 2016 LISTA FUNÇ~OES - 5

Processo Seletivo Estendido 2016 LISTA FUNÇ~OES - 5 Processo Seletivo Estendido 06 LISTA FUNÇ~OES - 5 Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR Esta lista foi inicialmente elaborada pelo professor Aleandre Trovon UFPR A presente

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

BLITZ PRÓ MASTER MATEMÁTICA A. em que N 0 é a quantidade inicial, isto é, N0

BLITZ PRÓ MASTER MATEMÁTICA A. em que N 0 é a quantidade inicial, isto é, N0 MATEMÁTICA A 01. (Pucpr) O número de bactérias N em um meio de cultura que cresce exponencialmente pode kt ser determinado pela equação N N0e em que N 0 é a quantidade inicial, isto é, N0 N (0) e k é a

Leia mais

MATEMÁTICA ELEMENTAR II:

MATEMÁTICA ELEMENTAR II: Marcelo Gorges Olímpio Rudinin Vissoto Leite MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia 009 009 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer

Leia mais

Módulo 1 Limites. 1. Introdução

Módulo 1 Limites. 1. Introdução Módulo 1 Limites 1. Introdução Nesta disciplina você vai estudar o cálculo diferencial e integral e suas aplicações em diversos problemas relacionados à Economia. O conceito de limite é conceito mais básico

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma:

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma: UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de 014 6/04/014 FILA A Aluno (a): Matrícula: Turma: Instruções Gerais: 1- A prova pode ser feita a lápis, exceto

Leia mais

Matemática. Resolução das atividades complementares. M6 Função Modular ( ) ( ) 1 De acordo com a definição, calcule:

Matemática. Resolução das atividades complementares. M6 Função Modular ( ) ( ) 1 De acordo com a definição, calcule: Resolução das atividades complementares Matemática M6 Função Modular p. 89 De acordo com a definição, calcule: a) b) c) 8 d) 6 7 a) b) c) 8 8 d) 6 6 7 Aplicando a definição, determine o valor numérico

Leia mais

Módulo e Função Modular

Módulo e Função Modular INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA-UERJ DISCIPLINA: MATEMÁTICA (FUNÇÕES) PROF S : QUARANTA / ILYDIO / 1 a SÉRIE ENSINO MÉDIO Módulo e Função Modular Função definida por mais de uma sentença

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 08 - Época especial Proposta de resolução Caderno... Como A e B são acontecimentos equiprováveis, temos que P A P B E como A e B são acontecimentos independentes,

Leia mais

Retas Tangentes à Circunferência

Retas Tangentes à Circunferência Retas Tangentes à Circunferência 1. (Fuvest 01) São dados, no plano cartesiano, o ponto P de coordenadas (,6) e a circunferência C de equação um ponto Q. Então a distância de P a Q é a) 15 b) 17 c) 18

Leia mais

FUNÇÃO MODULAR. pcdamatematica. f : definida por. x, se x. Função definida por mais de uma sentença Ex01: Seja f : uma função definida por.

FUNÇÃO MODULAR. pcdamatematica. f : definida por. x, se x. Função definida por mais de uma sentença Ex01: Seja f : uma função definida por. Função definida por mais de uma sentença Ex01: Seja f : uma função definida por Calcule: a) f ( 3), f (0) e f ( 3). x, se x f ( x) x 3, se x 1. x 5, se x 1 e) f ( 1. 3) f) f ( 1). f ( 3) Ex03: Em um encarte

Leia mais

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 3 Limites Considere a função f definida por: Qual o domínio dessa função? Se 1, então f () é dada por: (2 + 3)( 1). 1 2 +

Leia mais

Inequações Exponenciais e Logarítmicas. Inequações Exponenciais e Logarítmicas. Exemplos:

Inequações Exponenciais e Logarítmicas. Inequações Exponenciais e Logarítmicas. Exemplos: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Inequações Eponenciais e

Leia mais

Lista de Exercícios 1º Semestre 2017 Curso Pré-Vestibular POLIEDRO

Lista de Exercícios 1º Semestre 2017 Curso Pré-Vestibular POLIEDRO Lista de Exercícios º Semestre 07 Curso Pré-Vestibular POLIEDRO Prof. Kátia Regina Yabiku Logaritmos. (Fuvest 07) Considere as funções f(x) x 4 g(x) log x, em que o e domínio de f é o conjunto dos números

Leia mais

Equação de 2 grau. Assim: Øx² - 5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6.

Equação de 2 grau. Assim: Øx² - 5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. Rumo ao EQUAÇÃO DE 2 GRAU Equação de 2 grau A equação de 2 grau é a equação na forma ax² + bx + c = 0, onde a, b e c são números reais e x é a variável (incógnita). O valor da incógnita x é determinado

Leia mais

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar Eercícios de Cálculo p. Informática, 2006-07 Números Reais. E - Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar o número dado: 7 a) b) 6 7 c) 2.(3) = 2.33 d) 2 3 e)

Leia mais

BANCO DE QUESTÕES TURMA PM-PE PROGRESSÃO ARITMÉTRICA E GEOMÉTRICA

BANCO DE QUESTÕES TURMA PM-PE PROGRESSÃO ARITMÉTRICA E GEOMÉTRICA 01. (UNESP 016) A figura indica o padrão de uma sequência de grades, feitas com vigas idênticas, que estão dispostas em posição horizontal e vertical. Cada viga tem 0,5 m de comprimento. O padrão da sequência

Leia mais

Matemática A Semiextensivo V. 2

Matemática A Semiextensivo V. 2 Semietensivo V. Eercícios 0) R = {(0, ), (, ), (, ), (8, 9)} 0) B 0) D 0) B A = {0,,,, 8} e B = {,,, 9} R = {(, ) A. B/ = + } = 0 = 0 + = B = = + = B = = + = B = = + = 7 7 B = 8 = 8 + = 9 9 B Assim R =

Leia mais

FUNÇÕES PARES, IMPARES E FUNÇÃO COMPOSTA. , onde x R e x 0 e g(x) = x.sen x, onde x R, podemos afirmar

FUNÇÕES PARES, IMPARES E FUNÇÃO COMPOSTA. , onde x R e x 0 e g(x) = x.sen x, onde x R, podemos afirmar FUNÇÕES PARES, IMPARES E FUNÇÃO COMPOSTA 0. (ACAFE SC) Dadas as funções f: RR e g: RR, definidas por f() = + e g () = -, qual alternativa tem afirmação CORRETA? a) f é uma função par e g é ímpar. b) f

Leia mais

Matemática. Resolução das atividades complementares. M3 Determinantes. 1 O valor do determinante da matriz A 5

Matemática. Resolução das atividades complementares. M3 Determinantes. 1 O valor do determinante da matriz A 5 Resolução das atividades complementares Matemática M Determinantes p. 6 O valor do determinante da matriz A é: a) 7 c) 7 e) 0 b) 7 d) 7 A 7 Se a 7, b e c, determine A a b c. a 7 ; b ; c A a 8 () b () c

Leia mais

Lista Sabe-se que o gráfico abaixo representa uma função quadrática. Encontre a expressão que define esta função.

Lista Sabe-se que o gráfico abaixo representa uma função quadrática. Encontre a expressão que define esta função. 8 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira. Construir o gráfico cartesiano das funções definidas em R: (a) = (b) = (c) = (d) = (e) = (f) = (g) = (h) = +4 (i) = (j) = 4 0+4 (k) = + + (l) = +6 (m) = +

Leia mais